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Abstract
The purpose of this paper is to investigate the numerical solutions to
two-dimensional forward backward stochastic differential equations(FBSDEs). Based
on the Fourier cos-cos transform, the approximations of conditional expectations and
their errors are studied with conditional characteristic functions. A new numerical
scheme is proposed by using the least-squares regression-based Monte Carlo method
to solve the initial value of FBSDEs. Finally, a numerical experiment in European option
pricing is implemented to test the efficiency and stability of this scheme.
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1 Introduction
In this paper, we consider the numerical solutions to the two-dimensional decoupled for-
ward backward stochastic differential equations (FBSDEs):

Xt = X0 +
∫ t

0
μ(Xs) ds +

∫ t

0
σ (Xs) dWs, X0 = x0, (1)

Yt = g(XT ) +
∫ T

t
f (s, Ys, Zs) ds –

∫ T

t
Zs dWs, YT = g(XT ), (2)

where Xt = (X1
t , X2

t )∗, 0 ≤ t ≤ T , is a two-dimensional forward component and Yt , 0 ≤
t ≤ T , is a one-dimensional backward component. μ(Xt) = (μ1(X1

t ),μ2(X2
t ))∗,σ (Xt) =

diag(σ1(X1
t ),σ2(X2

t )) are drift and volatility terms. Wt = (W 1
t , W 2

t )∗, 0 ≤ t ≤ T , is a stan-
dard two-dimensional Brownian motion defined on a filtered probability space (�,F , P,
(Ft)0≤t≤T ), where Ft is filtration of Wt . Here, the operator (·)∗ denotes the transpose op-
erator for a vector.

Under the standard conditions on f and g , Pardoux and Peng [1] proved that there exists
a unique solution to nonlinear FBSDEs. But it is often difficult to obtain the analytic so-
lutions. So it is crucial to give the numerical schemes. The key of the numerical schemes
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is how to discrete conditional expectation. Up to now, there have been lots of methods
to solve this problem. Zhang et al. [2] constructed a kind of sparse-grid Gauss–Hermite
quadrature rule and hierarchical sparse-grid interpolation to approximate this conditional
expectation. Fu et al. [3] gave a method of spectral sparse grid approximations to deal
with high-dimensional conditional expectation. It is known that the Fourier transform is
an important tool in option pricing, not only in the SDE framework but also in the ODE
framework. With the Fourier cos transform, one can convert conditional expectation to
a series form. By constructing a function basis from truncating series, one can approxi-
mate the conditional expectation. More efficient methods and fast algorithms follow this
idea. For details, one can refer to [4–6]. These schemes are applied to many fields, such
as option pricing [7–10], portfolio optimization [11, 12], and so on. Ruijter and Oosterlee
[13] extended the Fourier cos method to two-dimensional FBSDE, named Fourier cos-cos
method, and gave a numerical scheme to pricing European option and Bermudan op-
tion under GBM model and Heston stochastic volatility. Recently, Meng and Ding [14]
investigated a Fourier sin-sin method named modified Fourier sin-sin method to price
rainbow options within two-dimensional BSDE. Numerical experiments showed that its
convergence and efficiency were expected. Inspired by the literature, we extend the idea
to solving two-dimensional FBSDEs by using the Fourier cos-cos transform and the least-
square Monte Carlo regression to obtain the numerical solution to FBSDEs (1) and (2). It
is a supplement to our previous work in [15], and it can be extended to high-dimensional
FBSDEs.

The paper is organized as follows. In Sect. 2, some assumptions about FBSDEs are given
to ensure the existence of solution. In the discretization scheme of forward equation (1),
we use the classical Euler scheme which was used by Zhao et al. [16]. For backward equa-
tion (2), we use the theta scheme. In Sect. 3, we give the approximations and their error
analysis of conditional expectations from the discretization of backward equation (2). In
Sect. 4, we present a numerical scheme based on the least-squares Monte Carlo regres-
sion and provide an example in option pricing for a numerical experiment. In Sect. 5, we
conclude our investigation.

2 Discretization of FBSDEs
In this section, we denote by L2

T (R2) the set of FT -measurable random variables X : � →
R2 which are square integrable, and by H2

T (R) the set of predictable processes η : � ×
[0, T] → R such that

E

[∫ T

0
|ηt|2 dt

]
< ∞,

where | · | is the standard Euclidean norm in the Euclidean space R. The terminal condition
YT in equation (2) is FT -measurable and square integrable. We give some assumptions:

(A1) The function g(x) is uniformly global functional Lipschitz continuous.
(A2) The functions μ(x) and σ (x) are uniformly Lipschitz continuous and satisfy a

linear growth condition.
(A3) The generator f (t, y, z) satisfies the following continuity condition:

∣∣f (t2, y2, z2) – f (t1, y1, z1)
∣∣ ≤ Cf

(|t2 – t1|1/2 + |y2 – y1| + |z2 – z1|
)

for any (t2, y2, z2), (t1, y1, z1) ∈ [0, T] × R × R2, where Cf > 0 is a constant.
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Assumptions (A1), (A2), and (A3) can guarantee the existence and uniqueness of solution
(Xt , Yt , Zt) to FBSDEs (1)–(2). Now we are in the position to discretize FBSDEs (1) and
(2) by using the Euler scheme. Given a partition � : 0 = t0 < t1 < · · · < tM = T with time
steps �tm = tm – tm–1, denote Xm = Xtm , Ym = Ytm , Zm = Ztm , and �Wm = Wtm – Wtm–1 . The
classical Euler discretization for FSDE (1) is

X�
m = X�

m–1 + μ
(
X�

m–1
)
�tm + σ

(
X�

m–1
)
�Wm

for m = 1, . . . , M. In the time interval [0, T], we rewrite BSDE (2) to the following form:

Ym–1 = Ym +
∫ tm

tm–1

f (s, Ys, Zs) ds –
∫ tm

tm–1

Zs dWs. (3)

Considering Yt to be an (Ft)-adapted process, we take conditional expectations on both
sides of equation (3) with respect to filtration Ftm–1 , and then we have an iteration back-
ward equation

Ym–1 = E
x
m–1[Ym] +

∫ tm

tm–1

E
x
m–1

[
f (ts, Ys, Zs)

]
ds, (4)

where Ex
m–1[·] = E[· | X�

m–1 = x]. Multiplying �W ∗
m and taking conditional expectations on

both sides of (4), we have

0 = E
x
m–1

[
Ym�W ∗

m
]

+
∫ tm

tm–1

E
x
m–1

[
f (tm, Ym, Zm) · �W ∗

m
]

ds

– E
x
m–1

[∫ tm

tm–1

Zs dWs · �W ∗
m

]
. (5)

Applying the theta discretization method to (4),(5), we obtain a discrete solution (Y �
m–1,

Z�
m–1) to approximate the solution (Yt–1, Zt–1) to BSDE (2):

Y �
m–1 = E

x
m–1

[
Y �

m
]

+ θ1f
(
tm–1, Y �

m–1, Z�
m–1

)
�tm

+ (1 – θ1)Ex
m–1

[
f
(
tm, Y �

m , Z�
m
)]

�tm, (6)

Z�
m–1 = –

1 – θ2

θ2
E

x
m–1

[
Z�

m
]

+
1
θ2
E

x
m–1

[
Y �

m �W ∗
m
] 1
�tm

+
1 – θ2

θ2
E

x
m–1

[
f
(
tm, Y �

m , Z�
m
)
�W ∗

m
]
. (7)

Here, θ1 and θ2 are two parameters in the theta discretization scheme. As a consequence of
the Feynman–Kac theorem, the terminal values YM and ZM are both deterministic func-
tions of X�

M , i.e., YM = g(XM) and ZM = ∇g(XM) · σ (XM), where ∇ is a normal gradient
operator with respect to the augment. Now, in combination with equations (6) and (7), we
know that the solution (Y �

m–1, Z�
m–1) is represented by the kinds of conditional expectations

U(x) = E
x
m–1

[
υ
(
X�

m
)]

, V (x) = E
x
m–1

[
υ
(
X�

m
)
�W ∗

m
]

for some function υ(x). In these expectations, the first conditional expectation is one-
dimensional and the second is two-dimensional. Motivated by successful use of the Fourier
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cos-cos method in two-dimensional BSDEs, we use the Fourier transform to obtain the
approximation expressions of the above conditional expectations.

3 Approximation of conditional expectation and error analysis
In this section, we give the approximation of conditional expectations U(x), V (x) and their
error analysis. First, we give the approximation of U(x). Let p(y|x) denote the conditional
density function of X�

m given by X�
m–1 = x. The symbol

∑∑′ in theorems below means
that the first term in the summation is weighted by one-half, and Re{·} denotes the real
part of a complex number.

Theorem 3.1 Let ϕ(w1, w2|x1, x2) be the conditional characteristic function of p(y1, y2|x1,
x2), and denote φ(w1, w2|0, 0) = φlevy(w1, w2). Then, for any rectangular area D = [a1, b1] ×
[a2, b2] ⊂ R2, the conditional expectation U(x) has the following expansion:

U(x) =
+∞∑
k1=0

+∞∑
k2=0

′Xk1,k2 (x1, x2)Bk1,k2 –
+∞∑
k1=0

+∞∑
k2=0

′Yk1,k2 (x1, x2)Bk1,k2

+
∫∫

R2\D
υ(y1, y2)p(y1, y2|x1, x2) dy1 dy2, (8)

where

Xk1,k2 (x1, x2) =
1
2

Re

[
φlevy

(
k1π

b1 – a1
,

k2π

b2 – a2

)
· exp

(
ik1π

x1 – a1

b1 – a1
+ ik2π

x2 – a2

b2 – a2

)

+ φlevy

(
k1π

b1 – a1
, –

k2π

b2 – a2

)
· exp

(
ik1π

x1 – a1

b1 – a1
– ik2π

x2 – a2

b2 – a2

)]
,

Yk1,k2 (x1, x2) =
∫∫

R2\D
p(y1, y2|x1, x2) cos

(
k1π

y1 – a1

b1 – a1

)
cos

(
k2π

y2 – a2

b2 – a2

)
dy1 dy2.

And

Bk1,k2 =
2

b1 – a1

2
b2 – a2

∫∫
D

υ(y1, y2) cos

(
k1π

y1 – a1

b1 – a1

)
cos

(
k2π

y2 – a2

b2 – a2

)
dy1 dy2

is a Fourier cosine coefficient of υ(y1, y2).

Proof For a truncated finite integration region D, we have

U(x1, x2) =
∫∫

R2
υ(y1, y2)p(y1, y2|x1, x2) dy1 dy2

=
∫∫

D
υ(y1, y2)p(y1, y2|x1, x2) dy1 dy2 +

∫∫
R2\D

υ(y1, y2)p(y1, y2|x1, x2) dy1 dy2.

By using the Fourier cos-cos transform to p(y1, y2|x1, x2) in D, we have

p(y1, y2|x1, x2) =
+∞∑
k1=0

+∞∑
k2=0

′Ak1,k2 (x1, x2) cos

(
k1π

y1 – a1

b1 – a1

)
cos

(
k2π

y2 – a2

b2 – a2

)
,
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where Ak1,k2 (x1, x2) is the Fourier cosine coefficient of p(y1, y2|x1, x2):

Ak1,k2 (x1, x2) =
2

b1 – a1

2
b2 – a2

∫∫
D

p(y1, y2|x1, x2) cos

(
k1π

y1 – a1

b1 – a1

)

× cos

(
k2π

y2 – a2

b2 – a2

)
dy1 dy2. (9)

Then we have

U(x) –
∫∫

R2\D
υ(y1, y2)p(y1, y2|x1, x2) dy1 dy2

=
b1 – a1

2
b2 – a2

2

+∞∑
k1=0

+∞∑
k2=0

′Ak1,k2 (x1, x2)Bk1,k2 . (10)

With the cos formula

2 cosα cosβ = cos(α + β) + cos(α – β),

the integral in equation (9) will be changed to the following form:

2
∫∫

D
p(y1, y2|x1, x2) cos

(
k1π

y1 – a1

b1 – a1

)
cos

(
k2π

y2 – a2

b2 – a2

)
dy1 dy2

= 2
∫∫

R2
p(y1, y2|x1, x2) cos

(
k1π

y1 – a1

b1 – a1

)
cos

(
k2π

y2 – a2

b2 – a2

)
dy1 dy2

– 2
∫∫

R2\D
p(y1, y2|x1, x2) cos

(
k1π

y1 – a1

b1 – a1

)
cos

(
k2π

y2 – a2

b2 – a2

)
dy1 dy2

= Re

[∫∫
R2

p(y1, y2|x1, x2) exp

(
i

k1y1π

b1 – a1
+ i

k2y2π

b2 – a2

)
dy1 dy2

× exp

(
–i

k1a1π

b1 – a1
– i

k2a2π

b2 – a2

)]

+ Re

[∫∫
R2

p(y1, y2|x1, x2) exp

(
i

k1y1π

b1 – a1
– i

k2y2π

b2 – a2

)
dy1 dy2

× exp

(
–i

k1a1π

b1 – a1
+ i

k2a2π

b2 – a2

)]

– 2
∫∫

R2\D
p(y1, y2|x1, x2) cos

(
k1π

y1 – a1

b1 – a1

)
cos

(
k2π

y2 – a2

b2 – a2

)
dy1 dy2

= Re

[
φ

(
k1π

b1 – a1
,

k2π

b2 – a2
|x1, x2

)
· exp

(
–i

k1a1π

b1 – a1
– i

k2a2π

b2 – a2

)]

+ Re

[
φ

(
k1π

b1 – a1
, –

k2π

b2 – a2
|x1, x2

)
· exp

(
–i

k1a1π

b1 – a1
+ i

k2a2π

b2 – a2

)]

– 2
∫∫

R2\D
p(y1, y2|x1, x2) cos

(
k1π

y1 – a1

b1 – a1

)
cos

(
k2π

y2 – a2

b2 – a2

)
dy1 dy2

= Re

[
φlevy

(
k1π

b1 – a1
,

k2π

b2 – a2

)
· exp

(
ik1π

x1 – a1

b1 – a1
+ ik2π

x2 – a2

b2 – a2

)]

+ Re

[
φlevy

(
k1π

b1 – a1
, –

k2π

b2 – a2

)
· exp

(
ik1π

x1 – a1

b1 – a1
– ik2π

x2 – a2

b2 – a2

)]
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– 2
∫∫

R2\D
p(y1, y2|x1, x2) cos

(
k1π

y1 – a1

b1 – a1

)
cos

(
k2π

y2 – a2

b2 – a2

)
dy1 dy2.

Substituting the above equation into (10), we can obtain the form of equation (8). �

Next, we consider the two-dimensional conditional expectation

V (x) = E
x1,x2
m–1

[
υ
(
X�

m
)
�W ∗

m
]
.

The difficulty of V (x) is to deal with the Brownian motion �Wm. Note that the compo-
nents of �Wm are independent, we can handle them separately. Denote

V1(x) = E
x
m–1

[
υ
(
X�

m
)
�W 1

m
]
, V2(x) = E

x
m–1

[
υ
(
X�

m
)
�W 2

m
]
,

and assume that the given condition is (X1,�
m–1, X2,�

m–1) = (x1, x2). Then, from the forward
scheme for equation (1), we can revise it to another form defined by

ρx1

(
X1,�

m
)

=
1

σ1(x1)
(
X1,�

m – x1 – μ1(x1)�tm
)
,

ρx2

(
X2,�

m
)

=
1

σ2(x2)
(
X2,�

m – x2 – μ2(x2)�tm
)
.

We find that

V1(x) = E
x
m–1

[
υ
(
X�

m
)
�W 1

m
]

=
∫∫

R2
υ(y1, y2)ρx1 (y1)p(y1, y2|x1, x2) dy1 dy2

and

V2(x) = E
x
m–1

[
υ
(
X�

m
)
�W 2

m
]

=
∫∫

R2
υ(y1, y2)ρx2 (y2)p(y1, y2|x1, x2) dy1 dy2.

These integrals are similar to U(x) and can be calculated by using the method in Theo-
rem 3.1. Next we directly give the expansion of V1(x) and V2(x).

Theorem 3.2 Under the assumptions of Theorem 3.1, for any rectangular area D =
[a1, b1] × [a2, b2] ⊂ R2, the components of conditional expectation V (x) have the follow-
ing expansions:

Vj(x) =
+∞∑
k1=0

+∞∑
k2=0

′Xk1,k2 (x1, x2)̃Bk1,k2 (xj) –
+∞∑
k1=0

+∞∑
k2=0

′Yk1,k2 (x1, x2)̃Bk1,k2 (xj)

+
∫∫

R2\D
υ(y1, y2)ρxj (yj)p(y1, y2|x1, x2) dy1 dy2,

where

B̃k1,k2 (xj) =
2

b1 – a1

2
b2 – a2

∫∫
D

υ(y1, y2)ρxj (yj)

× cos

(
k1π

y1 – a1

b1 – a1

)
cos

(
k2π

y2 – a2

b2 – a2

)
dy1 dy2

are Fourier cosine coefficients of υ(y1, y2)ρxj (yj), j = 1, 2.
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Remark 1 There are some results to approximate conditional expectation, such as using
polynomial basis functions, Malliavin approach, and Monte Carlo sequence convergence
(see [17–22]). Most of them consider the time-spatial approximation. In fact, it needs
much more time to implement, especially in dealing with high-dimensional conditional
expectation. The results in Theorem 3.1 and Theorem 3.2 show that they can contain
much information and have many advantages to deal with high-dimensional FBSDEs.

Theorem 3.1 and Theorem 3.2 give us some idea to approximate conditional expecta-
tions. For suitable integers N1, N2, the conditional expectations U(x), V (x) can be approx-
imated by the truncation terms

U(x) ≈
N1–1∑
k1=0

N2–1∑
k2=0

′ 1
2

Re

[
φlevy

(
k1π

b1 – a1
,

k2π

b2 – a2

)
· exp

(
ik1π

x1 – a1

b1 – a1
+ ik2π

x2 – a2

b2 – a2

)

+ φlevy

(
k1π

b1 – a1
, –

k2π

b2 – a2

)
· exp

(
ik1π

x1 – a1

b1 – a1
– ik2π

x2 – a2

b2 – a2

)]
Bk1,k2 (11)

with the error

ε(x) = ε1(x) + ε2(x) – ε3(x)

=
∫∫

R2\D
υ(y1, y2)p(y1, y2|x1, x2) dy1 dy2

+
b1 – a1

2
b2 – a2

2

[ +∞∑
k2=N2

N1–1∑
k1=0

′ +
+∞∑

k1=N1

N2–1∑
k2=0

′ +
+∞∑

k1=N1

+∞∑
k2=N2

′
]

Ak1,k2 (x1, x2)Bk1,k2

–
N1–1∑
k1=0

N2–1∑
k2=0

′Yk1,k2 (x1, x2)Bk1,k2

and

Vj(x) ≈
N1–1∑
k1=0

N2–1∑
k2=0

′ 1
2

Re

[
φlevy

(
k1π

b1 – a1
,

k2π

b2 – a2

)
· exp

(
ik1π

x1 – a1

b1 – a1
+ ik2π

x2 – a2

b2 – a2

)

+ φlevy

(
k1π

b1 – a1
, –

k2π

b2 – a2

)

× exp

(
ik1π

x1 – a1

b1 – a1
– ik2π

x2 – a2

b2 – a2

)]
B̃k1,k2 (xj) (12)

with the error

ε̃ j(x) = ε̃
j
1(x) + ε̃

j
2(x) – ε̃

j
3(x)

=
∫∫

R2\D
υ(y1, y2)ρxj (yj)p(y1, y2|x1, x2) dy1 dy2

+
b1 – a1

2
b2 – a2

2

[ +∞∑
k2=N2

N1–1∑
k1=0

′ +
+∞∑

k1=N1

N2–1∑
k2=0

′ +
+∞∑

k1=N1

+∞∑
k2=N2

′
]

Ak1,k2 (x1, x2)̃Bk1,k2 (xj)
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–
N1–1∑
k1=0

N2–1∑
k2=0

′Yk1,k2 (x1, x2)̃Bk1,k2 (xj)

for j = 1, 2.
Now, we give the error analysis of the approximations. Ruijter and Oosterlee [13] pointed

out that the coefficients Ak1,k2 (x1, x2) usually decay faster than Bk1,k2 . Thus, we find that
the error ε2(x) converges exponentially in N1 and N2 for density functions in the class
C∞([a1, b1] × [a2, b2]), i.e.,

∣∣ε2(x)
∣∣ < P1 exp

(
–(N – 1)ν

)
(13)

for some positive constants P1, N ,ν , and N = min{N1, N2}. If a density function has a dis-
continuity point in one of its derivatives, then the error ε2(x) has an algebraic convergence,
i.e.,

∣∣ε2(x)
∣∣ < P2(N – 1)1–β (14)

for some positive constants P2,β , N , where β ≥ N , N = min{N1, N2}. On the other hand,
according to [23], Bk1,k2 exhibits at least algebraic convergence and gives us information of
algebraic convergence of Fourier series, i.e., for suitable positive constants N , n, P, Q, we
have

∣∣∣∣∣
+∞∑

k1≥N1,ork2≥N2

′ cos

(
k1π

y1 – a1

b1 – a1

)
cos

(
k2π

y2 – a2

b2 – a2

)
Bk1,k2

∣∣∣∣∣

≤
+∞∑

k1≥N1,ork2≥N2

′|Bk1,k2 | ≤
P

(N – 1)n–1 ≤ Q.

After interchanging the summation and integration, we rewrite ε3(x) in another form:

ε3(x)

=
N1–1∑
k1=0

N2–1∑
k2=0

′
∫∫

R2\D
p(y1, y2|x1, x2) cos

(
k1π

y1 – a1

b1 – a1

)
cos

(
k2π

y2 – a2

b2 – a2

)
dy1 dy2Bk1,k2

= ε1(x) –
∫∫

R2\D

[( +∞∑
k2=N2

N1–1∑
k1=0

′ +
+∞∑

k1=N1

N2–1∑
k2=0

′ +
+∞∑

k1=N1

+∞∑
k2=N2

′
)

× cos

(
k1π

y1 – a1

b1 – a1

)
cos

(
k2π

y2 – a2

b2 – a2

)
Bk1,k2

]
p(y1, y2|x1, x2) dy1 dy2.

It then follows that

∣∣ε3(x)
∣∣ ≤ ∣∣ε1(x)

∣∣ + 3Q
∣∣ε4(x)

∣∣. (15)

From (11)–(15), with a properly chosen truncation of the integration range, the over-
all error ε(x) converges. With the same method, we can also prove that the overall error
ε̃j(x) (j = 1, 2) converges.
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Therefore, if we choose a suitable region [a1, b1]× [a2, b2], then the errors of the approx-
imation can be well controlled. We can use approximations (11) and (12) as a substitution
to conditional expectations. The key is to choose basis functions. In the next section, we
state our basis functions and employ the least-squares Monte Carlo regression method to
numerical FBSDEs (1) and (2).

4 Numerical experiment
In this section, we give the numerical scheme to FBSDEs (1) and (2) based on the least-
square Monte Carlo regression and perform a numerical experiment in pricing European
option. In the following, we give the basis functions and corresponding coefficients αj,m at
time tm. For approximations Ym, Zm, we use truncation functions to represent.

First, we state the numerical scheme. Under the condition of value (Ym, Zm), we imple-
ment the following least-square regression by using finite-dimensional basis functions,
respectively, to approximate Ym–1, Zm–1 at each time tm:

(
Y �

m–1, Z�
m–1

)

= arg inf
(Y ,Z)∈L2(Ftm–1 )

E
[∣∣Y �

m + (1 – θ )f
(
tm, Y �

m , Z�
m
)
�tm

– Y + θ f (tm–1, Y , Z)�tm – θZ�Wm – (1 – θ )Z�
m�Wm

∣∣2]. (16)

Notice that if θ = 1 in (16), the scheme will deduce to the representation in Gobet et al.
[24]. Many numerical experiments show that the theta scheme is of second-order conver-
gence when θ = 0.5. Following this idea, we also consider θ = 0.5. On the choice of basis
functions, Gobet et al. use hypercubes and global polynomials as basis functions to test the
effectiveness and stability under the assumption of assets following geometric Brownian
motions (GBMs). Unfortunately, they only give one-dimensional numerical experiments
to test the efficiency. We want to know the stability and efficiency in a high-dimensional
space. From Sect. 3, we can use conditional characteristic functions to express the basis
functions.

Next, we simplify the basis functions by following Theorems 3.1 and 3.2. We assume
that the underly assets follow GBM, i.e., μj(xj) = μjxj and σj(xj) = σjxj for j = 1, 2. Then the
basis functions with respect to U(x) are given by

�m,k(x) = cos θ1 · cos θ2 · exp(βm,k),

and for Vj(x) (j = 1, 2), the function bases are given

�̃
j
m,k(x) = cos θ1 · cos θ2 · exp(βm,k)/σjx.

Here,

θj =
kjπ

bj – aj
(xj + μj�tm – aj),

βm,k = –
1
2

(
k1π

b1 – a1

)2

σ 2
1 �tm –

1
2

(
k2π

b2 – a2

)2

σ 2
2 �tm
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for each kj = 0, 1, 2, . . . N–1, j = 1, 2. We combine the Monte Carlo method and Picard iter-
ations to implement the procedure:

• Simulations. Simulate L independent simulations of

(
X�

m,l
)

2≤m≤M+1,1≤l≤L, (�Wm,l)1≤m≤M–1,1≤l≤L.

• Initialization. The algorithm is initialized with Y �
M,l = g(X�

M,l). The value (Y �
m , Z�

m)
represented via basis functions and corresponding coefficients is known at time tm–1.
The coefficients of basis functions are computed by the least-square method.

• Backward iteration. Assume that Y �,I,I
m,L is built with L simulations. Denote

αr,i,I
m = (αr,i,I

1,m ,αr,i,I
2,m), �̃m,k(x) = (�̃1

m,k(x), �̃2
m,k(x)). The symbol � represents

multiplication of corresponding elements. Then do Picard iterations:
→ The initialization i = 0 of Picard iterations is settled as (Y �,0,I

m–1,l, Z�,0,I
m–1,l) = (0, 0), i.e.,

α
r,0,I
j,m = 0, j = 0, 1, 2.

→ For i = 1, 2, . . . , I , the coefficients α
r,i,I
j,m are iteratively obtained as the argmin in

(α0,m,α1,m,α2,m) of the quantity

1
L

L∑
l=1

[
Y �

m,l + 0.5f
(
tm, Y �

m,l, Z�
m,l

)
�tm – 0.5Z�

m,l�Wm,l

+ 0.5f

(
tm–1,

N–1∑
k1=0

N–1∑
k2=0

′α1,p–1,I
0,m �m,k(x),

N–1∑
k1=0

N–1∑
k2=0

′αr,i–1,I
m � �̃m,k(x)

)
�tm

–
N–1∑
k1=0

N–1∑
k2=0

′α1,i,I
0,m �m,k(x) – 0.5

(N–1∑
k1=0

N–1∑
k2=0

′αr,i,I
m � �̃m,k(x)

)
�Wm,l

]2

.

→ Take αr
j,m = α

r,I,I
j,m . Use the coefficients αr

j,m, j = 1, . . . , 6, to compute Y �
m–1 and Z�

m–1.
• Initial value. Compute the initial value (Y �

0 , Z�
0 ).

Now we test the algorithm on an example—test on European option. We do S = 50 times
and collect each time the value Y �,S

0 . At each time the simulated value is defined as {Y �,S
0,s :

s = 1, . . . , 50}. The mean is denoted by

Y �,S
0 =

1
50

50∑
s=1

Y �,S
0,s .

Following the literature [8], we choose a1 = a2 = a and b1 = b2 = b, where

a = min
i

[
xi

0 + ξ i
1 – 10

√
ξ i

2 +
√

ξ i
4

]
, b = max

i

[
xi

0 + ξ i
1 + 10

√
ξ i

2 +
√

ξ i
4

]
,

and ξ i
j denotes the jth cumulant of the stochastic variable Xi

T . Denote by eY = Y0 – Y �
0

the error of the numerical solution of Y . In the experiment, we present an application of
our scheme to financial problems, i.e., pricing European option and hedging strategy. We
consider option pricing of a basket call option in the Black–Scholes model. Someone has
two kinds of assets. Denote by pt and Xt = (X1

t , X2
t ) the bond price and the prices of two

independent stocks, respectively, that satisfy

dpt = rpt dt,
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Table 1 Error of results Y
�,S
0 for example

M N = 5 N = 10 N = 15 N = 20 N = 25

7 6.1E–1 5.72E–1 5.21E–1 8.11E–2 6.43E–2
13 5.57E–1 5.65E–1 5.34E–1 7.42E–2 5.12E–2
17 5.32E–1 4.42E–1 4.25E–1 6.3E–2 5.43E–2
21 4.13E–1 3.72E–2 3.62E–2 3.63E–2 3.35E–2

dXi
t = μiXi

t dt + σiXi
t dW i

t , i = 1, 2,

with the initial conditions p0 = p, X0 = x0 = (x1
0, x2

0), t ∈ [0, T]. At time t, an investor takes
with wealth yt in hand. He puts π i

t (i = 1, 2) to buy the ith stock and yt – (π1
t + π2

t ) to buy
the bond. The processes yt and π i

t (i = 1, 2) satisfy the following SDE:

–dyt = –

[
ryt +

2∑
i=1

(μi – r)π i
t

]
dt –

2∑
i=1

σiπ
i
t dW i

t .

Denote zi
t = σiπ

i
t (i = 1, 2), then (yt , zt) satisfies

–dyt = –

[
ryt +

2∑
i=1

μi – r
σi

zi
t

]
dt –

2∑
i=1

zi
t dW i

t

with the terminal condition yT = max{
√

X1
T X2

T – K , 0}. If μi = μ,σi = σ , then the analytic
solution can be given by a two-dimensional Black–Scholes formula. In our numerical ex-
periment, we set

T = 0.1, K = 100, r = 0.03, x1
0 = x2

0 = 100, μ = 0.05, σ = 0.2.

The absolute error |eY | of experiments is listed in Table 1.
In this table, we find that the error is accepted. Generally speaking, with the increase of

M, N , the scheme is stable but the computation time is longer. In this example, if N = 20
and M = 17, then the error is accepted.

5 Conclusion
In this paper, we extend the Fourier cos transform to propose a method of numerical solu-
tions to high-dimensional FBSDEs by combining conditional characteristic functions. In
this method, the Fourier cos-cos transform is used to deal with two kinds of conditional
expectations. Following the error analysis in [13], we prove that the errors in approxi-
mation of conditional expectations are well controlled in theory. It also shows that this
numerical scheme is efficient and stable.
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