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Abstract
This study investigates the dynamical behavior of a ratio-dependent Lotka–Volterra
competitive-competitive-cooperative system with feedback controls and delays.
Compared with previous studies, both ratio-dependent functional responses and
time delays are considered. By employing the comparison method, the Lyapunov
function method, and useful inequality techniques, some sufficient conditions on the
permanence, periodic solution, and global attractivity for the considered system are
derived. Finally, a numerical example is also presented to validate the practicability
and feasibility of our proposed results.
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1 Introduction
As is well known, competition and mutualism(cooperation) are two important interac-
tions among species. Competition occurs when two species use the same resources or
harm each other when seeking resources, whereas mutualism is defined as the living of
two species in close association with one another with the benefit of both [1]. Notably, the
Lotka–Volterra models were proposed by Lotka [2] and Volterra [3] for the first time, and
now they have become the most important means to explain this type of ecological phe-
nomenon. In particular, the Lotka–Volterra competitive model, mutualism (cooperative)
model, and predator-prey model characterize competitive, cooperative, and predator-prey
interactions between species that are of great interest in the study of dynamical behaviors
of systems [4–17]. However, pure competition as described by the Lotka–Volterra model
often results in species exclusion or coexistence with reduced carrying capacity of both
species and does not help the coexistence of multiple species, although it is a driving force
for natural selection [1]. Hence, when modeling we should consider more interactions be-
tween species such as competition, cooperation, and predator-prey [18–26].
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For example, in [18], the authors considered the following delayed competitive-
cooperative systems:

ż1(t) = z1(t)
(
r1(t) – a1

11(t)z1(t – τ ) – a2
11(t)z1(t – 2τ )

– a12(t)z2(t – 2τ ) + a13(t)z3(t – τ )
)
,

ż2(t) = z2(t)
(
r2(t) – a21(t)z1(t – 2τ ) – a1

22(t)z2(t – τ )

– a2
22(t)z2(t – 2τ ) + a23(t)z3(t – τ )

)
,

ż3(t) = z3(t)
(
r3(t) + a31(t)z1(t – τ ) + a32(t)z2(t – τ )

– a1
33(t)z3(t) – a2

33(t)z3(t – τ )
)
.

(1.1)

They established some sufficient conditions that ensured the system is permanent and
globally attractive. In [22], the authors proposed the following Lotka–Volterra predator-
prey-competition model with feedback controls:

ż1(t) = z1(t)
[
γ1(t) – b11(t)z1(t) –

b12(t)z2(t)
a12(t)z2(t) + z1(t)

–
b13(t)z3(t)

a13(t)z3(t) + z1(t)
– c1(t)v1(t)

]
,

ż2(t) = z2(t)
[

–γ2(t) +
b21(t)z1(t)

a12(t)z2(t) + z1(t)
– b23(t)z3(t) + c2(t)v2(t)

]
,

ż3(t) = z3(t)
[

–γ3(t) +
b31(t)z1(t)

a13(t)z3(t) + z1(t)
– b32(t)z2(t) + c3(t)v3(t)

]
,

v̇1(t) = q1(t) – e1(t)v1(t) + f1(t)z1(t),
(1.2)

v̇2(t) = q2(t) – e2(t)v2(t) – f2(t)z2(t),

v̇3(t) = q3(t) – e3(t)v3(t) – f3(t)z3(t).

They have obtained some sufficient conditions for the permanence, global attractivity, ex-
istence, and stability of the positive periodic solution for system (1.2) by using a compari-
son theorem, constructing a suitable Lyapunov function, the fixed-point theory, and a new
analysis method. In [22] the authors presented an open problem adding a delay term to the
proposed model (1.2) and studying the dynamical properties of system (1.2). In [25], the
authors further analyzed systems (1.1) and (1.2) and subsequently proposed the following
delayed Lotka–Volterra competitive-competitive-cooperative model with feedback con-
trols:

ż1(t) = z1(t)
[
r1(t) – a1

11(t)z1(t – τ ) – a2
11(t)z1(t – 2τ )

– a12(t)z2(t – 2τ ) + a13(t)z3(t – τ ) – c1(t)v1(t)
]
,

ż2(t) = z2(t)
[
r2(t) – a21(t)z1(t – 2τ ) – a1

22(t)z2(t – τ )

– a2
22(t)z2(t – 2τ ) + a23(t)z3(t – τ ) + c2(t)v2(t)

]
,

ż3(t) = z3(t)
[
r3(t) + a31(t)z1(t – τ ) + a32(t)z2(t – τ ) (1.3)

– a1
33(t)z3(t) – a2

33(t)z3(t – τ ) + c3(t)v3(t)
]
,

v̇1(t) = q1(t) – e1(t)v1(t) + f1(t)x1(t),
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v̇2(t) = q2(t) – e2(t)v2(t) – f2(t)x2(t),

v̇3(t) = q3(t) – e3(t)v3(t) – f3(t)x3(t).

They further obtained sufficient conditions for the permanence and global attractivity for
system (1.3) by developing a new analysis technique and constructing a new and suitable
Lyapunov function.

However, to the best of our knowledge, no study has been conducted to date for dy-
namics on the three-species ratio-dependent Lotka–Volterra competitive-competitive-
cooperative system with feedback controls and delays. Therefore, based on the above mod-
els, analysis, and reasons, in this study we extend systems (1.2) and (1.3) to the following
system:

ẋ1(t) = x1(t)
[

r1(t) – a1(t)x1(t) –
b1(t)x2(t – τ1)

c1(t)x2(t – τ1) + x1(t – τ1)

+
d1(t)x3(t – τ1)

e1(t)x3(t – τ1) + x1(t – τ1)
– f1(t)u1(t)

]
,

ẋ2(t) = x2(t)
[

r2(t) – a2(t)x2(t) –
b2(t)x1(t – τ2)

c2(t)x1(t – τ2) + x2(t – τ2)

+
d2(t)x3(t – τ2)

e2(t)x3(t – τ2) + x2(t – τ2)
+ f2(t)u2(t)

]
,

ẋ3(t) = x3(t)
[

r3(t) – a3(t)x3(t) +
g1(t)x1(t – τ3)

e1(t)x3(t – τ3) + x1(t – τ3)

+
g2(t)x2(t – τ3)

e2(t)x3(t – τ3) + x2(t – τ3)
+ f3(t)u3(t)

]
,

u̇1(t) = q1(t) – p1(t)u1(t) + h1(t)x1(t),

u̇2(t) = q2(t) – p2(t)u2(t) – h2(t)x2(t),

u̇3(t) = q3(t) – p3(t)u3(t) – h3(t)x3(t).

(1.4)

The aim of this study is to use the inequality techniques, comparison method and to con-
struct suitable Lyapunov functionals to establish some new and sufficient conditions on
the permanence, periodic solution, and global attractivity for system (1.4).

2 Preliminaries
In system (1.4), xi(t) (i = 1, 2, 3) represents the density of three species xi (i = 1, 2, 3) at time
t. ri(t) (i = 1, 2, 3) represents the intrinsic growth rate of three species xi (i = 1, 2, 3) at time
t. ai(t) (i = 1, 2, 3) represents the intrapatch restriction density of three species xi (i = 1, 2, 3)
at time t. di(t), gi(t) (i = 1, 2) represent the cooperative coefficients between species x1, x2,
and x3 at time t. bi(t) (i = 1, 2) represents the competitive coefficients between species
x1 and x2 at time t. ui(t) (i = 1, 2, 3) represents the indirect control variables at time t.
qi(t), pi(t), hi(t), fi(t) (i = 1, 2, 3) are the feedback control coefficients at time t. τi (i = 1, 2, 3)
is a positive constant.
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In this paper, the initial conditions for system (1.4) take the following form:

xi(t) = ϕi(t) for all t ∈ [–τ , 0], i = 1, 2, 3,

ui(t) = φi(t) for all t ∈ [0, +∞), i = 1, 2, 3,
(2.1)

where ϕi(0) > 0,φi(0) > 0 (i = 1, 2, 3), and τ = max{τi (i = 1, 2, 3)}.
For system (1.4) we introduce the following assumptions:
(H1) ri(t), ai(t)qi(t), pi(t), hi(t), fi(t) (i = 1, 2, 3) and bi(t), ci(t), di(t), ei(t), gi(t) (i = 1, 2) are

continuous, bounded, and positive functions on [0, +∞).
(H2) ri(t), ai(t)qi(t), pi(t), hi(t), fi(t) (i = 1, 2, 3) and bi(t), ci(t), di(t), ei(t), gi(t) (i = 1, 2) are

all continuously positive ω-periodic functions on [0,ω].
For a continuous and bounded function f (t) defined on [0, +∞), we define f L =

inft∈[0,+∞){f (t)} and f M = supt∈[0,+∞){f (t)}.
In this paper, we need the following definition and lemmas.

Definition 2.1 ([17]) System (1.4) is called permanent if there exist positive constants
Mi, Ni, mi, ni (i = 1, 2, 3) and T > 0 such that mi ≤ xi(t) ≤ Mi, ni ≤ ui(t) ≤ Ni (i = 1, 2, 3)
for any positive solution Z(t) = (x1(t), x2(t), x3(t), u1(t), u2(t), u3(t)) of system (1.4) with the
initial values (2.1) as t > T .

Lemma 2.1 ([6]) Consider the following equation:

u̇(t) = u(t)
(
d1 – d2u(t)

)
,

where d2 > 0, we have
(1) If d1 > 0, then limt→+∞ u(t) = d1/d2.
(2) If d1 < 0, then limt→+∞ u(t) = 0.

Lemma 2.2 ([25]) If a > 0, b > 0, and ẋ(t) ≥ (≤)b – ax(t),when t ≥ 0 and x(0) > 0, we have

x(t) ≥ (≤)
b
a

[
1 +

(
ax(0)

b
– 1

)
e–at

]
.

Consider the following periodic differential equation with solution x(t, 0,�):

dx
dt

= F(t, xt), (2.2)

where F(t, xt) is an n-dimensional continuous functional and x(t) ∈ Rn, x(t, 0,�) =
(x1(t, 0,�), x2(t, 0,�), . . . , xn(t, 0,�)) is a solution of the functional differential equation
with the initial condition x0 = �.

Lemma 2.3 ([26]) If there exist positive constants m and M for any � ∈ Cn
+[–τ , 0] such

that

m < lim inf
t→∞ xi(t, 0,�) ≤ lim sup

t→∞
xi(t, 0,�) < M, i = 1, 2, . . . , n,

then system (2.2) admits at least one positive ω-periodic solution.
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3 Permanence and periodic solution
In this section, we obtain some new and sufficient conditions for the permanence and
periodic solution of system (1.4).

Theorem 3.1 Let x(t) = (x1(t), x2(t), x3(t), u1(t), u2(t), u3(t)) be any positive solution of sys-
tem (1.4) with the initial conditions (2.1). Assume that (H1) holds, then there exist posi-
tive constants M1, M2, M3, N1, N2, N3, T and m3, n1 such that xi(t) ≤ Mi (i = 1, 2, 3), ui(t) ≤
Ni (i = 1, 2, 3) and x3(t) ≥ m3, u1(t) ≥ n1 as t > T .

Proof From the first equation of system (1.4), for t ≥ τ , we have

ẋ1(t) ≤ x1(t)
[

rM
1 +

dM
1

eL
1

– aL
1x1(t)

]
.

Then, by Lemma 2.1 and the comparison theorem, there exists a constant T0 > 0 such that

x1(t) ≤
rM

1 + dM
1

eL
1

aL
1

= M1 as t > T0.

By the fourth equation of system (1.4), for t > T0, we have

u̇1(t) ≤ qM
1 + hM

1 M1 – pL
1u1(t).

Then, by Lemma 2.2 and the comparison theorem, there exists a constant T1 > 0 such that

u1(t) ≤ qM
1 + hM

1 M1

pL
1

= N1 as t > T1.

From the fifth and sixth equation of system (1.4), for t ≥ τ and i = 2, 3, we have

u̇i(t) ≤ qM
i – pL

i ui(t).

Then, by Lemma 2.2 and the comparison theorem, there exists a constant T2 > 0 such that

ui(t) ≤ qM
i

pL
i

= Ni, i = 2, 3, as t > T2.

Next, from the second equation of system (1.4), for t > T2, we have

ẋ2(t) ≤ x2(t)
[

rM
2 +

dM
2

eL
2

+ f M
2 N2 – aL

2x2(t)
]

.

Then, by Lemma 2.1 and the comparison theorem, there exists a constant T3 > 0 such that

x2(t) ≤
rM

2 + dM
2

eL
2

+ f M
2 N2

aL
2

= M2 as t > T3.



Muhammadhaji et al. Advances in Difference Equations        (2021) 2021:230 Page 6 of 14

Similar to the above discussion, from the third equation of system (1.4), there exists a
constant T4 > 0 such that

x3(t) ≤ rM
3 + gM

1 + gM
2 + f M

3 N3

aL
3

= M3 as t > T4.

On the other hand, from the third equation of system (1.4), for t ≥ τ , we have

ẋ3(t) ≥ x3(t)
[
rL

3 – aM
3 x3(t)

]
.

Then, by Lemma 2.1 and the comparison theorem, there exists a constant T5 > 0 such that

x3(t) ≥ rL
3

aM
3

= m3 as t > T5.

Finally, from the fourth equation of system (1.4), for t ≥ τ , we have

u̇1(t) ≥ qL
1 – pM

1 u1(t).

Then, by Lemma 2.2 and the comparison theorem, there exists a constant T6 > 0 such that

u1(t) ≥ qL
1

pM
1

= n1 as t > T6.

This completes the proof of Theorem 3.1. �

Theorem 3.2 Assume that (H1) holds and

A1 = rL
1 +

dL
1 m3

eM
1 M3 + M1

–
bM

1

cL
1

– f M
1 N1 > 0, B2 = qL

2 – hM
2 M2 > 0,

A2 = rL
2 +

dL
2 m3

eM
2 M3 + M2

–
bM

2

cL
2

> 0, B3 = qL
3 – hM

3 M3 > 0,

then system (1.4) is permanent, where M1, M2, M3, N1, and m3 are defined in Theorem 3.1.

Proof Firstly, from the first and second equation of system (1.4), we can obtain a suffi-
ciently large positive constant TM

1 such that

ẋi(t) ≥ xi(t)
[
Ai – aM

i xi(t)
]

as t > TM
1 , i = 1, 2.

Then, by Lemma 2.2 and the comparison theorem, there exists a constant TM
2 > TM

1 such
that

xi(t) ≥ Ai

aM
i

= mi as t > TM
2 , i = 1, 2.

Next, from the fifth and sixth equation of system (1.4), we can obtain a sufficiently large
positive constant TN

1 such that

u̇i(t) ≥ Bi – pM
i ui(t) as t > TN

1 , i = 2, 3.
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Then, by Lemma 2.2 and the comparison theorem, there exists a constant TN
2 > TN

1 such
that

ui(t) ≥ Bi

pM
i

= ni as t > TN
2 , i = 2, 3.

This completes the proof of Theorem 3.2. �

As a direct result of Lemma 2.3, from Theorem 3.1 and Theorem 3.2 we have the fol-
lowing.

Corollary 3.1 Assume that (H2) holds and A1 > 0, A2 > 0, B2 > 0, B3 > 0, then system (1.4)
is permanent and has at least one positive ω-periodic solution.

4 Global attractivity
In this section, we obtain the sufficient conditions for the global attractivity of system (1.4).
Firstly, for convenience we denote

C1(t) =
b1(t)y2(t – τ1)

γ1(t)
≤ bM

1 M2

γ L
1

= CM
1 , C2(t) =

b1(t)y1(t – τ1)
γ1(t)

≤ bM
1 M1

γ L
1

= CM
2 ,

C3(t) =
d1(t)y3(t – τ1)

γ2(t)
≤ dM

1 M3

γ L
2

= CM
3 , C4(t) =

d1(t)y1(t – τ1)
γ2(t)

≤ dM
1 M1

γ L
2

= CM
4 ,

C5(t) =
b2(t)y2(t – τ2)

γ3(t)
≤ bM

2 M2

γ L
3

= CM
5 , C6(t) =

b2(t)y1(t – τ2)
γ3(t)

≤ bM
2 M1

γ L
3

= CM
6 ,

C7(t) =
d2(t)y3(t – τ2)

γ4(t)
≤ dM

2 M3

γ L
4

= CM
7 , C8(t) =

d2(t)y2(t – τ2)
γ4(t)

≤ dM
2 M2

γ L
4

= CM
8 ,

C9(t) =
g1(t)e1(t)y3(t – τ3)

γ5(t)
≤ gM

1 eM
1 M3

γ L
2

= CM
9 ,

C10(t) =
g1(t)e1(t)y1(t – τ3)

γ5(t)
≤ gM

1 eM
1 M1

γ L
2

= CM
10,

C11(t) =
g2(t)e2(t)y3(t – τ3)

γ6(t)
≤ gM

2 eM
2 M3

γ L
4

= CM
11,

C12(t) =
g2(t)e2(t)y2(t – τ3)

γ6(t)
≤ gM

2 eM
2 M2

γ L
4

= CM
12,

D1 = aL
1 – CM

1 – CM
3 – CM

5 – CM
9 – hM

1 , D2 = aL
2 – CM

2 – CM
6 – CM

7 – CM
11 – hM

2 ,

D3 = aL
3 – CM

4 – CM
8 – CM

10 – CM
12 – hM

3 , Ei = pL
i – f M

i (i = 1, 2, 3),

G = min
{

Di, Ei(i = 1, 2, 3)
}

,

where

γ1(t) =
(
c1(t)x2(t – τ1) + x1(t – τ1)

)(
c1(t)y2(t – τ1) + y1(t – τ1)

)
,

γ L
1 =

(
cL

1m2 + m1
)2,

γ2(t) =
(
e1(t)x3(t – τ1) + x1(t – τ1)

)(
e1(t)y3(t – τ1) + y1(t – τ1)

)
,
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γ L
2 =

(
eL

1m3 + m1
)2,

γ3(t) =
(
c2(t)x1(t – τ2) + x2(t – τ2)

)(
c2(t)y1(t – τ2) + y2(t – τ2)

)
,

γ L
3 =

(
cL

2m1 + m2
)2,

γ4(t) =
(
e2(t)x3(t – τ2) + x2(t – τ2)

)(
e2(t)y3(t – τ2) + y2(t – τ2)

)
,

γ L
4 =

(
eL

2m3 + m2
)2,

γ5(t) =
(
e1(t)x3(t – τ3) + x1(t – τ3)

)(
e1(t)y3(t – τ3) + y1(t – τ3)

)
,

γ L
5 = γ L

2 ,

γ6(t) =
(
e2(t)x3(t – τ3) + x2(t – τ3)

)(
e2(t)y3(t – τ3) + y2(t – τ3)

)
,

γ L
6 = γ L

4 .

Theorem 4.1 Suppose that the conditions of Theorem 3.2 hold and G > 0. Then system
(1.4) is globally attractive.

Proof Let (x1(t), x2(t), x3(t)) and (y1(t), y2(t), y3(t)) be any two positive solutions of sys-
tem (1.4). Choose positive constants Mi, mi (i = 1, 2, 3), and T such that mi ≤ yi(t), xi(t) ≤
Mi (i = 1, 2, 3) for all t ≥ T . Firstly, let

V1(t) =
3∑

i=1

∣
∣ln xi(t) – ln yi(t)

∣
∣.

Calculating the upper right derivative of V1(t) along system (1.4), we have

D+V1(t) = sign
(
x1(t) – y1(t)

)[
–a1(t)

(
x1(t) – y1(t)

)
– f1(t)

(
u1(t) – v1(t)

)

– b1(t)
(

x2(t – τ1)
c1(t)x2(t – τ1) + x1(t – τ1)

–
y2(t – τ1)

c1(t)y2(t – τ1) + y1(t – τ1)

)

+ d1(t)
(

x3(t – τ1)
e1(t)x3(t – τ1) + x1(t – τ1)

–
y3(t – τ1)

e1(t)y3(t – τ1) + y1(t – τ1)

)]

+ sign
(
x2(t) – y2(t)

)[
–a2(t)

(
x2(t) – y2(t)

)
+ f2(t)

(
u2(t) – v2(t)

)

– b2(t)
(

x1(t – τ2)
c2(t)x1(t – τ2) + x2(t – τ2)

–
y1(t – τ2)

c2(t)y1(t – τ2) + y2(t – τ2)

)

+ d2(t)
(

x3(t – τ2)
e2(t)x3(t – τ2) + x2(t – τ2)

–
y3(t – τ2)

e2(t)y3(t – τ2) + y2(t – τ2)

)]

+ sign
(
x3(t) – y3(t)

)
[

–a3(t)
(
x3(t) – y3(t)

)
+ f3(t)

(
u3(t) – v3(t)

)

+ g1(t)
(

x1(t – τ3)
e1(t)x3(t – τ3) + x1(t – τ3)

–
y1(t – τ3)

e1(t)y3(t – τ3) + y1(t – τ3)

)

+ g2(t)(
x2(t – τ3)

e2(t)x3(t – τ3) + x2(t – τ3)
–

y2(t – τ3)
e2(t)y3(t – τ3) + y2(t – τ3)

]

= sign
(
x1(t) – y1(t)

)[
–a1(t)

(
x1(t) – y1(t)

)
– f1(t)

(
u1(t) – v1(t)

)
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– C2(t)
(
x2(t – τ1) – y2(t – τ1)

)
+ C4(t)

(
x3(t – τ1) – y3(t – τ1)

)

+
(
C1(t) – C3(t)

)(
x1(t – τ1) – y1(t – τ1)

)]
+ sign

(
x2(t) – y2(t)

)

× [
–a2(t)

(
x2(t) – y2(t)

)
+ f2(t)

(
u2(t) – v2(t)

)
– C5(t)

(
x1(t – τ2)

– y1(t – τ2)
)

+
(
C6(t) – C7(t)

)(
x2(t – τ2) – y2(t – τ2)

)
+ C8(t)

× (
x3(t – τ2) – y3(t – τ2)

)]
+ sign

(
x3(t) – y3(t)

)[
–a2(t)

(
x2(t) – y2(t)

)

+ f3(t)
(
u3(t) – v3(t)

)
–

(
C10(t) + C12(t)

)(
x3(t – τ3) – y3(t – τ3)

)

+ C9(t)
(
x1(t – τ3) – y1(t – τ3)

)
+ C11(t)

(
x2(t – τ3) – y2(t – τ3)

)]

≤ –
3∑

i=3

aL
i
∣
∣xi(t) – yi(t)

∣
∣ +

3∑

i=3

f M
i

∣
∣ui(t) – vi(t)

∣
∣ + CM

2
∣
∣x2(t – τ1) – y2(t – τ1)

∣
∣

+
(
CM

1 + CM
3

)∣∣x1(t – τ1) – y1(t – τ1)
∣∣ + CM

4
∣∣x3(t – τ1) – y3(t – τ1)

∣∣

+
(
CM

6 + CM
7

)∣∣x2(t – τ2) – y2(t – τ2)
∣∣ + CM

5
∣∣x1(t – τ2) – y1(t – τ2)

∣∣

+ CM
8

∣
∣x3(t – τ2) – y3(t – τ2)

∣
∣ +

(
CM

10 + CM
12

)∣∣x3(t – τ3) – y3(t – τ3)
∣
∣

+ CM
9

∣∣x1(t – τ3) – y1(t – τ3)
∣∣ + CM

11
∣∣x2(t – τ3) – y2(t – τ3)

∣∣. (4.1)

Next, we let

V2(t) =
(
CM

1 + CM
3

)∫ t

t–τ1

∣
∣x1(s) – y1(s)

∣
∣ds + CM

2

∫ t

t–τ1

∣
∣x2(s) – y2(s)

∣
∣ds

+ CM
4

∫ t

t–τ1

∣∣x3(s) – y3(s)
∣∣ds +

(
CM

6 + CM
7

)∫ t

t–τ2

∣∣x2(s) – y2(s)
∣∣ds

+ CM
5

∫ t

t–τ2

∣∣x1(s) – y1(s)
∣∣ds + CM

8

∫ t

t–τ2

∣∣x3(s) – y3(s)
∣∣ds

+
(
CM

10 + CM
12

)∫ t

t–τ3

∣∣x3(s) – y3(s)
∣∣ds + CM

9

∫ t

t–τ3

∣∣x1(s) – y1(s)
∣∣ds

+ CM
11

∫ t

t–τ3

∣
∣x2(s) – y2(s)

∣
∣ds. (4.2)

Calculating the upper right derivative of V2(t) and from (4.1), we have

D+V1(t) + D+V2(t) ≤ –
(
aL

1 – CM
1 – CM

3 – CM
5 – CM

9
)∣∣x1(t) – y1(t)

∣
∣

–
(
aL

2 – CM
2 – CM

6 – CM
7 – CM

11
)∣∣x2(t) – y2(t)

∣∣

–
(
aL

3 – CM
4 – CM

8 – CM
10 – CM

12
)∣∣x3(t) – y3(t)

∣∣

+ f M
1

∣
∣u1(t) – v1(t)

∣
∣ + f M

2
∣
∣u2(t) – v2(t)

∣
∣ + f M

3
∣
∣u3(t) – v3(t)

∣
∣. (4.3)

Moreover, we let

V3(t) =
3∑

i=1

∣∣ui(t) – vi(t)
∣∣.
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Calculating the upper right derivative of V3(t) and from (4.3), we have

3∑

i=1

D+Vi(t) ≤ –
(
aL

1 – CM
1 – CM

3 – CM
5 – CM

9 – hM
1

)∣∣x1(t) – y1(t)
∣∣

–
(
aL

2 – CM
2 – CM

6 – CM
7 – CM

11 – hM
2

)∣∣x2(t) – y2(t)
∣∣

–
(
aL

3 – CM
4 – CM

8 – CM
10 – CM

12 – hM
3

)∣∣x3(t) – y3(t)
∣
∣

–
3∑

i=1

(
pL

i – f M
i

)∣∣ui(t) – vi(t)
∣∣. (4.4)

Finally, we let a Lyapunov function be as follows:

V (t) = V1(t) + V2(t) + V3(t).

Calculating the upper right derivation of V (t), from (4.4) we finally can obtain, for all t ≥ T ,

D+V (t) ≤ –
3∑

i=1

(
Di

∣∣xi(t) – yi(t)
∣∣ + Ei

∣∣ui(t) – vi(t)
∣∣). (4.5)

Integrating from T to t on both sides of (4.5) produces

V (t) + G
∫ t

T4

( 3∑

i=1

[∣∣xi(s) – yi(s)
∣∣ +

∣∣ui(s) – vi(s)
∣∣]

)

ds ≤ V (T) < +∞. (4.6)

Hence, V (t) is bounded on [T ,∞), and we have

∫ t

T4

( 3∑

i=1

[∣∣xi(s) – yi(s)
∣
∣ +

∣
∣ui(s) – vi(s)

∣
∣]

)

ds ≤ V (T)
G

< +∞. (4.7)

Then we have

3∑

i=1

(∣∣xi(s) – yi(s)
∣∣ +

∣∣ui(s) – vi(s)
∣∣) ∈ L1(T , +∞). (4.8)

From the permanence of system (1.4), we can obtain that
∑3

i=1(|xi(s) – yi(s)| + |ui(s) –
vi(s)|) is uniformly continuous on [T , +∞). By Barbalat’s lemma it follows that

lim
t→∞

∣∣xi(t) – yi(t)
∣∣ = 0, lim

t→∞
∣∣ui(t) – vi(t)

∣∣ = 0, (i = 1, 2, 3).

This completes the proof of Theorem 4.1. �

Corollary 4.1 Suppose that the conditions of Corollary 3.1 hold and G > 0, then system
(1.4) has a positive ω- periodic solution which is globally attractive.
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5 One example
In this section one example is given to illustrate the effectiveness of our results obtained
in this paper.

Example We consider the following system:

ẋ1(t) = x1(t)
[

4.45 + 0.35 cos(t) –
(
4.15 + 0.35 cos(t)

)
x1(t)

–
(0.75 + 0.2 cos(t))x2(t – 0.75)

(3 + 0.25 cos(t))x2(t – 0.75) + x1(t – 0.75)

+
(2.6 + 0.25 cos(t))x3(t – 0.75)

(2.25 + 0.25 cos(t))x3(t – 0.75) + x1(t – 0.75)

–
(
0.25 + 0.15 cos(t)

)
u1(t)

]
,

ẋ2(t) = x2(t)
[

4.5 + 0.45 cos(t) –
(
4.2 + 0.25 cos(t)

)
x2(t)

–
(0.85 + 0.2 cos(t))x1(t – 0.5)

(3 + 0.35 cos(t))x1(t – 0.5) + x2(t – 0.5)

+
(2.75 + 0.2 cos(t))x3(t – 0.5)

(2.35 + 0.35 cos(t))x3(t – 0.5) + x2(t – 0.5)
+

(
0.2 + 0.15 cos(t)

)
u2(t)

]
, (5.1)

ẋ3(t) = x3(t)
[

3.75 + 0.35 cos(t) –
(
4.3 + 0.25 cos(t)

)
x3(t)

+
(0.4 + 0.2 cos(t))x1(t – 0.25)

(3 + 0.15 cos(t))x3(t – 0.25) + x1(t – 0.25)

+
(0.35 + 0.1 cos(t))x2(t – 0.25)

(2.15 + 0.15 cos(t))x3(t – 0.25) + x2(t – 0.25)
+

(
0.2 + 0.1 cos(t)

)
u3(t)

]
,

u̇1(t) = 2.25 + 0.35 cos(t) –
(
1.95 + 0.25 cos(t)

)
u1(t) +

(
0.2 + 0.1 cos(t)

)
x1(t),

u̇2(t) = 2.65 + 0.25 cos(t) –
(
1.85 + 0.35 cos(t)

)
u2(t) –

(
0.2 + 0.15 cos(t)

)
x2(t),

u̇2(t) = 1.65 + 0.15 cos(t) –
(
1.75 + 0.45 cos(t)

)
u3(t) –

(
0.15 + 0.12 cos(t)

)
x3(t).

By direct calculation, we can get

M1 ≈ 1.6382, M2 ≈ 1.7979, M3 ≈ 1.3742, m1 ≈ 0.7323,

m2 ≈ 0.8959, m3 ≈ 0.7473, N1 ≈ 1.8185, N2 ≈ 1.9333,

N3 ≈ 1.3846, n1 ≈ 0.8636, n2 ≈ 0.8049, n3 ≈ 0.5132,

γ L
1 ≈ 10.2143, γ L

2 ≈ 4.9587, γ L
3 ≈ 8.0458, γ L

4 ≈ 5.7139,

CM
1 ≈ 0.1672, CM

2 ≈ 0.1524, CM
3 ≈ 0.7898, CM

4 ≈ 0.9415,

CM
5 ≈ 0.2346, CM

6 ≈ 0.2138, CM
7 ≈ 0.7095, CM

8 ≈ 0.9282,

CM
9 ≈ 0.4157, CM

10 ≈ 0.4955, CM
11 ≈ 0.2922, CM

12 ≈ 0.3823,

D1 ≈ 1.8927 D2 ≈ 2.2322, D3 ≈ 1.0324, E1 ≈ 1.3, E2 ≈ 1.15,

E3 ≈ 1, G = 1.
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Figure 1 The numerical solutions of system (5.1) with different initial conditions

It is easy to show that system (5.1) satisfies the conditions of Theorem 3.2, Theorem 4.1,
Corollary 3.1, and Corollary 4.1. Hence, system (5.1) is permanent, globally attractive and
has a globally attractive positive periodic solution.

From Fig. 1 we can see that system (5.1) is permanent and has a globally attractive pos-
itive periodic solution.

6 Conclusion
In this study, we are concerned with system (1.4). First, using the inequality techniques
and the comparison method, we obtained a set of conditions that ensure that the system
is permanent and at least has a positive periodic solution. Second, using the Lyapunov
function method, we derived sufficient conditions on the global attractivity of the system.
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Finally, we provided a suitable example to illustrate the feasibility of our main results. Be-
cause we extended systems (1.2) and (1.3) to system (1.4), we also obtained some sufficient
conditions for the permanence, periodic solution, and global attractivity of system (1.4).
Hence, system (1.4) and the results obtained in this study can be seen as the supplements
and extensions of previously known studies [13, 17, 20].
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