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Abstract
In this work, we consider a fractional diffusion equation with nonlocal integral
condition. We give a form of the mild solution under the expression of Fourier series
which contains some Mittag-Leffler functions. We present two new results. Firstly, we
show the well-posedness and regularity for our problem. Secondly, we show the
ill-posedness of our problem in the sense of Hadamard. Using the Fourier truncation
method, we construct a regularized solution and present the convergence rate
between the regularized and exact solutions.
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1 Introduction
Time-fractional partial differential equations are well known to describe modeling of
anomalously slow transport processes. These models are often expressed in the form of
fractional diffusion or subdiffusion equations which have many applications in various
kinds of research areas, e.g., thermal diffusion in fractal domains [1] and protein dynam-
ics [2], we can refer for more details to [3–6]. By replacing many differential operators of
fractional order with different type of PDEs of integer order, we formulate various types
of boundary value problems with fractional order. Let us refer to many papers [7–24] and
the references therein.

Let T be a positive number. Let � be a bounded and smooth enough domain in R
N . In

our paper, we study the fractional diffusion equation with integral boundary conditions in
the time variable on [0, T] as follows:

⎧
⎪⎪⎨

⎪⎪⎩

∂α
t u(x, t) = Au(x, t) + F(x, t), (x, t) ∈ � × (0, T),

∂u
∂n (t, x) = 0, x ∈ ∂�, t ∈ (0, T],

au(x, T) + b
∫ T

0 u(t, x) dt = f (x), x ∈ �,

(1.1)

where ∂� is a boundary of � and a2 + b2 > 0, a ≥ 0, b ≥ 0. Here, F is the source function,
f is the given input data which is defined later, and A is a linear, unbounded, self-adjoint,
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and positive definite operator. The second equation in (1.1) is called the Neumann bound-
ary condition. Our problem is to identify the function u(·, t) for 0 ≤ t < T . Now, we explain
the reason of the third equation which appears in our problem (1.1). As we know, most of
some models on PDEs use an initial condition. However, in practice, some other models
have to use nonlocal conditions, for example, including integrals over time intervals. Non-
local conditions express and explain some full details about natural events because they
consider additional information in the initial conditions. There are few papers on bound-
ary conditions connecting the solution at different times, for instance, at initial time and at
terminal time. The review of nonlocal initial conditions or nonlocal final conditions comes
from real-life processes. For example, when the initial temperature or the final tempera-
ture for heat equation is not given immediately, but there is information regarding the
temperature over a given period of time that can be described by a nonlocal initial con-
dition. PDEs with nonlocal conditions were considered in many works, for example, see
[25] for reaction-diffusion equations and [26–35] for some other PDEs. As we said before,
there are not any results for considering our model (1.1) with the nonlocal final condition
and the integral condition

au(x, T) + b
∫ T

0
u(x, t) dt = f (x). (1.2)

The nonlocal integral condition (1.2) is motivated by the paper of Dokuchaev [36] where
he investigated the well-posedness of Problem (1.1) in the integer order of derivative α = 1.
For more clarity, we can refer to some related works on our above models.

• If a = 1, b = 0, Problem (1.1) is called backward in time problem and is well known to
be ill-posed in the sense of Hadamard. Some papers [9, 37] gave the ill-posedness and
regularization results.

• If a = 0, b = 1, and α = 1, Problem (1.1) and some similar models have been recently
considered by Dokuchaev [36, 38], Volodymyr et al. [39], and Pulkina et al. [40] (see
also the references therein).

It is obvious that our model in this paper is more complex than many previous models. In
this paper, we consider the model with the nonlocal final and integral conditions for time
fractional PDE. The main technique here is to use Fourier series in order to deal with the
explicit solution for our problem. Now, we explain in more detail our studies that are the
new and strong points of this article.

Two main results are described in this paper as follows:
• Our paper may be the first study on the existence and regularity of the solution of

model (1.1) on Sobolev spaces.
• Our new second result is to give a regularization result when the noisy data f δ ∈ Lq(�)

for q ≥ 1. For case of L2, we can use Parseval’s equality directly to obtain stability
estimates. However, Parseval’s equality is impossible to apply for the Lp case with
p �= 2, which leads to the fact that some techniques here are more complex than the L2

estimate. Our new techniques in this section are based on applying some Sobolev
embedding. Based on the ideas of [7], we develop some similar techniques to deal with
the Lp case. Let us emphasize that a regularized problem is not considered in [36].
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This paper is organized as follows. In Sect. 2, we introduce some preliminaries and a mild
solution. The main result in this section is to show the well-posedness of the mild solution.
In Sect. 3, we show the ill-posedness and give a regularized solution.

2 Well-posedness and regularity
2.1 Preliminaries
Definition 2.1 (see [3]) The Mittag-Leffler function Eα,β(·) is

Eα,β (z) =
∞∑

k=0

zk

�(αk + β)
, α > 0,β ∈R, z ∈C. (2.1)

Lemma 2.1 (see [41]) Let 0 < β < 1. There exist two constants M1 > 0, M2 > 0 such that,
for any z > 0,

M1

1 + z
≤ Eβ ,1(–z) ≤ M2

1 + z
. (2.2)

Lemma 2.2 (see [41]) Let 0 < α < 1 and λ > 0. Then
(i) ∂t(Eα(–λtα)) = –λtα–1Eα,α(–λtα) for t > 0;

(ii) ∂t(tα–1Eα,α(–λtα)) = tα–2Eα,α–1(–λtα) for t > 0.

Next, let us recall that A, see [3]. We have the following equality:

Aφk(x) = –λkφk(x), x ∈ �; φk = 0, x ∈ ∂�, k ∈N, (2.3)

where {λk}∞k=1 satisfies that

0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · , (2.4)

and limk→∞ λk = ∞. For any q ≥ 0, we also define the space

Dq(�) =

{

u ∈ L2(�) :
∞∑

k=1

λ
2q
k

∣
∣〈u,φk〉

∣
∣2 < +∞

}

, (2.5)

then Dq(�) is a Hilbert space endowed with the norm

‖u‖Dq(�) =

( ∞∑

k=1

λ
2q
k

∣
∣〈u,φk〉

∣
∣2

) 1
2

· (2.6)

Lemma 2.3 The following inclusions hold true:

Lp(�) ↪→ D(Aσ ), if – d
4 < σ ≤ 0, p ≥ 2d

d–4σ
,

D(Aσ ) ↪→ Lp(�), if 0 ≤ σ < d
4 , p ≤ 2d

d–4σ
.

}

(2.7)
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2.2 The mild solution of our problem
Theorem 2.1 Let 0 < β < min(1, 1

2α
) and s ≥ β + 1, α > 0 and

G ∈ L∞(
0, T ; D

(
As–β

)) ∩ L2(0, T ; D
(
As–β–1)).

Then Problem (1.1) has a unique mild solution u ∈ Lp(0, T ; D(As)) such that

‖u‖Lp(0,T ;D(As)) � ‖f ‖D(As) + ‖G‖L∞(0,T ;D(As–β ))

+ ‖G‖L2(0,T ;D(As–β–1)) + ‖G‖L∞(0,T ;L2(�)) (2.8)

for 1 < p < 1
α

.

Proof Assume that Problem (1.1) has a unique solution u which is given by

u(x, t) =
∞∑

k=1

〈
u(·, t),φk

〉
φk(x). (2.9)

From the results in Yamamoto [42], we know that

〈
u(·, t),φk(x)

〉
= Eα,1

(
–λktα

)〈
u(·, 0),φk(x)

〉

+
∫ t

0
(t – τ )α–1Eα,α

(
–λn(t – τ )α

)
Gk(τ ) dτ . (2.10)

The nonlocal condition au(x, T) + b
∫ T

0 u(x, t) dt = f (x) gives that

a
∞∑

k=1

Eα,1
(
–λkTα

)〈
u(·, 0),φk

〉
φk(x)

+ a
∞∑

k=1

(∫ T

0
(T – τ )α–1Eα,α

(
–λn(T – τ )α

)
Gk(τ ) dτ

)

φk(x)

+ b
∫ T

0

( ∞∑

k=1

Eα,1
(
–λktα

)〈
u(·, 0),φk(x)

〉
φk(x)

)

dt

+ b
∫ T

0

( ∞∑

k=1

∫ t

0
(t – τ )α–1Eα,α

(
–λn(t – τ )α

)
Gk(τ ) dτ

〉
φk(x)

)

dt

=
∞∑

k=1

〈
f (x),φk(x)

〉
φk(x). (2.11)

This implies that

(

aEα,1
(
–λkTα

)
+ b

∫ T

0
Eα,1

(
–λktα

)
dt

)
〈
u(·, 0),φk(x)

〉

+ a
(∫ T

0
(T – τ )α–1Eα,α

(
–λn(T – τ )α

)
Gk(τ ) dτ

)

+ b
∫ T

0

∫ t

0
(t – τ )α–1Eα,α

(
–λn(t – τ )α

)
Gk(τ ) dτ dt =

〈
f (x),φk(x)

〉
. (2.12)
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Therefore, we get that

〈
u(·, 0),φk(x)

〉
=

〈f (x),φk〉 – a
∫ T

0 (T – τ )α–1Eα,α(–λn(T – τ )α)Gk(τ ) dτ

aEα,1(–λkTα) + b
∫ T

0 Eα,1(–λktα) dt

–
b
∫ T

0
∫ t

0 (t – τ )α–1Eα,α(–λn(t – τ )α)Gk(τ ) dτ dt

aEα,1(–λkTα) + b
∫ T

0 Eα,1(–λktα) dt
. (2.13)

This together with (2.9) implies that

u(x, t) =
∞∑

k=1

Eα,1(–λktα)〈f (x),φk(x)〉
aEα,1(–λkTα) + b

∫ T
0 Eα,1(–λktα) dt

φk(x)

︸ ︷︷ ︸
H1(x,t)

–
∞∑

k=1

aEα,1(–λktα)
∫ T

0 (T – τ )α–1Eα,α(–λn(T – τ )α)Gk(τ ) dτ

aEα,1(–λkTα) + b
∫ T

0 Eα,1(–λktα) dt
φk(x)

︸ ︷︷ ︸
H2(x,t)

–
∞∑

k=1

bEα,1(–λktα)
∫ T

0
∫ t

0 (t – τ )α–1Eα,α(–λk(t – τ )α)Gk(τ ) dτ dt

aEα,1(–λkTα) + b
∫ T

0 Eα,1(–λktα) dt
φk(x)

︸ ︷︷ ︸
H3(x,t)

+
∞∑

k=1

∫ t

0
(t – τ )α–1Eα,α

(
–λk(t – τ )α

)
Gk(τ ) dτφk(x)

︸ ︷︷ ︸
H4(x,t)

. (2.14)

First, we need to show that

C1

λk
≤ aEα,1

(
–λkTα

)
+ b

∫ T

0
Eα,1

(
–λktα

)
dt ≤ C2

λk
. (2.15)

Indeed, from Lemma 2.1, we have the following estimate:

∫ T

0
Eα,1

(
–λktα

)
dt ≤ D2

∫ T

0

dt
1 + λktα

≤ D2

λk

∫ T

0

dt
tα

=
D2T1–α

(1 – α)λk
. (2.16)

Due to the inequality

Eα,1
(
–λkTα

) ≤ D2

1 + λkTα
≤ D2

λkTα
,

we find the following bound:

aEα,1
(
–λkTα

)
+ b

∫ T

0
Eα,1

(
–λktα

)
dt ≤ aD2

λkTα
+

bD2

λkTα
=

C2

λk
. (2.17)
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Due to the fact that 1 + λktα ≤ λk( 1
λ1

+ tα), we also get

∫ T

0
Eα,1

(
–λktα

)
dt ≥ D1

∫ T

0

dt
1 + λntα

≥ D1

λk

∫ T

0

dt
1
λ1

+ tα

≥ D1

λn

∫ T

0

dt
1
λ1

+ Tα
=

D1

λk

T
1
λ1

+ Tα
. (2.18)

Hence, we find that

aEα,1
(
–λkTα

)
+ b

∫ T

0
Eα,1

(
–λktα

)
dt ≥ C1

λk
. (2.19)

Step 1. Estimate ‖H1(·, t)‖D(As). By using Paseval’s equality and recalling that

Eα,1
(
–λktα

) ≤ D2

1 + λktα
≤ D2λ

–1
k t–α , (2.20)

we obtain

∥
∥H1(·, t)

∥
∥2

D(As) =
∞∑

k=1

λ2s
k

[
Eα,1(–λktα)〈f (x),φk(x)〉

aEα,1(–λkTα) + b
∫ T

0 Eα,1(–λktα) dt

]2

≤
∞∑

k=1

λ2s
k D2

2λ
–2
k t–2α

(
λk

C1

)2〈
f (x),φk(x)

〉2. (2.21)

Hence, there exists D3 = D2(C1)–1 such that

∥
∥H1(·, t)

∥
∥

D(As) ≤ D3t–α‖f ‖D(As). (2.22)

Step 2. Estimate ‖H2(·, t)‖D(As). First, we see that, for any 0 < β < 1,

Eα,α
(
–λk(T – τ )α

) ≤ D2

1 + λk(T – τ )α
≤ D2λ

–β

k (T – τ )–αβ . (2.23)

This implies that

∫ T

0
(T – τ )α–1Eα,α

(
–λn(T – τ )α

)
Gk(τ ) dτ ≤ D2λ

–β

k

∫ T

0
(T – τ )α–1–αβGk(τ ) dτ . (2.24)

Thanks to inequality (2.20) we know that

∥
∥H2(·, t)

∥
∥2

D(As)

=
∞∑

k=1

λ2s
k

[aEα,1(–λktα)
∫ T

0 (T – τ )α–1Eα,α(–λk(T – τ )α)Gk(τ ) dτ

aEα,1(–λkTα) + b
∫ T

0 Eα,1(–λktα) dt

]2

≤ a2
∞∑

k=1

λ2s
k D2

2λ
–2
k t–2α

(
λk

C1

)2(∫ T

0
(T – τ )α–1Eα,α

(
–λk(T – τ )α

)
Gk(τ ) dτ

)2

≤ D2
4t–2α

∞∑

k=1

λ
2s–2β

k

(∫ T

0
(T – τ )α–1–αβGk(τ ) dτ

)2

. (2.25)
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Using Hölder’s inequality, we obtain

(∫ T

0
(T – τ )α–1–αβGk(τ ) dτ

)2

≤
(∫ T

0
(T – τ )α–1–αβ dτ

)(∫ T

0
(T – τ )α–1–αβ

∣
∣Gk(τ )

∣
∣2 dτ

)

=
Tα–αβ

α – αβ

(∫ T

0
(T – τ )α–1–αβ

∣
∣Gk(τ )

∣
∣2 dτ

)

. (2.26)

Combining (2.25) and (2.26), we find that

∥
∥H2(·, t)

∥
∥2

D(As) ≤ D2
4Tα–αβ

α – αβ
t–2α

(∫ T

0
(T – τ )α–1–αβ

∞∑

k=1

λ
2s–2β

k
∣
∣Gk(τ )

∣
∣2 dτ

)

=
D2

4Tα–αβ

α – αβ
t–2α

(∫ T

0
(T – τ )α–1–αβ

∥
∥G(τ )

∥
∥2

D(As–β ) dτ

)

≤ D2
4Tα–αβ

α – αβ
t–2α‖G‖2

L∞(0,T ;D(As–β ))

(∫ T

0
(T – τ )α–1–αβ dτ

)

. (2.27)

The latter estimate leads to

∥
∥H2(·, t)

∥
∥

D(As) ≤ D4Tα–αβ

α – αβ
t–α‖G‖L∞(0,T ;D(As–β )). (2.28)

Step 3. Estimate ‖H3(·, t)‖D(As). By using inequality (2.20), we obtain that

∥
∥H3(·, t)

∥
∥2

D(As)

=
∞∑

k=1

λ2s
k

[aEα,1(–λktα)
∫ T

0
∫ t

0 (t – τ )α–1Eα,α(–λk(t – τ )α)Gk(τ ) dτ dt

aEα,1(–λkTα) + b
∫ T

0 Eα,1(–λktα) dt

]2

≤ a2
∞∑

k=1

λ2s
k D2

2λ
–2
k t–2α

(∫ T

0

∫ t

0
(t – τ )α–1Eα,α

(
–λk(t – τ )α

)
Gk(τ ) dτ dt

)2

. (2.29)

Next, by applying Hölder’s inequality and (2.23) and noting that 0 < β < min(1, 1
2α

), we find
that

∣
∣
∣
∣

∫ T

0

∫ t

0
(t – τ )α–1Eα,α

(
–λk(t – τ )α

)
Gk(τ ) dτ dt

∣
∣
∣
∣

≤ D2λ
–β

k

∫ T

0

∫ t

0
(t – τ )–αβGk(τ ) dτ dt

≤ D2λ
–β

k

∫ T

0

(∫ t

0
(t – r)–2αβ dτ

)1/2(∫ t

0
G2

k(τ ) dτ

)1/2

dt

≤ D2λ
–β

k

√
T1–2αβ

1 – 2αβ

∫ T

0

(∫ t

0
G2

k(τ ) dτ

)1/2

dt

≤ D2Tλ
–β

k

√
T1–2αβ

1 – 2αβ

(∫ T

0
G2

k(τ ) dτ

)1/2

. (2.30)
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By two above observations, we deduce that

∥
∥H3(·, t)

∥
∥2

D(As) ≤ D2
5t–2α

∞∑

k=1

λ
2s–2–2β

k

(∫ T

0
G2

k(τ ) dτ

)

≤ D2
5t–2α‖G‖2

L2(0,T ;D(As–β–1)). (2.31)

Hence, we get immediately that

∥
∥H3(·, t)

∥
∥

D(As) ≤ D5t–α‖G‖L2(0,T ;D(As–β–1)). (2.32)

Step 4. Estimate ‖H4(·, t)‖D(As). From inequality (2.23), we know that

∫ t

0
(t – τ )α–1Eα,α

(
–λn(t – τ )α

)
Gk(τ ) dτ ≤ D2λ

–β

k

∫ t

0
(t – τ )α–1–αβGk(τ ) dτ . (2.33)

Hence, by applying Hölder’s inequality, we get the following bound:

∥
∥H4(·, t)

∥
∥2

D(As) =
∞∑

k=1

[∫ t

0
(t – τ )α–1Eα,α

(
–λk(t – τ )α

)
Gk(τ ) dτ

]2

≤ D2
2

∞∑

k=1

λ
–2β

k

[∫ t

0
(t – τ )α–1–αβGk(τ ) dτ

]2

≤ D2
2

∞∑

k=1

λ
–2β

k

[∫ t

0
(t – τ )α–1–αβ dτ

][∫ t

0
(t – τ )α–1–αβ

∣
∣Gk(τ )

∣
∣2 dτ

]

≤ D2
2Tα–αβ

α – αβ

∞∑

k=1

(∫ t

0
(t – τ )α–1–αβ

∞∑

k=1

λ
–2β

k
∣
∣Gk(τ )

∣
∣2 dτ

)

≤ D2
2

(
Tα–αβ

α – αβ

)2

‖G‖2
L∞(0,T ;D(A–β )). (2.34)

Therefore, we obtain

∥
∥H4(·, t)

∥
∥

D(As) ≤ D2

(
Tα–αβ

α – αβ

)

‖G‖L∞(0,T ;D(A–β )). (2.35)

Combining four steps as above, we deduce that

∥
∥u(·, t)

∥
∥

D(As) ≤
4∑

j=1

∥
∥Hj(·, t)

∥
∥

D(As)

≤ D3t–α‖f ‖D(As) +
D4Tα–αβ

α – αβ
t–α‖G‖L∞(0,T ;D(As–β ))

+ D5t–α‖G‖L2(0,T ;D(As–β–1)) + D2

(
Tα–αβ

α – αβ

)

‖G‖L∞(0,T ;L2(�)). (2.36)
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Let us choose 1 < p < 1
α

. The latter estimate leads to

‖u‖Lp(0,T ;D(As)) =
(∫ T

0

∥
∥u(·, t)

∥
∥p

D(As) dt
)1/p

≤ D3‖f ‖D(As)

(∫ T

0
t–αp dt

)1/p

+
D4Tα–αβ

α – αβ
‖G‖L∞(0,T ;D(As–β ))

(∫ T

0
t–αp dt

)1/p

+ D5‖G‖L2(0,T ;D(As–β–1))

(∫ T

0
t–αp dt

)1/p

+ D2

(
Tα–αβ

α – αβ

)

‖G‖L∞(0,T ;L2(�))

(∫ T

0
dt

)1/p

. (2.37)

Noting that the proper integral
∫ T

0 t–αp dt is convergent, we deduce that

‖u‖Lp(0,T ;D(As)) � ‖f ‖D(As) + ‖G‖L∞(0,T ;D(As–β ))

+ ‖G‖L2(0,T ;D(As–β–1)) + ‖G‖L∞(0,T ;L2(�)). (2.38)
�

3 Identification of the initial value in the case G = 0
In this section, we consider the problem of recovering the initial data u(0, x) in the case
G = 0.

3.1 The ill-posedness
Theorem 3.1 The solution of Problem (1.1) is instability with respect to the L2 norm in the
case t = 0.

Proof Let u0(x) = u(x, 0). Let us consider the following operator M : L2(�) → L2(�):

Mu0(x) =
∞∑

k=1

[

aEα,1
(
–λkTα

)
+ b

∫ T

0
Eα,1

(
–λktα

)
dt

]
〈
u0(x),φk(x)

〉
φk(x)

=
∫

�

p(x,ν)u0(ν) dν, (3.1)

where we denote

p(x,ν) =
∞∑

k=1

[

aEα,1
(
–λkTα

)
+ b

∫ T

0
Eα,1

(
–λktα

)
dt

]

φk(x)φk(ν). (3.2)

It is obvious that p(x,ν) = p(ν, x), we see that M is a self-adjoint operator. We will show
that it is a compact operator. Consider the finite rank operator as follows:

MK u0(x) =
K∑

k=1

[

aEα,1
(
–λkTα

)
+ b

∫ T

0
Eα,1

(
–λktα

)
dt

]

〈u0,φk〉φk(x). (3.3)
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It is obvious that MK is a finite rank operator. It follows from (3.1) and (3.3) that

‖MK u0 – Mu0‖2
L2(�)

=
∞∑

k=K+1

[

aEα,1
(
–λkTα

)
+ b

∫ T

0
Eα,1

(
–λktα

)
dt

]
〈
u0(x),φk(x)

〉2

= |C2|2
∞∑

j=K+1

1
λ2

k

〈
f (x),ϕn(x)

〉2 ≤ |C2|2
λ2

K

∞∑

j=K+1

〈
u0(x),φk(x)

〉2, (3.4)

where we note that

aEα,1
(
–λkTα

)
+ b

∫ T

0
Eα,1

(
–λktα

)
dt ≤ C2

λk
.

Hence, we obtain that

‖MK u0 – Mu0‖L2(�) ≤ C2

λK
.‖u0‖L2(�). (3.5)

This leads to ‖MK – M‖L2(�) → 0 in the sense of operator norm in L(L2(�); L2(�)) as
K → ∞. Moreover, M is a compact operator. From (3.1), we get an operator equation as
follows:

Mu0(x) = f (x), (3.6)

and by Kirsch [43] we conclude that the problem is ill-posed. Next, we continue to give
an example for ill-posedness. Taking the input final data f j(x) = φj(x)√

λj
. Then the initial data

with respect to f j is

uj
0(x) =

∞∑

k=1

Eα,1(–λktα)〈f j(x),φk(x)〉
aEα,1(–λkTα) + b

∫ T
0 Eα,1(–λktα) dt

φk(x)

=
φj(x)

√
λj(aEα,1(–λkTα) + b

∫ T
0 Eα,1(–λktα) dt)

· (3.7)

It is obvious that

lim
j→+∞

∥
∥f j∥∥

L2(�) = lim
j→+∞

1
√

λj
= 0. (3.8)

An error in the L2 norm of the initial data is as follows:

∥
∥uj

0
∥
∥

L2(�) =
∥
∥
∥
∥

φj(x)
√

λj(aEα,1(–λjTα) + b
∫ T

0 Eα,1(–λjtα) dt)

∥
∥
∥
∥

L2(�)
≥

√
λj

C2
. (3.9)

It is easy to see that

lim
j→+∞

∥
∥uj

0
∥
∥

L2(�) > lim
j→+∞

√
λj

C2
= +∞. (3.10)

Combining (3.8) and (3.10), we conclude that the solution is instability. �
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3.2 Regularization and Lp error estimate
In this subsection, we construct a regularized solution and investigate the error between
the regularized solution and the exact solution. Let us assume that fδ is noisy data and
satisfies that

‖fδ – f ‖Lq(�) ≤ δ (3.11)

for any q ≥ 1.

Theorem 3.2 Let fδ be as in (3.11). Let u0 be the function which belongs to D(Aσ ) for any
σ > 0. Let us give a regularized solution as follows:

uδ
0(x) =

λk≤Mδ∑

k=1

[

aEα,1
(
–λkTα

)
+ b

∫ T

0
Eα,1

(
–λktα

)
dt

]–1〈
f δ ,φk

〉
φk(x). (3.12)

Let us choose

Mδ =
(

1
δ

) 1–μ
m–h+1

, 0 < μ < 1,

where

–
d
4

< h ≤ min

(

0,
(q – 2)d

4q

)

, 0 ≤ m <
d
4

. (3.13)

Then we get the following estimate:

∥
∥uδ

0 – u0
∥
∥

L
2d

d–4m (�)
� Ch,qδ

μ + δ
σ (1–μ)
m–h+1 ‖u0‖D(Aσ ). (3.14)

Proof Since the Sobolev embedding Lq(�) ↪→ D(Ah), we find that there exists a positive
constant C := Ch,q

∥
∥f δ – f

∥
∥

D(Ah) ≤ Ch,q
∥
∥f δ – f

∥
∥

Lq(�) ≤ Ch,qδ. (3.15)

For m > 0, we consider the term ‖uε
0 – u0‖D(Am). Using the triangle inequality, we obtain

∥
∥uδ

0 – u0
∥
∥

D(Am) ≤ ∥
∥uδ

0 – uδ
0
∥
∥

D(Am) +
∥
∥uδ

0 – u0
∥
∥

D(Am), (3.16)

where

uδ
0(x) =

λk≤Mδ∑

k=1

[

aEα,1
(
–λkTα

)
+ b

∫ T

0
Eα,1

(
–λktα

)
dt

]–1

〈f ,φk〉φk(x).
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In the following, we first consider the term ‖uδ
0 – uδ

0‖D(Am) for any 0 < m < d
4 . Indeed, we

get

∥
∥uδ

0 – uδ
0
∥
∥2

D(Am)

=
λk≤Mδ∑

k=1

λ2m
k

[

aEα,1
(
–λkTα

)
+ b

∫ T

0
Eα,1

(
–λktα

)
dt

]–2〈
f δ – f ,φk

〉2

≤
λk≤Mδ∑

k=1

λ2m–2h
k

[

aEα,1
(
–λkTα

)
+ b

∫ T

0
Eα,1

(
–λktα

)
dt

]–2

λ2h
k

〈
f δ – f ,φk

〉2. (3.17)

From the fact that

aEα,1
(
–λkTα

)
+ b

∫ T

0
Eα,1

(
–λktα

)
dt ≥ C1

λk
,

we get that

∥
∥uδ

0 – uδ
0
∥
∥2

D(Am) ≤ (Mδ)2m–2h+2∥∥f δ – f
∥
∥2

D(Ah) ≤ C2
h,qδ

2(Mδ)2m–2h+2. (3.18)

Next, we continue to get the following estimate:

∥
∥uδ

0 – u0
∥
∥2

D(Am) =
λk〉Mδ∑

k=1

[

aEα,1
(
–λkTα

)
+ b

∫ T

0
Eα,1

(
–λktα

)
dt

]–2

〈f ,φk〉2

=
λk〉Mδ∑

k=1

〈u0,φk〉2 =
λk〉Mδ∑

k=1

λ–2σ
k λ2σ

k 〈u0,φk〉2

≤ (Mδ)–2σ

λk〉Mδ∑

k=1

λ2σ
k 〈u0,φk〉2 ≤ (Mδ)–2σ‖u0‖2

D(Aσ ). (3.19)

From the Sobolev embedding D(Am) ↪→ L
2d

d–4m (�) and combining (3.18) and (3.19), we
get that

∥
∥uδ

0 – u0
∥
∥

L
2d

d–4m (�)
≤ C

∥
∥uδ

0 – u0
∥
∥

D(Am) ≤ ∥
∥uδ

0 – uδ
0
∥
∥

D(Am) +
∥
∥uδ

0 – u0
∥
∥

D(Am)

≤ Ch,qδ(Mδ)m–h+1 + (Mδ)–σ‖u0‖D(Aσ ). (3.20)

The proof of Theorem 3.2 is completed. �

4 Conclusions
In this paper, we focus on the fractional diffusion equation with nonlocal integral condi-
tion. By using the mild solution in a Fourier series form and the Mittag-Leffler function,
we show two results as follows. First of all, we show the properties of the well-posedness
and regularity of the mild solution to this problem. Next, we present that our problem is
ill-posed (in the sense of Hadamard). In addition, we construct a regularized solution and
present the convergence rate between the regularized and exact solutions by the Fourier
truncation method.



Tuan et al. Advances in Difference Equations        (2021) 2021:204 Page 13 of 14

Acknowledgements
This research is supported by Industrial University of Ho Chi Minh City (IUH) under grant number 66/HÐ-ÐHCN.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors declare that the study was realized in collaboration with the same responsibility. All authors read and
approved the final manuscript.

Author details
1Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University,
Ho Chi Minh City, Vietnam. 2Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
3Division of Applied Mathematics, Thu Dau Mot University, Binh Duong Province, Vietnam. 4Faculty of Fundamental
Science, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 23 February 2021 Accepted: 3 April 2021

References
1. Nigmatulin, R.R.: The realization of the generalized transfer equation in a medium with fractal geometry. Phys. Status

Solidi B 133, 425–430 (1986)
2. Odibat, Z., Baleanu, D.: Numerical simulation of initial value problems with generalized Caputo-type fractional

derivatives. Appl. Numer. Math. 156, 94–105 (2020)
3. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland

Mathematics Studies, vol. 204. Elsevier, New York (2006)
4. Nguyen, H.T., Nguyen, H.C., Wang, R., Zhou, Y.: Initial value problem for fractional Volterra integro-differential

equations with Caputo derivative. Discr. Contin. Dyn. Syst., Ser. B 22(11) (2017)
5. Caraballo, T., Guo, B., Tuan, N.H., Wang, R.: Asymptotically autonomous robustness of random attractors for a class of

weakly dissipative stochastic wave equations on unbounded domains. Proc. R. Soc. Edinb., Sect. A, Math. (2020).
https://doi.org/10.1017/prm.2020.77

6. Tuan, N.H., Van Au, V., Xu, R., Wang, R.: On the initial and terminal value problem for a class of semilinear strongly
material damped plate equations. J. Math. Anal. Appl. 492(2), 124481 (2020)

7. Tuan, N.H., Caraballo, T.: On initial and terminal value problems for fractional nonclassical diffusion equations. Proc.
Am. Math. Soc. 149(1), 143–161 (2021)

8. Tuan, N.H., Kirane, M., Hoan, L.V.C., Mohsin, B.B.: A regularization method for time-fractional linear inverse diffusion
problems. Electron. J. Differ. Equ. 2016, 290 (2016)

9. Tuan, N.H., Long, L.D., Thinh, N.V., Thanh, T.: On a final value problem for the time-fractional diffusion equation with
inhomogeneous source. Inverse Probl. Sci. Eng. 25, 1367–1395 (2017)

10. Tuan, N.H., Kirane, M., Hoan, L.V.C., Long, L.D.: Identification and regularization for unknown source for a
time-fractional diffusion equation. Comput. Math. Appl. 73, 931–950 (2017)

11. Tuan, N.H., Hoan, L.V.C., Tarta, S.: An inverse problem for an inhomogeneous time-fractional diffusion equation: a
regularization method and error estimate. Comput. Appl. Math. 38, 32 (2019)

12. Triet, N.A., Au, V.V., Long, L.D., Baleanu, D., Tuan, N.H.: Regularization of a terminal value problem for time fractional
diffusion equation. Math. Methods Appl. Sci. 43(6), 3850–3878 (2020)

13. Shiri, B., Wu, G.C., Baleanu, D.: Collocation methods for terminal value problems of tempered fractional differential
equations. Appl. Numer. Math. 156, 385–395 (2020)

14. Tuan, N.H., Long, L.D., Thinh, N.V.: Regularized solution of an inverse source problem for a time fractional diffusion
equation. Appl. Math. Model. 40(19–20), 8244–8264 (2016)

15. De Andrade, B., Cuevas, C., Soto, H.: On fractional heat equations with non-local initial conditions. Proc. Edinb. Math.
Soc. 59(1), 65–76 (2016)

16. Azevedo, J., Cuevas, C., Henriquez, E.: Existence and asymptotic behaviour for the time-fractional Keller–Segel model
for chemotaxis. Math. Nachr. 292(3), 462–480 (2019)

17. Dwivedi, K.D., Das, S., Baleanu, D.: Numerical solution of nonlinear space–time fractional-order
advection–reaction–diffusion equation. J. Comput. Nonlinear Dyn. 15(6), 061005 (2020)

18. Kumar, S., Baleanu, D.: Numerical solution of two-dimensional time fractional cable equation with Mittag-Leffler
kernel. Math. Methods Appl. Sci. 43(15), 8348–8362 (2020)

19. Afshari, H., Kalantari, S., Karapinar, E.: Solution of fractional differential equations via coupled fixed point. Electron.
J. Differ. Equ. 2015, 286 (2015)

20. Afshari, H., Karapınar, E.: A discussion on the existence of positive solutions of the boundary value problems via
ψ -Hilfer fractional derivative on b-metric spaces. Adv. Differ. Equ. 2020, 616 (2020)

21. Afshari, H., Atapour, M., Karapınar, E.: A discussion on a generalized Geraghty multi-valued mappings and
applications. Adv. Differ. Equ. 2020, 356 (2020)

https://doi.org/10.1017/prm.2020.77


Tuan et al. Advances in Difference Equations        (2021) 2021:204 Page 14 of 14

22. Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: On the solution of a boundary value problem associated with a
fractional differential equation. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6652

23. Baitiche, Z., Derbazi, C., Benchohra, M.: ψ -Caputo fractional differential equations with multi-point boundary
conditions by topological degree theory. Res. Nonlinear Anal. 3, 167–178 (2020)

24. Benchohra, M., Slimane, M.: Fractional differential inclusions with non instantaneous impulses in Banach spaces. Res.
Nonlinear Anal. 2, 36–47 (2019)

25. Pao, C.V.: Reaction diffusion equations with nonlocal boundary and nonlocal initial conditions. J. Math. Anal. Appl.
195, 702–718 (1995)

26. Rassias, J.M., Karimov, E.T.: Boundary-value problems with non-local initial condition for degenerate parabolic
equations. Contemp. Anal. Appl. Math. 1(1), 42–48 (2013)

27. Rassias, J.M., Karimov, E.T.: Boundary-value problems with non-local initial condition for parabolic equations with
parameter. Eur. J. Pure Appl. Math. 3(6), 948–957 (2010)

28. Ashyralyev, A.: A note on the Bitsadze–Samarskii type nonlocal boundary value problem in a Banach space. J. Math.
Anal. Appl. 344(1), 557–573 (2008)

29. Ashyralyev, A., Ozturk, E.: On Bitsadze–Samarskii type nonlocal boundary value problems for elliptic differential and
difference equations: well-posedness. Appl. Math. Comput. 219(3), 1093–1107 (2012)

30. Patil, J., Chaudhari, A., Abdo, M.S., Hardan, B.: Upper and lower solution method for positive solution of generalized
Caputo fractional differential equations. Adv. Theory Nonlinear Anal. Appl. 4(4), 279–291 (2020)

31. Angelov, V.: Spin three-body problem of classical electrodynamics with radiation terms—(I) derivation of spin
equations. Res. Nonlinear Anal. 4(1), 1–20 (2021)

32. Afshari, H.: Solution of fractional differential equations in quasi-b-metric and b-metric-like spaces. Adv. Differ. Equ.
2019, 285 (2019)

33. Afshari, H., Aydi, H., Karapinar, E.: On generalized Geraghty contractions on b-metric spaces. Georgian Math. J. 27,
9–21 (2020)

34. Binh, T.T., Luc, N.H., O’Regan, D., Can, N.H.: On an initial inverse problem for a diffusion equation with a conformable
derivative. Adv. Differ. Equ. 2019, 481 (2019)

35. Tuan, N.H., Zhou, Y., Long, L.D., et al.: Identifying inverse source for fractional diffusion equation with
Riemann–Liouville derivative. Comput. Appl. Math. 39, 75 (2020)

36. Dokuchaev, N.: On recovering parabolic diffusions from their time-averages. Calc. Var. Partial Differ. Equ. 58(1), Paper
No. 27 (2019)

37. Tuan, N.H., Huynh, L.N., Ngoc, T.B., Zhou, Y.: On a backward problem for nonlinear fractional diffusion equations. Appl.
Math. Lett. 92, 76–84 (2019)

38. Dokuchaev, N.: Regularity of complexified hyperbolic wave equations with integral conditions (2019).
https://arxiv.org/abs/1907.03527

39. Il’kiv, V.S., Nytrebych, Z.M., Pukach, P.Y.: Boundary-value problems with integral conditions for a system of Lamé
equations in the space of almost periodic functions. Electron. J. Differ. Equ. 2016, 304 (2016)

40. Pulkina, S.L., Savenkova, A.E.: A problem with a nonlocal, with respect to time, condition for multidimensional
hyperbolic equations. Russ. Math. 60(10), 33–43 (2016)

41. Podlubny, I.: Fractional Differential Equations. Academic Press, London (1999)
42. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and

applications to some inverse problems. J. Math. Anal. Appl. 382, 426–447 (2011)
43. Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Applied Mathematical Sciences, vol. 120.

Springer, New York (2011)

https://doi.org/10.1002/mma.6652
https://arxiv.org/abs/1907.03527

	On a time fractional diffusion with nonlocal in time conditions
	Abstract
	MSC
	Keywords

	Introduction
	Well-posedness and regularity
	Preliminaries
	The mild solution of our problem

	Identiﬁcation of the initial value in the case G=0
	The ill-posedness
	Regularization and Lp error estimate

	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


