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Abstract
In this study, we investigate the global exponential stability of Clifford-valued neural
network (NN) models with impulsive effects and time-varying delays. By taking
impulsive effects into consideration, we firstly establish a Clifford-valued NN model
with time-varying delays. The considered model encompasses real-valued,
complex-valued, and quaternion-valued NNs as special cases. In order to avoid the
issue of non-commutativity of the multiplication of Clifford numbers, we divide the
original n-dimensional Clifford-valued model into 2mn-dimensional real-valued
models. Then we adopt the Lyapunov–Krasovskii functional and linear matrix
inequality techniques to formulate new sufficient conditions pertaining to the global
exponential stability of the considered NN model. Through numerical simulation, we
show the applicability of the results, along with the associated analysis and discussion.

Keywords: Clifford-valued neural network; Exponential stability;
Lyapunov–Krasovskii functional; Impulsive effects

1 Introduction
Dynamic analysis of neural network (NN) models has gained tremendous research inter-
est in recent decades, since NN models play a significant role in various applications. In
particular, the stability theory of NN models has been extensively studied to solve many
problems related to science and engineering, including associative memory, image and
signal processing, optimization, pattern recognition and others [1–8]. On the other hand,
complex signals exist in most NN applications in the real world. As such, multidimen-
sional problems such as color night vision, radar imaging, polarized signal classification,
3D wind forecasting can be solved more favorably by implementing complex-valued and
quaternion-valued NN models [9–26]. To date, several important results regarding vari-
ous dynamics of complex-valued and quaternion-valued NN models have been published,
some of them stability analysis [13, 14, 20–22, 26], synchronization analysis [11], stabiliz-
ability and instabilizability [12], controllability and observability [23], optimization [24, 25]
and so on.

Clifford algebra offers a powerful framework for solving geometrical problems. This
discipline has shown useful results in various science and engineering areas, including
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control and robotic related problems [27–31]. Clifford-valued NN models stand as a gen-
eralization of real-valued, complex-valued, and quaternion-valued NNs. In this respect,
Clifford-valued NN models are superior to real-valued, complex-valued, and quaternion-
valued NNs for undertaking spatial geometric transformation and high-dimensional data
problems [29–32]. Theoretical and applied studies of Clifford-valued NN models have
recently become a new topic of research. However, the dynamical properties of Clifford-
valued NN models are typically more complex than those of real-valued and complex-
valued NN models. As such, studies on Clifford-valued NN dynamics are still limited due
to those utilizing the principle of non-commutativity of the product of Clifford numbers
[33–42].

In [33], the authors derived the global exponential stability criteria for delayed Clifford-
valued recurrent NN models in terms of linear matrix inequalities (LMIs). Pertaining to
Clifford-valued NN models with time delays, their global asymptotic stability issues were
examined in [34] by decomposing the n-dimensional Clifford-valued NN model into 2mn-
dimensional real-valued models. Leveraging on a direct method, the existence and global
exponential stability of almost periodic solutions were derived for Clifford-valued neutral
high-order Hopfield NN models with leakage delays in [37]. In addition, the use of Banach
fixed point theorem and Lyapunov–Krasovskii functional (LKF) technique for addressing
the global asymptotic almost periodic synchronization issues for Clifford-valued cellular
NN models was conducted in [38]. A study of the weighted pseudo almost automorphic
solutions pertaining to neutral type fuzzy cellular NN models with mixed delays and D
operator in Clifford algebra was presented in [40]. In [42], the authors investigated the
existence of anti-periodic solutions corresponding to a class of Clifford-valued inertial
Cohen–Grossberg NN models by constructing suitable LKFs.

Due to the limited speed of signal propagation, time delays (either constant or time-
varying) are often encountered in NN models operating in real-world applications [3, 5–
8]. Time delays are the main source of various dynamics such as chaos, divergence, poor
functionality and instability [11–13, 36, 39, 41]. Hence it is necessary to analyze the NN dy-
namics that incorporate either constant or time-varying delays. In this respect, NN mod-
els with various time delays have been extensively studied, and many significant results
have been obtained [3, 5, 11–13, 33–46]. On the other hand, due to noise, change in fre-
quency, or switching phenomenon, the impulsive effects occur in real-world systems [47].
The resulting dynamical behaviors of the systems are more complex than those of classical
dynamical systems [47, 48]. Generally, impulses can affect the dynamic behaviors of net-
works. As such, many papers dealing with dynamical systems with impulsive effects have
appeared in recent years [43–50].

To the best of our knowledge, there are hardly any papers that deal with the issue of
global exponential stability of Clifford-valued NNs with time-varying delays and impul-
sive effects. Indeed, this interesting subject remains an open challenge. Motivated by the
above facts, our research focuses on to derive the sufficient conditions of global expo-
nential stability of Clifford-valued NNs with impulsive effects. In order to achieve our
main results, the n-dimensional Clifford-valued NN model is firstly decomposed into 2mn-
dimensional real-valued NN models. This avoids the issues related to the principle of non-
commutativity of multiplication with respect to Clifford numbers. Based on the LKF and
LMI techniques and some mathematical concepts, we derive new sufficient conditions for
ascertaining the exponential stability of the considered Clifford-valued NN model. The
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conditions obtained in this study are expressed in LMIs, and the associated feasible solu-
tions are verified by using the MATLAB software. The obtained results are validated with
a numerical simulation.

The main contributions of our study are as follows: (1) we for the first time analyze
the global exponential stability of Clifford-valued NN models with time-varying delays
as well as impulsive effects; (2) in comparison with other results, the results of our study
is new and more general even when the considered Clifford-valued NN model has been
decomposed into real-, complex-, and quaternion-valued NN models; (3) our proposed
method can be easily employed for other dynamic behaviors with respect to different types
of Clifford-valued NN models.

The organization of this article is as follows. The proposed Clifford-valued NN model
is formally defined in Sect. 2. We then explain the new stability criterion and present the
numerical example and the associated simulation results in Sects. 3 and 4, respectively.
A summary of the findings is given in Sect. 5.

2 Mathematical Fundamentals and Problem Formulation
2.1 Notations
Let Rn and A

n denote the n-dim real vector space and n-dim real Clifford vector space,
respectively. Rn×n and A

n×n denote the set of all n × n real matrices and the set of all n × n
real Clifford matrices, respectively. A is defined as the Clifford algebra with m generators
over the real number R. Superscripts T and ∗, respectively, indicate matrix transposition
and matrix involution transposition. A matrix P > 0 (< 0) denotes a positive (negative)
definite matrix. We define the norm of Rn as ‖p‖ =

∑n
i=1 |pi|. Besides that, B = (bij)n×n ∈

R
n×n, denote ‖B‖ = max1≤i≤n{∑n

j=1 |bij|}, while p =
∑

A pAeA ∈ A denote ‖p‖A =
∑

A |pA|
and for B = (bij)n×n ∈ A

n×n, denote ‖B‖A = max1≤i≤n{∑n
j=1 |bij|A}. For ϕ ∈ C([–τ , 0],An),

we introduce the norm ‖ϕ‖τ ≤ sup–τ≤s≤0 ‖ϕ(t +s)‖. λM(P) and λm(P), respectively, denote
the maximum and minimum eigenvalues of matrix P .

2.2 Clifford Algebra
The Clifford real algebra over Rm is defined as

A =
{ ∑

A⊆{1,2,...,m}
aAeA, aA ∈R

}

,

where eA = eh1 eh2 . . . ehν with A = {h1, h2, . . . , hν}, 1 ≤ h1 < h2 < · · · < hν ≤ m.
Moreover e∅ = e0 = 1 and eh = e{h}, h = 1, 2, . . . , m are denoted as the Clifford generators,

and they fulfill the following relationship:

⎧
⎪⎪⎨

⎪⎪⎩

eiej + ejei = 0, i �= j, i, j = 1, 2, . . . , m,

e2
i = –1, i = 1, 2, . . . , m,

e2
0 = 1.

For the sake of simplicity, when an element is the product of multiple Clifford generators,
its subscripts are incorporated together, e.g. e4e5e6e7 = e4567.
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Let � = {∅, 1, 2, . . . , A, . . . , 12 . . . m}, and we have

A =
{∑

A

aAeA, aA ∈ R

}

,

where
∑

A denotes
∑

A∈� and A is isomorphic to R
2m .

For any Clifford number p =
∑

A pAeA, the involution of p is defined by

p̄ =
∑

A

pAēA,

where ēA = (–1)
σ [A](σ [A]+1)

2 eA, and

σ [A] =

⎧
⎨

⎩

0, if A = ∅,

ν, if A = h1h2 . . . hν .

From the definition, we can directly deduce that eAēA = ēAeA = 1. For a Clifford-valued
function p =

∑
A pAeA : R →A, where pA : R→ R, A ∈ �, and its derivative is represented

by dp(t)
dt =

∑
A

dpA(t)
dt eA.

Since eBēA = (–1)
σ [A](σ [A]+1)

2 eBeA, we can write eBēA = eC or eBēA = –eC , where eC is
a basis of Clifford algebra A. As an example, eh1h2 ēh2h3 = –eh1h2 eh2h3 = –eh1 eh2 eh2 eh3 =
–eh1 (–1)eh3 = eh1 eh3 = eh1h3 . Therefore, it is possible to identify a unique corresponding
basis eC for a given eBēA. Define

σ [B.Ā] =

⎧
⎨

⎩

0, if eBēA = eC ,

1, if eBēA = –eC ,

and then eBēA = (–1)σ [B.Ā]eC .
Moreover, for any G ∈ A, there is a unique G C that satisfies G B.Ā = (–1)σ [B.Ā]G C for

eBēA = (–1)σ [B.Ā]eC . Therefore

G B.ĀeBēA = G B.Ā(–1)σ [B.Ā]eC = (–1)σ [B.Ā]GC(–1)σ [B.Ā]eC = G CeC

and G =
∑

C G CeC ∈A.

2.3 Problem Definition
Consider a Clifford-valued NN model with time-varying delays, as follows:

⎧
⎨

⎩

ṗi(t) = –dipi(t) +
∑n

j=1 aijgj(pj(t)) +
∑n

j=1 bijgj(pj(t – τ (t))) + ui, t ≥ 0,

pi(s) = ϕi(s), s ∈ [–τ , 0], i = 1, 2, . . . , n,
(1)

where i, j = 1, 2, . . . , n, and n corresponds to the number of neurons; pi(t) ∈ A represents
the state vector of the ith unit; di ∈ R

+ indicates the rate with which the ith unit resets
its potential to the resting state in isolation when it is disconnected from the network and
external inputs; aij, bij ∈ A indicate the strengths of connection weights without and with
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time-varying delays between cells i and j, respectively; ui ∈ A is an external input of the
ith unit; gj(·) : An → A

n is the activation functions of signal transmission; τ (t) ∈ R
+ is the

transmission delay at time t. Furthermore, ϕi ∈ C([–τ , 0],An) is the initial condition for
the considered NN model (1).

The impulsive Clifford-valued NN model with time-varying delays can be described as
follows:

⎧
⎪⎪⎨

⎪⎪⎩

ṗi(t) = –dipi(t) +
∑n

j=1 aijgj(pj(t)) +
∑n

j=1 bijgj(pj(t – τ (t))) + ui, t ≥ 0, t �= tk ,

�pi(tk) = pi(t+
k ) – pi(t–

k ) = Iik(pi(t–
k )), t = tk , k ∈N,

pi(s) = ϕi(s), s ∈ [–τ , 0],

(2)

where �pi(tk) = pi(t+
k ) – pi(t–

k ) is the jump in state variable pi. In addition, the impulsive
moment tk (k ∈ N) fulfills 0 < t1 < t2 < · · · tk < · · · , which is a strictly increasing sequence
such that limk→+∞ tk = +∞; pi(t+

k ) and pi(t–
k ) are the right and left limits of pi(tk), respec-

tively, while Iik ∈ C[Rn,Rn] denotes the incremental change of the state at time tk , while
Iik(0) = 0 for all k ∈N.

For the convenience of discussion, we rewrite (2) in the vector form

⎧
⎪⎪⎨

⎪⎪⎩

ṗ(t) = –Dp(t) + Ag(p(t)) + Bg(p(t – τ (t))) + u, t ≥ 0, t �= tk ,

�p(tk) = p(t+
k ) – p(t–

k ) = Ik(p(t–
k )), t = tk , k ∈N,

p(s) = ϕ(s), s ∈ [–τ , 0],

(3)

where p(t) = (p1(t), p2(t), . . . , pn(t))T ∈ A
n; D = diag{d1, d2, . . . , dn} ∈ R

n with di > 0,
i = 1, 2, . . . , n; and A = (aij)n×n ∈ A

n×n; B = (bij)n×n ∈ A
n×n; u = (u1, u2, . . . , un)T ∈ A

n;
g(p(t)) = (g1(p1(t)), g2(p2(t)), . . . , gn(pn(t)))T ∈ A

n; g(p(t – τ (t))) = (g1(p1(t – τ (t))), g2(p2(t –
τ (t))), . . . , gn(pn(t – τ (t))))T ∈A

n and Ik = (I1k , I2k , . . . , Ink)T ∈ C[Rn,Rn].

(H1) Function gj(·) fulfills the Lipschitz continuity condition with respect to the n-
dimensional Clifford vector. For each j = 1, 2, . . . , n, there exists a positive constant kj such
that, for any x, y ∈ A,

∣
∣gj(x) – gj(y)

∣
∣
A

≤ kj|x – y|A, j = 1, 2, . . . , n, (4)

where kj is known as the Lipschitz constant and gj(0) = 0. And there exist positive con-
stants kj such that |gj(x)|A ≤ kj (j = 1, 2, . . . , n).

Remark 2.1 There exists a constant kj > 0 (j = 1, 2, . . . , n) such that ∀x = (x1, x2, . . . , x2m )T ∈
R

2m , and ∀y = (y1, y2, . . . , y2m )T ∈R
2m

∣
∣gA

j (x) – gA
j (y)

∣
∣ ≤ kj

2m
∑

�=1

|x� – y�|, A ∈ �, j = 1, 2, . . . , n. (5)

By means of assumption (H1), it is clear that

(
g(x) – g(y)

)∗(g(x) – g(y)
) ≤ (x – y)∗KTK(x – y), (6)

where K = diag{k1, k2, . . . , kn}.
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(H2) Time-varying delay τ (t) is differential and it fulfills the following conditions:

0 ≤ τ (t) ≤ τ , τ̇ (t) ≤ μ < 1, (7)

where τ and μ are known real constants.

Remark 2.2 It is worth noting that Clifford-valued NN models are the generalized form
of real-, complex-, and quaternion-valued NN models. For example, when we take into
account m = 0 in NN model (3), then the model can be reduced to the real-valued NN
model proposed in [6]. Suppose, we take m = 1 in NN model (3), then the model can be
reduced to the complex-valued NN model proposed in [14]. If we choose m = 2 in NN
model, then the model can be reduced to the quaternion-valued NN model proposed in
[26]. Therefore, the proposed system model in this paper is more general than the system
model proposed in [6, 14, 26].

Definition 2.3 ([34]) With reference to the Clifford-valued NN model (3), the vector p∗ =
(p∗

1, p∗
2, . . . , p∗

n)T ∈A
n is an equilibrium point, if and only if p∗ is a solution of the following

equation:

–Dp∗ + (A + B)g
(
p∗) + u = 0,

and the impulsive jump Ik(·) is able to satisfy Ik(p∗) = 0, k ∈N.

Definition 2.4 ([39]) Pertinent to the Clifford-valued NN model (3), its global expo-
nential stable is guaranteed if for any solution p(t, t0,ϕ) with the initial condition ϕ ∈
C([–τ , 0],An), there exist constants α > 0 and G ≥ 0 such that

∥
∥p(t, t0,ϕ)

∥
∥ ≤ G‖ϕ‖e–α(t–t0), t ≥ t0.

3 Main results
In order to avoid the issues of non-commutativity of multiplication of Clifford numbers,
we transform the Clifford-valued NN model (3) into the real-valued NN models. This can
be achieved with the help of eAēA = ēAeA = 1 and eBēAeA = eB. Given any G ∈ A, a unique
G C that is able to satisfy G CeCgAeA = (–1)σ [B.Ā]G CgAeB = G B.ĀgAeB can be identified. By
decomposing (3) into ṗ =

∑
A ṗAeA, we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ṗA(t) = –DpA(t) +
∑

B∈� AA.B̄gB(p(t))

+
∑

B∈� BA.B̄gB(p(t – τ (t))) + uA, t ≥ 0, t �= tk ,

�pA(tk) = pA(t+
k ) – pA(t–

k ) = Ik(pA(t–
k )), t = tk , k ∈N,

pA(s) = ϕA(s), s ∈ [–τ , 0],

(8)

where

pA(t) =
(
pA

1 (t), pA
2 (t), . . . , pA

n (t)
)T , p(t) =

∑

A∈�

pA(t)eA,

uA =
(
uA

1 , uA
2 , . . . , uA

n
)T , u =

∑

A∈�

uAeA,
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gB(
p(t)

)
=

(
gB

1
(
pC1

1 (t), pC2
1 (t), . . . , pC2m

1 (t)
)
, gB

2
(
pC1

2 (t), pC2
2 (t), . . . , pC2m

2 (t)
)
,

. . . , gB
n
(
pC1

n (t), pC2
n (t), . . . , pC2m

n (t)
))T ,

gB(
p
(
t – τ (t)

))
=

(
gB

1
(
pC1

1
(
t – τ (t)

)
, pC2

1
(
t – τ (t)

)
, . . . , pC2m

1
(
t – τ (t)

))
,

gB
2
(
pC1

2
(
t – τ (t)

)
, pC2

2
(
t – τ (t)

)
, . . . , pC2m

2
(
t – τ (t)

))
,

. . . , gB
n
(
pC1

n
(
t – τ (t)

)
, pC2

n
(
t – τ (t)

)
, . . . , pC2m

n
(
t – τ (t)

)))T ,

A =
∑

C∈�

ACeC , AA.B̄ = (–1)σ [A.B̄]AC ,

B =
∑

C∈�

BCeC , BA.B̄ = (–1)σ [A.B̄]BC ,

AA.B̄ =
(
aA.B̄

ij
)

n×n, BA.B̄ =
(
bA.B̄

ij
)

n×n,

eAēB = (–1)σ [A.B̄]eC .

Corresponding to the basis of Clifford algebra, we reformulate the Clifford-valued NN
model to novel real-valued ones. Define

w(t) =
((

p0(t)
)T ,

(
p1(t)

)T , . . . ,
(
pA(t)

)T , . . . ,
(
p12...m(t)

)T)T ∈R
2mn,

ḡ
(
w(t)

)
=

((
g0(p(t)

))T ,
(
g1(p(t)

))T , . . . ,
(
gA(

p(t)
))T , . . . ,

(
g12...m(

p(t)
))T)T ∈R

2mn,

ḡ
(
w

(
t – τ (t)

))
=

((
g0(p

(
t – τ (t)

)))T ,
(
g1(p

(
t – τ (t)

)))T , . . . ,
(
gA(

p
(
t – τ (t)

)))T , . . . ,
(
g12...m(

p
(
t – τ (t)

)))T)T ∈R
2mn,

ū =
((

u0)T ,
(
u1)T , . . . ,

(
uA)T , . . . ,

(
u12...m)T)T ∈R

2mn,

D̃ =

⎛

⎜
⎜
⎜
⎜
⎝

D 0 · · · 0
0 D · · · 0
...

...
. . .

...
0 0 · · · D

⎞

⎟
⎟
⎟
⎟
⎠

2mn×2mn

,

Ã =

⎛

⎜
⎜
⎜
⎜
⎝

A0 A1 · · · AA · · · A12...m

A1 A1·1 · · · A1·A · · · A1·12...m

...
... · · · ... · · · ...

A12...m A12...m·1 · · · A12...m·A · · · A12...m·12...m

⎞

⎟
⎟
⎟
⎟
⎠

2mn×2mn

,

B̃ =

⎛

⎜
⎜
⎜
⎜
⎝

B0 B1 · · · BA · · · B12...m

B1 B1·1 · · · B1·A · · · B1·12...m

...
... · · · ... · · · ...

B12...m B12...m·1 · · · B12...m·A · · · B12...m·12...m

⎞

⎟
⎟
⎟
⎟
⎠

2mn×2mn

,

Ĩk =

⎛

⎜
⎜
⎜
⎜
⎝

Ik 0 · · · 0
0 Ik · · · 0
...

...
. . .

...
0 0 · · · Ik

⎞

⎟
⎟
⎟
⎟
⎠

2mn×2mn

.
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The NN model (8) can be written as

⎧
⎨

⎩

ẇ(t) = –D̃w(t) + Ãḡ(w(t)) + B̃ḡ(w(t – τ (t))) + ū, t ≥ 0, t �= tk ,

�w(tk) = w(t+
k ) – w(t–

k ) = Ĩk(w(t–
k )), t = tk , k ∈ N,

(9)

with the initial value

w(s) = ϕ̄(s), s ∈ [–τ , 0], (10)

where ϕ̄(s) = ((ϕ0(s))T , (ϕ1(s))T , . . . , (ϕA(s))T , . . . , (ϕ12...m(s))T )T ∈R
2mn.

In addition, we can express (6) as the following inequality:

(
ḡ(w1) – ḡ(w2)

)T(
ḡ(w1) – ḡ(w2)

) ≤ (w1 – w2)TK̃T (w1 – w2), (11)

where

K̃ =

⎛

⎜
⎜
⎜
⎜
⎝

KTK 0 · · · 0
0 KTK · · · 0
...

...
. . .

...
0 0 · · · KTK

⎞

⎟
⎟
⎟
⎟
⎠

2mn×2mn

.

From Definition 2.3 there exists a unique equilibrium point w∗ for Clifford-valued NN
model (9). Next, we prove the global exponential stability of (9). Firstly, we shift the equi-
librium point of (9) to the origin using the transformation w̃ = w – w∗. Then we rewrite
Clifford-valued NN model (9) as

⎧
⎪⎪⎨

⎪⎪⎩

˙̃w(t) = –D̃w̃(t) + Ãg̃(w̃(t)) + B̃g̃(w̃(t – τ (t))), t ≥ 0, t �= tk ,

�w̃(tk) = w̃(t+
k ) – w̃(t–

k ) = Ĩk(w̃(t–
k )), t = tk , k ∈ N,

w̃(s) = ϕ̃(s), s ∈ [–τ , 0],

(12)

where g̃(w̃) = ḡ(w̃ + w∗) – ḡ(w∗) and ϕ̃(s) = ϕ̄(s) – w∗ is the initial condition. Obviously, the
equilibrium point of NN (3) is also the equilibrium point of (9), and the stability for NN (3)
is equivalent to that for (9). As such, in the sequel, we focus our study on the real-valued
NNs.

Lemma 3.1 ([46]) Let O ∈R
2mn×2mn, then

λm(O)w̃T w̃ ≤ w̃TOw̃ ≤ λM(O)w̃T w̃,

for any w̃ ∈R
2m if O is a symmetric matrix.

3.1 Exponential stability
Theorem 3.2 Given that (H1) and (H2) hold, the following conditions are fulfilled for
k ∈N:

(i) For given scalars ε : 0 < ε < min di (i = 1, . . . , n), τ ≥ 0 and μ, if there exist positive
definite matrices P ∈R

2mn×2mn and Q ∈R
2mn×2mn, and a positive diagonal matrix
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M = diag{�1, . . . ,�n} ∈ R
2mn×2mn such that

� =

⎛

⎝
εP – PD̃ – D̃TP + εK̃M PÃ PB̃

ÃTP –2MD̃K̃–1 + MÃ + ÃTM + Q MB̃
B̃TP B̃TM –(1 – μ)e–ετQ

⎞

⎠,

(13)

where � is negative definite.
(ii) For γk ≥ 0, k ∈N, one can have ‖Ĩk(w̃(t–

k ))‖ ≤ γk‖w̃(t–
k )‖.

(iii) For η > 1, one can have ητ ≤ inf{tk – tk–1}.
(iv) max{βk} ≤ G < eεητ , k ∈N, where βk = 1 + (2‖P‖+2‖MK̃‖)γk+(‖P‖+‖MK̃‖)γ 2

k
λm(P) , where G

is a constant.
Then the equilibrium point of NN model (12) is globally exponentially stable. It has an
exponential convergence rate ε. Moreover,

∥
∥w̃(t)

∥
∥ ≤

√
λM(P) + 2λM(K̃M) + λM(Q)( 1–e–ετ

ε
)λM(K̃2)

λm(P)
‖ϕ̃‖e–(

ε–( lnG
ητ )

2 )(t–t0). (14)

Proof Construct a LKF for the NN model (12) as follows:

V
(
t, w̃(t)

)
= eεtw̃T (t)Pw̃(t) + 2eεt

n∑

i=1

�i

∫ w̃i(t)

0
g̃i(ξ ) dξ

+
∫ t

t–τ (t)
eεξ g̃T(

w̃(ξ )
)
Qg̃

(
w̃(ξ )

)
dξ , (15)

where V(t, w̃(t)) is radially unbounded and P ,Q > 0 are positive definite matrices.
Based on Lemma (3.1), we have

V
(
t, w̃(t)

) ≥ eεtw̃T (t)Pw̃(t) ≥ eεtλm(P)
∥
∥w̃(t)

∥
∥2. (16)

When t �= tk , k ∈ N, the time derivative of V(t, w̃(t)) can be computed along the solutions
of NN model (12), one obtains

V̇
(
t, w̃(t)

)
= εeεtw̃T (t)Pw̃(t) + 2eεtw̃T (t)P ˙̃w(t) + 2εeεt

n∑

i=1

�i

∫ w̃i(t)

0
g̃i(ξ ) dξ

+ 2eεt
n∑

i=1

�ig̃i
(
w̃i(t)

) ˙̃wi(t) + eεt g̃T(
w̃(t)

)
Qg̃

(
w̃(t)

)

–
(
1 – τ̇ (t)

)
eε(t–τ (t))g̃T(

w̃
(
t – τ (t)

))
Qg̃

(
w̃

(
t – τ (t)

))
.

From assumptions (H1) and (H2), one can get

V̇
(
t, w̃(t)

)
= εeεtw̃T (t)Pw̃(t) + 2eεtw̃T (t)P ˙̃w(t) + εeεtw̃T (t)K̃Mw̃(t)

+ 2eεt g̃T(
w̃(t)

)
M ˙̃w(t) + eεt g̃T(

w̃(t)
)
Qg̃

(
w̃(t)

)

–
(
1 – τ̇ (t)

)
eε(t–τ (t))g̃T(

w̃
(
t – τ (t)

))
Qg̃

(
w̃

(
t – τ (t)

))

= εeεtw̃T (t)Pw̃(t) + 2eεtw̃T (t)P
[
–D̃w̃(t) + Ãg̃

(
w̃(t)

)



Rajchakit et al. Advances in Difference Equations        (2021) 2021:208 Page 10 of 21

+ B̃g̃
(
w̃

(
t – τ (t)

))]
+ εeεtw̃T (t)K̃Mw̃(t)

+ 2eεt g̃T(
w̃(t)

)
M

[
–D̃w̃(t) + Ãg̃

(
w̃(t)

)

+ B̃g̃
(
w̃

(
t – τ (t)

))]
+ eεt g̃T(

w̃(t)
)
Qg̃

(
w̃(t)

)

–
(
1 – τ̇ (t)

)
eε(t–τ (t))g̃T(

w̃
(
t – τ (t)

))
Qg̃

(
w̃

(
t – τ (t)

))

= eεt[εw̃T (t)Pw̃(t) – 2w̃T (t)PD̃w̃(t) + 2w̃T (t)PÃg̃
(
w̃(t)

)

+ 2w̃T (t)PB̃g̃
(
w

(
t – τ (t)

))
+ εw̃T (t)K̃Mw̃(t)

– 2g̃T(
w̃(t)

)
MD̃w̃(t) + 2g̃T(

w̃(t)
)
MÃg̃

(
w̃(t)

)

+ 2g̃T(
w̃(t)

)
MB̃g̃

(
w̃

(
t – τ (t)

))
+ g̃T(

w̃(t)
)
Qg̃

(
w̃(t)

)

–
(
1 – τ̇ (t)

)
e–ετ (t)g̃T(

w̃
(
t – τ (t)

))
Qg̃

(
w̃

(
t – τ (t)

))]

≤ eεt[εw̃T (t)Pw̃(t) – 2w̃T (t)PD̃w̃(t) + 2w̃T (t)PÃg̃
(
w̃(t)

)

+ 2w̃T (t)PB̃g̃
(
w̃

(
t – τ (t)

))
+ εw̃T (t)K̃Mw̃(t)

– 2gT(
w̃(t)

)
MD̃w̃(t) + 2gT(

w̃(t)
)
MÃg̃

(
w̃(t)

)

+ 2gT(
w̃(t)

)
MB̃g̃

(
w̃

(
t – τ (t)

))
+ g̃T(

w̃(t)
)
Qg̃

(
w̃(t)

)

– (1 – μ)e–ετ g̃T(
w̃

(
t – τ (t)

))
Qg̃

(
w̃

(
t – τ (t)

))]
. (17)

From assumption (H2), one can obtain

–2g̃T(
w̃(t)

)
MD̃w̃(t) ≤ –2g̃T(

w̃(t)
)
MD̃K̃–1g̃

(
w̃(t)

)
. (18)

Substituting (18) in (17), we have

V̇
(
t, w̃(t)

) ≤ eεt[εw̃T (t)Pw̃(t) – 2w̃T (t)PD̃w̃(t) + 2w̃T (t)PÃg̃
(
w̃(t)

)

+ 2w̃T (t)PB̃g̃
(
w̃

(
t – τ (t)

))
+ εw̃T (t)K̃Mw̃(t)

– 2g̃T(
w̃(t)

)
MD̃K̃–1g̃

(
w̃(t)

)
+ 2g̃T(

w̃(t)
)
MÃg̃

(
w̃(t)

)

+ 2g̃T(
w̃(t)

)
MB̃g̃

(
w̃

(
t – τ (t)

))
+ g̃T(

w̃(t)
)
Qg̃

(
w̃(t)

)

– (1 – μ)e–ετ g̃T(
w̃

(
t – τ (t)

))
Qg̃

(
w̃

(
t – τ (t)

))]

= eεt[w̃T (t)
(
εP – PD̃ – D̃TP + εK̃M

)
w̃(t) + w̃T (t)(PÃ)g̃

(
w̃(t)

)

+ w̃T (t)(PB̃)g̃
(
w̃

(
t – τ (t)

))
+ g̃T(

w̃(t)
)(

–2MD̃K̃–1 + MÃ

+ ÃTM + Q
)
g̃
(
w̃(t)

)
+ g̃T(

w̃(t)
)
(MB̃)g̃

(
w̃

(
t – τ (t)

))

+ g̃T(
w̃

(
t – τ (t)

))(
–(1 – μ)e–ετQ

)
g̃
(
w̃

(
t – τ (t)

))]

= eεt

⎛

⎜
⎝

w̃(t)
g̃(w̃(t))

g̃(w̃(t – τ (t)))

⎞

⎟
⎠

T

�

⎛

⎜
⎝

w̃(t)
g̃(w̃(t))

g̃(w̃(t – τ (t)))

⎞

⎟
⎠

= eεtζ T (t)�ζ (t) < 0, (19)

where ζ (t) = (w̃T (t), g̃T (w̃(t)), g̃T (w̃(t – τ (t))))T and � is defined in (13).
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When t = tk , k ∈N by using (ii), (iii), we have

V
(
tk , w̃(tk)

)
= V

(
tk , w̃

(
t–
k
)

+ Ĩk
(
w̃

(
t–
k
)))

= eεt–
k
(
w̃

(
t–
k
)

+ Ĩk
(
w̃

(
t–
k
)))TP

(
w̃

(
t–
k
)

+ Ĩk
(
w̃

(
t–
k
)))

+ 2eεt–
k

n∑

i=1

�i

∫ w̃i(t–
k )+Ĩik (t–

k )

0
g̃i(ξ ) dξ

+
∫ tk

tk –τ (tk )
eεξ g̃T(

w̃(ξ )
)
Qg̃

(
w̃(ξ )

)
dξ

= eεt–
k w̃T(

t–
k
)
Pw̃

(
t–
k
)

+ 2eεt–
k

n∑

i=1

�i

∫ w̃i(t–
k )

0
g̃i(ξ ) dξ

+
∫ t–

k

t–
k –τ (t–

k )
eεξ g̃T(

w̃(ξ )
)
Qg̃

(
w̃(ξ )

)
dξ

+ eεt–
k w̃T(

t–
k
)
PĨk

(
w̃

(
t–
k
))

+ eεt–
k ĨT

k
(
w̃

(
t–
k
))
Pw̃

(
t–
k
)

+ eεt–
k ĨT

k
(
w̃

(
t–
k
))
PĨk

(
w̃

(
t–
k
))

+ 2eεt–
k

n∑

i=1

�i

∫ w̃i(t–
k )+Ĩik (t–

k )

w̃i(t–
k )

g̃i(ξ ) dξ

≤ V
(
t–
k , w̃

(
t–
k
))

+ eεt–
k w̃T(

t–
k
)
PĨk

(
w̃

(
t–
k
))

+ eεt–
k ĨT

k
(
w̃

(
t–
k
))
Pw̃

(
t–
k
)

+ eεt–
k ĨT

k
(
w̃

(
t–
k
))
PĨk

(
w̃

(
t–
k
))

+ 2eεt–
k w̃T(

t–
k
)
MK̃Ĩk

(
w̃

(
t–
k
))

+ eεt–
k ĨT

k
(
w̃

(
t–
k
))
MK̃Ĩk

(
w̃

(
t–
k
))

≤ V
(
t–
k , w̃

(
t–
k
))

+
((

2‖P‖ + 2‖MK̃‖)γk

+
(‖P‖ + ‖MK̃‖)γ 2

k
)
eεt–

k
∥
∥w̃

(
t–
k
)∥
∥2

≤
(

1 +
(2‖P‖ + 2‖MK̃‖)γk + (‖P‖ + ‖MK̃‖)γ 2

k
λm(P)

)

V
(
t–
k , w̃

(
t–
k
))

,

that is,

V
(
tk , w̃(tk)

) ≤ βkV
(
t–
k , w̃

(
t–
k
))

, (20)

where βk = 1 + (2‖P‖+2‖MK̃‖)γk+(‖P‖+‖MK̃‖)γ 2
k

λm(P) .
For any solution w̃(t, t0, w̃0) of (3), by (19) and (20), we have

V
(
t, w̃(t, t0, w̃0)

) ≤ V(t0, w̃0)
∏

t0<tk <t
βk ≤V(t0, w̃0)Gk–1, t ∈ [tk–1, tk). (21)

Since ητ ≤ inf{tk – tk–1}, one has k – 1 ≤ (tk–1–t0)
ητ

, which implies

Gk–1 ≤ e( lnG
ητ )(tk–1–t0) ≤ e( lnG

ητ )(t–t0), t ∈ [tk–1, tk). (22)

That is,

V
(
t, w̃(t, t0, w̃0)

) ≤ V(t0, w̃0)e( lnG
ητ )(t–t0), t ∈ [tk–1, tk). (23)
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On the other hand

V(t0, w̃0) = eεt0 w̃T
0 Pw̃0 + 2eεt0

n∑

i=1

�i

∫ w̃i(t0)

0
g̃i(ξ ) dξ

+
∫ t0

t0–τ (t0)
eεξ g̃T(

w̃(ξ )
)
Qg̃

(
w̃(ξ )

)
dξ

≤ eεt0λM(P)‖ϕ̃‖2 + 2eεt0λM(K̃M)‖ϕ̃‖2

+ λM(Q)
∫ t0

t0–τ (t0)
eεξ g̃T(

w̃(ξ )
)
g̃
(
w̃(ξ )

)
dξ

≤ eεt0

(

λM(P) + 2λM(K̃M) + λM(Q)
1 – e–ετ

ε
λM

(
K̃2)

)

‖ϕ̃‖2. (24)

From (16), (23), (24), we have

∥
∥w̃(t)

∥
∥2 ≤

{
λM(P) + 2λM(K̃M) + λM(Q) 1–e–ετ

ε
λM(K̃2)

λm(P)

}

‖ϕ̃‖2

× e–ε(t–t0)e( lnG
ητ )(t–t0), t ∈ [tk–1, tk),

that is,

∥
∥w̃(t)

∥
∥ ≤

{
λM(P) + 2λM(K̃M) + λM(Q) 1–e–ετ

ε
λM(K̃2)

λm(P)

} 1
2 ‖ϕ̃‖

× e–(
ε–( lnG

ητ )
2 )(t–t0), t ∈ [tk–1, tk). (25)

By Definition 2.4, the NN model (12) is globally exponentially stable. The proof of Theo-
rem 3.2 is completed. �

Remark 3.3 When the impulse effects are absent in the NN model (12),

˙̃w(t) = –D̃w̃(t) + Ãg̃
(
w̃(t)

)
+ B̃g̃

(
w̃

(
t – τ (t)

))
, t ≥ 0,

w̃(s) = ϕ̃(s), s ∈ [–τ , 0]. (26)

By applying a similar approach to the one proposed in Theorem 3.2, the following global
exponential stability criteria can be obtained for the NN model (26).

Corollary 3.4 Suppose (H1) and (H2) hold, then the following conditions are satisfied:
(i) For given scalars ε : 0 < ε < min di (i = 1, . . . , n), τ ≥ 0 and μ, if there exist positive

definite matrices P ∈R
2mn×2mn and Q ∈R

2mn×2mn, and a positive diagonal matrix
M = diag{�1, . . . ,�n} ∈R

2mn×2mn such that

�̃ =

⎛

⎝
εP – PD̃ – D̃TP + εK̃M PÃ PB̃

ÃTP –2MD̃K̃–1 + MÃ + ÃTM + Q MB̃
B̃TP B̃TM –(1 – μ)e–ετQ

⎞

⎠,

(27)

where �̃ is negative definite.
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As such, the equilibrium point of NN model (26) is globally exponentially stable. Further,

∥
∥w̃(t)

∥
∥ ≤

√
λM(P) + 2λM(K̃M) + λM(Q) 1–e–ετ

ε
λM(K̃2)

λm(P)
‖ϕ̃‖e–εt . (28)

Proof Construct the same LKF (15). The remaining proof follows the same procedure used
for Theorem 3.2. Therefore, it is omitted here. �

Remark 3.5 With the absence of the time-varying delays and impulsive effects, NN model
(12) reduces to the following model:

˙̃w(t) = –D̃w̃(t) + Ãg̃
(
w̃(t)

)
, t ≥ 0,

w̃(s) = ϕ̃(s), s ∈ [–τ , 0]. (29)

By applying a similar approach to the one proposed in Theorem 3.2, the following global
exponential stability criteria can be obtained for NN model (29).

Corollary 3.6 Given (H1), the following conditions are satisfied:
(i) For given scalars ε : 0 < ε < min di (i = 1, . . . , n), if there exist a positive definite matrix

P ∈R
2mn×2mn and a positive diagonal matrix M = diag{�1, . . . ,�n} ∈R

2mn×2mn

such that

�̄ =

(
εP – PD̃ – D̃TP + εK̃M PÃ

ÃTP –2MD̃K̃–1 + MÃ + ÃTM

)

, (30)

where �̄ is negative definite. As such, the equilibrium point pertaining to NN model
(29) is globally exponentially stable. Moreover,

∥
∥w̃(t)

∥
∥ ≤

√
λM(P) + 2λM(K̃M)

λm(P)
‖ϕ̃‖e–εt . (31)

Proof Construct the following LKF:

V
(
t, w̃(t)

)
= eεtw̃T (t)Pw̃(t) + 2eεt

n∑

i=1

�i

∫ w̃i(t)

0
g̃i(ξ ) dξ . (32)

The remaining proof follows the one used for Theorem 3.2. Therefore, it is omitted here.�

Remark 3.7 The multiplication of Clifford numbers does not satisfy commutativity, which
complicates the study of Clifford-valued NNs. As such, from the theoretical and practical
point of view, studying the dynamical behaviors of Clifford-valued NNs are difficult tasks.
On the other hand, the decomposition approach has proven to be very effective to over-
come the difficulty of the non-commutativity of Clifford number multiplication. By de-
composition approach, the original n-dimensional Clifford-valued system is decomposed
into 2mn-dimensional real-valued system and the coefficient and activation functions of
networks are explicitly expressed. Therefore, the decomposition approach is highly favor-
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able to analyze the dynamics of Clifford-valued NNs. Most of authors have recently ob-
tained sufficient criteria for Clifford-valued NN models using the decomposition method
[34, 36, 38, 42].

Remark 3.8 In [35], fuzzy operations are incorporated into the Clifford-valued cellular
NN model to investigate its Sp-almost periodic solutions. The effects of discrete delays in
Clifford-valued recurrent NNs are considered in [36], and the associated globally asymp-
totic almost automorphic synchronization criteria are obtained. The leakage delay is intro-
duced into Clifford-valued high-order Hopfield NN models in [39] to explore its existence
and global exponential stability of almost automorphic solutions. To be compared with
some previous studies of Clifford-valued NN models [33–42], in this paper, by consider-
ing a class of impulsive Clifford-valued NN system model, we have studied more realistic
dynamical behavior. Therefore, the proposed results in this paper is different and new
compared with those in the existing literature [33–42].

Remark 3.9 When we consider the exponential convergence rate ε = 0 in the main results,
the exponential stability criteria can be converted to asymptotically stability criteria.

4 Numerical Example
We present numerical simulation to ascertain the feasibility and effectiveness of the results
established in Sect. 3.

Example 1 For m = 2 and n = 2, we have the following Clifford-valued impulsive NN
model:

⎧
⎪⎪⎨

⎪⎪⎩

ṗ(t) = –Dp(t) + Ag(p(t)) + Bg(p(t – τ (t)) + u, t ≥ 0, t �= tk ,

�p(tk) = p(t+
k ) – p(t–

k ) = Ik(p(t–
k )), t = tk , k ∈N,

p(t) = ϕ(t), t ∈ [–τ , 0].

(33)

The number of the multiplication generators, e2
1 = e2

2 = e2
12 = e1e2e12 = –1, e1e2 = –e2e1 =

e12, e1e12 = –e12e1 = –e2, e2e12 = –e12e2 = e1, ṗ1(t) = ṗ0
1(t)e0 + ṗ1

1(t)e1 + ṗ2
1(t)e2 + ṗ12

1 (t)e12,
ṗ2(t) = ṗ0

2(t)e0 + ṗ1
2(t)e1 + ṗ2

2(t)e2 + ṗ12
2 (t)e12. Furthermore, we take

D =

(
2 0
0 2

)

,

A =

(
0.2e0 + e1 0.1e0 + 0.3e2 + 0.6e12

0.05e0 – 0.02e2 + 0.4e12 0.1e0 + 0.2e1 + 0.05e12

)

,

B =

(
0.3e0 + 0.01e1 0.1e0 + 0.02e2 + 0.3e12

0.05e0 – 0.2e2 + 0.05e12 0.2e0 + 0.2e1 + 0.05e12

)

,

K =

(
1
4 0
0 1

4

)

,

(
u1

u2

)

=

(
3
2 e0 + e12

– 1
2 e0 + 3

2 e2 + e12

)

,

g1(p1) =
1 – e–p0

1

1 + e–p0
1

e0 +
1

1 + e–p1
1

e1 +
1 – e–p2

1

1 + e–p2
1

e2 +
1

1 + e–p12
1

e12,
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g2(p2) =
1 – e–p0

2

1 + e–p0
2

e0 +
1

1 + e–p1
2

e1 +
1 – e–p2

2

1 + e–p2
2

e2 +
1

1 + e–p12
2

e12.

According to their definitions, we have

A0 =

(
0.2 0.1

0.05 0.1

)

, A1 =

(
1 0
0 0.2

)

,

A2 =

(
0 0.3

–0.02 0

)

, A12 =

(
0 0.6

0.4 0.05

)

,

B0 =

(
0.3 0.1

0.05 0.2

)

, B1 =

(
0.01 0

0 0.2

)

,

B2 =

(
0 0.02

–0.2 0

)

, B12 =

(
0 0.3

0.05 0.05

)

,

and

Ã =

⎛

⎜
⎜
⎜
⎝

A0 A1̄ A2̄ A1̄2

A1 A1.1̄ A1.2̄ A1.1̄2

A2 A2.1̄ A2.2̄ A2.1̄2

A12 A12.1̄ A12.2̄ A12.1̄2

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

A0 –A1 –A2 –A12

A1 A0 –A12 A2

A2 A12 A0 –A1

A12 –A2 A1 A0

⎞

⎟
⎟
⎟
⎠

,

B̃ =

⎛

⎜
⎜
⎜
⎝

B0 B1̄ B2̄ B1̄2

B1 B1.1̄ B1.2̄ B1.1̄2

B2 B2.1̄ B2.2̄ B2.1̄2

B12 B12.1̄ B12.2̄ B12.1̄2

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

B0 –B1 –B2 –B12

B1 B0 –B12 B2

B2 B12 B0 –B1

B12 –B2 B1 B0

⎞

⎟
⎟
⎟
⎠

.

It can be checked that when ε = 0.324, τ = 0.8, μ = 0.5, η = 2 and ςk = (–1)k( (e0.324+2.6)
2 ) 1

2 ,
k ∈ N, by using MATLAB, the LMI condition of (13) in Theorem 3.2 is true with tmin =
–0.0022. The feasible solutions of the existing positive definite matrices P , Q and positive
diagonal matrix M are

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2.7658 –0.0306 –0.0086 –0.0282 –0.0010 0.2197 –0.0005 –0.0048
–0.0306 2.9891 0.0305 0.0267 –0.2292 0.0034 0.0501 0
–0.0086 0.0305 2.7525 –0.0300 –0.0021 –0.0506 –0.0026 –0.0225
–0.0282 0.0267 –0.0300 2.9577 0.0485 0 0.2202 0
–0.0010 –0.2292 –0.0021 0.0485 2.7681 –0.0305 0.0048 –0.0028
0.2197 0.0034 –0.0506 0 –0.0305 2.9575 0.0280 0

–0.0005 0.0501 –0.0026 0.2202 0.0048 0.0280 2.7669 –0.0031
–0.0048 0 –0.0225 0 –0.0028 0 –0.0031 0.6573

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

12.3347 –0.2045 0.0072 0 0 0.3752 0 –0.3655
–0.2045 12.2499 0 0.2417 –0.4324 0 –0.2477 –0.0514
0.0072 0 12.3895 –0.2044 0 0.2455 0 –0.1241

0 0.2417 –0.2044 12.2156 –0.2453 0.0000 0.3750 0
0 –0.4324 0 –0.2453 12.3909 –0.2044 0.0007 0

0.3752 0 0.2455 0.0000 –0.2044 12.2174 0 –0.2046
0 –0.2477 0 0.3750 0.0007 0 12.3961 –0.1022

–0.3655 –0.0514 –0.1241 0 0 –0.2046 –0.1022 11.9258

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2.9963 0 0 0 0 0 0 0
0 2.8962 0 0 0 0 0 0
0 0 3.0118 0 0 0 0 0
0 0 0 2.8867 0 0 0 0
0 0 0 0 3.0122 0 0 0
0 0 0 0 0 2.8872 0 0
0 0 0 0 0 0 3.0137 0
0 0 0 0 0 0 0 0.6885

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

As we know,

∥
∥w̃

(
t–
k
)

+ Ĩ
(
w̃

(
t–
k
))∥

∥ ≤ ∣
∣ςkw̃

(
t–
k
)∣
∣ ≤ |ςk|

∣
∣w̃

(
t–
k
)∣
∣,

that is, γk = |ςk| – 1. Therefore,

βk = 1 +
(2‖P‖ + 2‖MK̃‖)γk + (‖P‖ + ‖MK̃‖)γ 2

k
λmin(P)

= 0.9693.

Hence, when G = 0.9693, we have, max{βk} = 0.9693 = G < eεητ = 1.1384, k ∈N.
On the other hand, it is straightforward to ascertain that all conditions of Theorem 3.2

are fulfilled. Therefore, the unique equilibrium of NN model (12) is globally exponentially
stable, which is verified by the numerical simulation. Under the initial condition ϕ1(t) =
–0.5e0 + 0.9e1 – 0.3e2 – 0.7e12 for t ∈ [–τ , 0], and ϕ2(t) = 0.6e0 – 0.4e1 + 0.2e2 + 0.8e12 for
t ∈ [–τ , 0], the time responses of the state of NN model (33) p0

1(t), p0
2(t), p1

1(t), p1
2(t), p2

1(t),
p2

2(t), p12
1 (t), p12

2 (t) with impulsive effects are presented in Figs. 1–5, respectively. When the
impulse effects are absent in the NN model (33), the time responses of the states of NN
model (33) p0

1(t), p0
2(t), p1

1(t), p1
2(t), p2

1(t), p2
2(t), p12

1 (t) are given in Figs. 6–10, respectively. It
is obvious from Figs. 1–10 that the model converges to an equilibrium point, which means
that model (33) is globally exponentially stable.

Figure 1 The time responses of the states p01(t),
p02(t) of the NN model (33) with impulsive effects
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Figure 2 The time responses of the states p11(t),
p12(t) of NN model (33) with impulsive effects

Figure 3 The time responses of the states p21(t),
p22(t) of NN model (33) with impulsive effects

Figure 4 The time responses of the states p121 (t),
p122 (t) of NN model (33) with impulsive effects

Figure 5 The time responses of the states p01(t),
p02(t), p

1
1(t), p

1
2(t), p

2
1(t), p

2
2(t), p

12
1 (t), p122 (t) in a

2-dimensional space with impulsive effects
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Figure 6 The time responses of the states p01(t),
p02(t) of NN model (33) without impulsive effects

Figure 7 The time responses of the states p11(t),
p12(t) of NN model (33) without impulsive effects

Figure 8 The time responses of the states p21(t),
p22(t) of NN model (33) without impulsive effects

Figure 9 The time responses of the states p121 (t),
p122 (t) of NN model (33) without impulsive effects
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Figure 10 The time responses of the states p01(t),
p02(t), p

1
1(t), p

1
2(t), p

2
1(t), p

2
2(t), p

12
1 (t), p122 (t) in a

2-dimensional space without impulsive effects

5 Conclusion
In this study, the global exponential stability analysis pertaining to the Clifford-valued
NN models with time-varying delays and impulsive effects has been comprehensively in-
vestigated. To tackle the problem, we firstly decomposed the considered n-dimensional
Clifford-valued NN model into 2mn-dimensional real-valued ones. By using an appropri-
ate Lyapunov functional and some inequality techniques, we have established new LMI-
based sufficient conditions. These conditions guarantee the global exponential stability
of the equilibrium point pertaining to the considered Clifford-valued NN model. To as-
certain the validity of the main results, a standard numerical example has been provided.
It is worth mentioning that the results achieved in this paper can further be extended
to various complex systems. We will shortly attempt to explore the stabilization analysis
of Clifford-valued NNs with the help of different controller schemes. The corresponding
results will be presented in the near future.
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