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Abstract
In this paper, using variational methods, we prove the existence of at least one
positive radial solution for the generalized p(x)-Laplacian problem

–�p(x)u + R(x)up(x)–2u = a(x)|u|q(x)–2u – b(x)|u|r(x)–2u

with Dirichlet boundary condition in the unit ball in R
N (for N ≥ 3), where a, b, R are

radial functions.
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1 Introduction
The study of differential equations and variational problems with nonstandard p(x)-
growth conditions (or nonstandard (p, q)-growth conditions) is an attractive topic and has
been the object of considerable attention in recent years (see [1]). The reasons for such an
interest are as follows: 1) Physically, it relies on the fact that they model phenomena arising
from various fields such as the motion of electrorheological fluids, which are character-
ized by their ability to drastically change their mechanical properties under the influence
of an exterior electromagnetic field, the thermo-convective flows of non-Newtonian flu-
ids, and the image processing; 2) Mathematically, it relies on the fact that the standard
mathematical techniques are not adequate to study these problems and they need new
techniques. This may be the central development of mathematical ideas in active areas of
pure mathematics, which have had a decisive interaction with PDEs (such as [2–14]).

The aim of this paper is to prove the existence of at least one positive radial solution
belonging to the space W 1,p(·)

0 (B) ∩ Lq(·)
a (B) ∩ Lr(·)

b (B) for the problem

⎧
⎪⎪⎨

⎪⎪⎩

–�p(x)u + R(x)up(x)–2u = a(x)|u|q(x)–2u – b(x)|u|r(x)–2u, x ∈ B,

u > 0, x ∈ B,

u = 0, x ∈ ∂B,

(1)
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where �p(x) := div(|∇|p(x)–2∇), B is the unit ball centered at the origin in R
N , N ≥ 3, p, q, r ∈

C+(B), R is a positive radial function (introduced in Theorem 1.1), and finally

a(x) = θ
(|x|) and b(x) = ξ

(|x|), (2)

where θ , ξ ∈ L∞(0, 1) are such that θ is a positive nonconstant radially nondecreasing func-
tion, and ξ is a nonnegative radially nonincreasing function. The statement of the main
result of this paper is as follows.

Theorem 1.1 Let B be the unit ball centered at the origin in R
N , N ≥ 3, and let p, q, r ∈

C+(B) be such that p+, r+ < q–, r(x) < q(x) a.e. in B, and p(x) < q(x) < p∗(x) a.e. in B, where
p∗(x) is the Sobolev conjugate of p(x). Assume that a, b ∈ L∞(B) are nonconstant radial
functions as in (2). The p(x)-Laplacian Dirichlet problem (1) admits at least one radial
increasing solution in V = W 1,p(·)

0 (B) ∩ Lq(·)
a (B) ∩ Lr(·)

b (B) if one of the following conditions is
true for a radial function R : B → [0, +∞):

(i) R(x) = α, where α ≥ 0 is a real constant.
(ii) R ∈ L∞(B) and μ > 0, where μ = infu∈W 1,p(·)

0 (B)\{0}
∫

B |∇u|p(x) dξ
∫

B |u|p(x) dx .

Before verifying our approach, we prepare some preliminaries. From now on we assume
that B is the unit ball centered at the origin in R

N , N ≥ 3, and we set

p– = inf
x∈B

p(x) and p+ = sup
x∈B

p(x),

where p ∈ C+(B̄) = {g ∈ C(B̄) : g– > 1}. The generalized Lebesgue space Lp(·)(B) is the col-
lection of all measurable functions u on B such that

∫

B |u(x)|p(x) dx < +∞ with the norm

|u|p(·) = inf

{

λ > 0 :
∫

B

∣
∣
∣
∣
u(x)
λ

∣
∣
∣
∣

p(x)

dx ≤ 1
}

.

For any u ∈ Lp(·)(B) and v ∈ Lp′(·)(B), where Lp′(·)(B) is the conjugate space of Lp(·)(B), we
have the Hölder-type inequality

∣
∣
∣
∣

∫

B
uv dx

∣
∣
∣
∣ ≤

(
1

p– +
1

p′–

)

|u|p(·)|v|p′(·).

The following proposition is well known in Lebesgue spaces with variational exponent
(e.g., see [15, Proposition 2.7]).

Proposition 1.2 For any u ∈ Lp(x)(B), we have

|u|p–

p(x) ≤
∫

B

∣
∣u(x)

∣
∣p(x) dx ≤ |u|p+

p(x)

if |u|p(x) ≥ 1 and

|u|p+

p(x) ≤
∫

B

∣
∣u(x)

∣
∣p(x) dx ≤ |u|p–

p(x)

if |u|p(x) < 1.
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Normally, the Sobolev space associated with Lp(·)(B) is defined as follows:

W 1,p(·)(B) =
{

u : B → R : u, |∇u| ∈ Lp(·)(B)
}

endowed with the norm

‖u‖p(·) = |∇u|p(·) + |u|p(·),

where ∇u = ( ∂u
∂x1

(x), . . . , ∂u
∂xN

(x)) is the gradient of u at x = (x1, . . . , xn) and, as usual,
|∇u| = (

∑N
i=1 | ∂u

∂xi
|2) 1

2 . We set W 1,p(·)
0 (B) = (C∞

0 (B),‖ · ‖p(·)). We know that the spaces
Lp(·)(B), W 1,p(·)(B) and W 1,p(·)

0 (B) are reflexive, uniformly convex, and separable Banach
spaces.

The following theorem is [16, Theorem 2.8].

Theorem 1.3 Let � be a bounded smooth set in R
N , and let p, q ∈ C+(�̄). Then

Lq(·)(�) ↪→ Lp(·)(�)

if and only if p(x) ≤ q(x) for a.e. x ∈ �.

As a consequence of Theorem 1.3, we have

W 1,q(·)(�) ↪→ W 1,p(·)(�) (3)

if p(x) ≤ q(x) for a.e. x ∈ �.
The following proposition is proved in [17] (also, see [18, Theorem 8.2.4]).

Proposition 1.4 Let � be a bounded smooth set in R
N , and let p, q ∈ C+(�̄). Then

(i) If q(x) < p∗(x) for any x ∈ �̄, then the embedding W 1,p(x)(�) ↪→ Lq(x)(�) is compact
and continuous, where

p∗(x) =

⎧
⎨

⎩

Np(x)
N–p(x) , p(x) < N ,

+∞, p(x) ≥ N .

(ii) There is a constant C > 0 such that

|u|p(x) ≤ C|∇u|p(x) for all u ∈ W 1,p(x)
0 (�).

Remark 1.5 By part (ii) of Proposition 1.4 we can see that ‖u‖∗ = |∇u|p(x) and ‖u‖p(x) are
equivalent norms on W 1,p(x)

0 (B).

Lemma 1.6 Let R : B → [0, +∞) satisfy one of the conditions of Theorem 1.1, and define


(u) =
∫

B
|∇u|p(x) + R(x)|u|p(x) dx. (4)
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Then there exists a constant M > 0 such that

‖u‖p̌
∗ ≤ 
(u) ≤ M‖u‖p̂

∗ (5)

for all u ∈ W 1,p(·)
0 (B), where

p̌ =

⎧
⎨

⎩

p+, ‖u‖∗ < 1,

p–, ‖u‖∗ ≥ 1,
p̂ =

⎧
⎨

⎩

p–, ‖u‖∗ < 1,

p+, ‖u‖∗ ≥ 1.
(6)

Proof First, suppose that ‖u‖∗ = |∇u|p(·) ≥ 1, |u|p(·) ≥ 1. By Proposition 1.2 we have

‖u‖p̌
∗ = |∇u|p–

p(·) ≤ 
(u) ≤ |∇u|p+

p(·) + C′|u|p+

p(·).

So, according to the Poincaré inequality (Proposition 1.4, part (ii)),

‖u‖p–
∗ ≤ 
(u) ≤ (

1 + C′′)‖u‖p+
∗ . (7)

Now suppose that ‖u‖∗ = |∇u|p(·) ≥ 1, |u|p(·) < 1. Then we have

‖u‖p̌
∗ = |∇u|p–

p(·) ≤ 
(u) ≤ |∇u|p+

p(·) + C′|u|p–

p(·).

Since |u|p–

p(·) ≤ C1‖u‖p–
∗ ≤ C1‖u‖p+

∗ , this implies that

‖u‖p–
∗ ≤ 
(u) ≤ (

1 + C′C1
)‖u‖p+

∗ . (8)

Now assume that ‖u‖∗ = |∇u|p(·) < 1, |u|p(·) ≥ 1. Then by Proposition 1.2

‖u‖p̂
∗ = |∇u|p+

p(·) ≤ 
(u) ≤ |∇u|p–

p(·) + C′|u|p+

p(·).

By the Poincaré inequality we have

‖u‖p+
∗ ≤ 
(u) ≤ (

1 + CC′)‖u‖p+
∗ ≤ (

1 + CC′)‖u‖p–
∗ . (9)

Finally, assume that ‖u‖∗ = |∇u|p(·) < 1, |u|p(·) < 1. Then

‖u‖p̂
∗ = |∇u|p+

p(·) ≤ 
(u) ≤ |∇u|p–

p(·) + C′|u|p–

p(·).

As before, |u|p–

p(·) ≤ C‖u‖p–
∗ , and thus

‖u‖p+
∗ ≤ 
(u) ≤ (

1 + CC′)‖u‖p–
∗ . (10)

By inequalities (7)–(10) and the definitions of p̌ and p̂ in (6) we get inequality (5). �

Now we recall some notations and results to be used further. For radial functions a, b ∈
L∞(B) given by (2), we consider the spaces

Lq(·)
a (B) =

{

u : B → R :
∫

B
a(x)|u|q(x) dx < ∞

}
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with the norms |u|a,q(·) = inf{λ > 0 :
∫

B a(x)| u(x)
λ

|q(x) dx ≤ 1}. Similarly,

Lr(·)
b (B) =

{

u : B → R :
∫

B
b(x)|u|r(x) dx < ∞

}

with the norms |u|b,r(·) = inf{λ > 0 :
∫

B b(x)| u(x)
λ

|r(x) dx ≤ 1}.

Definition 1.7 (Subdifferential) Let V be a real Banach space, and let V ∗ be its topological
dual with pairing between V and V ∗ denoted by 〈·, ·〉. Let � : V → (–∞, +∞] be a proper
convex function, and let 2V∗ be the set of all subsets of V ∗. The subdifferential ∂� : V →
2V∗ of � is defined as the following set-valued operator:

∂�(u) =
{

u∗ ∈ V ∗ : �(v) ≥ �(u) +
〈
u∗, v – u

〉
for all v ∈ V

}

for u ∈ Dom(�) = {v ∈ V ;�(v) < ∞}, and ∂�(u) = ∅ if u /∈ Dom(�).

Note that if � is Gâteaux differentiable at u with its derivative denoted by D�(u), then
∂�(u) is a singleton. In this case, ∂�(u) = {D�(u)}.

Lemma 1.8 ([19, Theorem 1.5.3]) Let V be a reflexive Banach space, and let I : V →R be
a continuous convex functional. Then I is weakly lower semicontinuous.

The following is the Weierstrass theorem (see [19, Theorem 1.5.6.]).

Theorem 1.9 Let V be a reflexive Banach space, and let I : V → R be a weakly lower
semicontinuous coercive functional. Then I has a global minimum point.

Now we state the definition of a critical point of the functional.

Definition 1.10 (Critical point) Let V be a real Banach space, let � ∈ C1(V ,R), and let
� : V → (–∞, +∞] be a proper (i.e., Dom � �= ∅), convex, and lower semicontinuous func-
tion. Let K ⊂ V be a weakly convex closed set. Define the function �K : V → (–∞, +∞]
by

�K (u) :=

⎧
⎨

⎩

�(u), u ∈ K ,

+∞, u /∈ K .
(11)

Consider the functional

IK := �K – �. (12)

We say that u ∈ V is a critical point of IK if D�(u) ∈ ∂�K (u) or, equivalently, it satisfies in
the inequality

〈
D�(u), u – v

〉
+ �K (v) – �K (u) ≥ 0 for all v ∈ V . (13)

Note that a global minimum point is a critical point.
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Definition 1.11 (PS compactness condition) We say that IK (12) satisfies the Palais–Smale
(PS) compactness condition if for any sequence {un} such that

• IK (un) → c ∈R and
• 〈D�(un), un – v〉 + �K (v) – �K (un) ≥ –εn‖v – un‖

for all v ∈ V as εn → 0, then {un} possesses a convergent subsequence.

The following mountain pass geometry (MPG) theorem was proved in [20].

Theorem 1.12 Suppose that IK : V → (–∞, +∞] is of the form (12) and satisfies the PS
compactness condition and the following conditions are satisfied:

(i) IK (0) = 0,
(ii) there exists e ∈ V such that IK (e) ≤ 0,

(iii) there exists a positive constant ρ such that IK (u) > 0 if ‖u‖ = ρ .
Then IK has a critical value c ≤ ρ characterized by

c = inf
g∈� t∈[0,1]

IK
(
g(t)

)
,

where � = {g ∈ C([0, 1], V ) : g(0) = 0, g(1) = e}.

The next theorem is a fact in [21, Problem 127, p. 81].

Theorem 1.13 Let {un} be a sequence of nondecreasing (continuous or discontinuous) real
functions on [c, d] that converges pointwise to a continuous function u : [c, d] → R. Then
the convergence is uniform.

Proof Let u := limn→∞ un, and let ε > 0. We have to show that for n large enough,

∣
∣un(x) – u(x)

∣
∣ ≤ ε for all x ∈ [c, d].

Since u is assumed to be continuous, it is uniformly continuous on the compact interval
[c, d]. So there is a subdivision c = x0 < x1 < · · · < xk = d of [c, d] such that the oscillation of
u on each interval [xi, xi+1] is less than ε

2 . Since un(xi) → u(xi) as n → ∞ for i = 0, . . . , k,
there is M such that if n ≥ M, then

∣
∣un(xi) – u(xi)

∣
∣ ≤ ε

2
for i = 0, . . . , k.

Let us check that |un(x)–u(x)| ≤ ε for every n ≥ M and all x ∈ [c, d]. Fix n ≥ M and take any
x ∈ [c, d]. We can choose i such that x ∈ [xi, xi+1]. Since the functions un are nondecreasing,
we have

un(xi) ≤ un(x) ≤ un(xi+1).

Since |un(xi) – u(xi)| and |un(xi+1) – u(xi+1)| are not greater than ε
2 , it follows that

u(xi) –
ε

2
≤ un(x) ≤ u(xi+1) +

ε

2
.
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Moreover, since the oscillation of u on [xi, xi+1] is less than ε
2 and since x ∈ [xi, xi+1], we

also have u(xi) ≥ u(x) – ε
2 and u(xi+1) ≤ u(x) + ε

2 . Altogether, this gives

u(x) –
2ε

2
≤ un(x) ≤ u(x) +

2ε

2
,

which concludes the proof. �

2 p(x)-Laplacian equation
Here we recall the variational principle established in [22].

Definition 2.1 (Pointwise invariance condition) Let V , � , �, K be defined as in Defini-
tion 1.10. We say that the triple (� ,�, K) satisfies the pointwise invariance condition at a
point u ∈ V if there exist a convex Gâteaux differentiable function G : V →R and a point
v ∈ K such that

D�(v) + DG(v) = D�(u) + DG(u).

Theorem 2.2 Let V be a reflexive Banach space, and let K be a weakly closed convex subset
of V . Let � : V → (–∞, +∞] be a convex lower semicontinuous function that is Gâteaux
differentiable on K , and let � ∈ C1(V ,R). Assume that the following two conditions hold:

(i) The functional IK : V → (–∞, +∞] defined by IK (w) = �K (w) – �(w), where �K is
defined in (11), has a critical point u ∈ V as in Definition 1.10,

(ii) the triple (�K ,�, K) satisfies the pointwise invariance condition at the point u.
Then u ∈ K is a solution of the equation

D�(u) = D�(u).

To apply Theorem 2.2, consider the reflexive Banach space

V = W 1,p(·)
0,rad (B) ∩ Lq(·)

a (B) ∩ Lr(·)
b (B) (14)

endowed with the norm

‖u‖V = ‖u‖∗ + |u|a,q(·) + |u|b,r(·),

where

W 1,p(·)
0,rad (B) =

{
u|u ∈ W 1,p(·)

0 (B), and u is radial
}

.

Definition 2.3 (Weak solution) Let p, q, r ∈ C+(B), a, b ∈ L∞(B), and R be given as in The-
orem 1.1, and let V be the space as in (14). We say that u ∈ V is a (weak) solution of
problem (1) if u is increasing and satisfies the Dirichlet boundary conditions and also if
the following equality is true for all w ∈ V :

∫

B
|∇u|p(x)–2∇u∇w dx +

∫

B
R(x)|u|p(x)–2uw dx

+
∫

B
b(x)|u|r(x)–2uw dx =

∫

B
a(x)|u|q(x)–2uw dx. (15)
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To prove the claim, we consider the Euler–Lagrange energy functional corresponding
to problem (1)

I(u) :=
1

p(x)

(∫

B

∣
∣∇u(x)

∣
∣p(x) + R(x)

∣
∣u(x)

∣
∣p(x) dx

)

+
1

r(x)

∫

B
b(x)|u|r(x) dx –

1
q(x)

∫

B
a(x)|u|q(x) dx

over the convex closed set

K = {u ∈ V : u ≥ 0, u is an increasing radial function}. (16)

Concerning Theorem 2.2, we define ψ ,ϕ : V →R by

ψ(u) =
1

p(x)

∫

B
|∇u|p(x) + R(x)|u|p(x) dx +

1
r(x)

∫

B
b(x)|u|r(x) dx (17)

and

ϕ(u) =
1

q(x)

∫

B
a(x)|u|q(x) dx. (18)

Notice that ψ is a proper, convex, and lower semicontinuous and Dϕ(u) = a(x)|u|q–2u.
Therefore ϕ is a C1- function on the space V . Let us introduce the functional IK : V →
(–∞, +∞] defined by

IK (u) = ψK (u) – ϕ(u), (19)

where ψK is as in (11). Note that IK = I = ψ – ϕ on K . We prove Theorem 1.1 in two steps.
Step 1. We show that IK = ψK – ϕ has a critical point in K . For this reason, we use the

MPG theorem (Theorem 1.12), in which we will need the following lemma.

Lemma 2.4 There exists C > 0 such that

‖u‖∗ ≤ ‖u‖V ≤ C‖u‖∗ for all u ∈ K .

Proof Using the Hölder inequality and Remark 1.5, we get

‖u‖∗ ≤ ‖u‖V = ‖u‖∗ + |u|a,q(·) + |u|b,r(·)

≤ ‖u‖∗ + |a|∞|u|q(·) + |b|∞|u|r(·)

≤ ‖u‖∗ + c1|a|∞‖u‖q(·) + c2|b|∞‖u‖r(·)

≤ (1 + C1 + C2)‖u‖∗. �

Lemma 2.5 Let the functional IK : V → R be defined by (19). Then IK satisfies the PS
compactness condition in K .
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Proof Suppose that {un} is a sequence in K such that IK (un) → c ∈R, εn → 0, and

〈
Dϕ(un), un – v

〉
+ ψK (v) – ψK (un) ≥ –εn‖v – un‖V (20)

for all v ∈ V . We show that {un} has a convergent subsequence in V . First, notice that
un ∈ Dom(ψ). Then

IK (un) = ψK (un) – ϕ(un) → c as n → ∞.

Thus, for large values of n, we have

ψK (un) – ϕ(un) ≤ 1 + c. (21)

Furthermore,

〈
Dϕ(un), un

〉
=

∫

B
a(x)un(x)q(x) dx ≥ q–ϕ(un). (22)

Now consider the function g(s) = sr+ –q–(s–1)–1 on the interval (1, +∞). Set s∗ = ( q–

r+ )
1

r+–1 .
Obviously, g(s) < 0 for all s ∈ (1, s∗). We choose such a number s. So we have s > 1 and
sr+ – 1 < q–(s – 1). Setting v = sun in (20), we can see that

(1 – s)
〈
Dϕ(un), un

〉
+

(
sr+

– 1
)
ψK (un) ≥ –εn(s – 1)‖un‖V . (23)

Therefore

(s – 1)q–ϕ(un) –
(
sr+ – 1

)
ψK (un) ≤ εn(s – 1)‖un‖V ≤ Cεn‖un‖V . (24)

Take α > 0 such that

1
q–(s – 1)

< α <
1

sr+ – 1
.

Multiplying (24) by α and summing it up with (21), we get

[
αq–(s – 1) – 1

] 1
q+

∫

B
a(x)|un|q(x) dx +

[α(1 – sr+ ) + 1]
p(x)


(un)

+
1
r+

∫

B
b(x)|u|r(x) dx ≤ c + 1 + αC‖un‖V ,

where 
 is defined as in (4). Then

[
αq–(s – 1) – 1

] 1
q+

∫

B
a(x)|un|q(x) dx +

[α(1 – sr+ ) + 1]
p+ ‖un‖p̌

∗

≤ c + 1 + αC‖un‖V .

So by Lemma (2.4) there exists C′ > 0 such that

‖un‖p̌
∗ ≤ C′(1 + ‖un‖∗

)
.
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Therefore {un} is a bounded sequence in the reflexive space W 1,p(·)
0,rad (B). The standard results

in Sobolev space imply that there exists ū ∈ W 1,p(·)
0,rad (B) such that, up to subsequences, for

s ∈ C+(B),
• un ⇀ ū in W 1,p(·)

0,rad (B);
• un → ū in Ls(·)(B), s(x) < p∗(x) a.e.;
• un(x) → ū(x) a.e. in B;
• there exist ws ∈ Ls(·)(B) such that |un(x)| ≤ ws(x) a.e. in B and for all n ∈N where

s(x) < p∗(x).
Also, notice that every un is radial, so ū is radial, too. Moreover, ū ∈ K . Therefore ū ∈
Dom(ψ). Now in (20) replace v with ū:

–
∫

B
a(x)|un|q(x)–1(ū – un) dx +

1
p(x)


(ū) –
1

p(x)

(un)

+
1

r(x)

∫

B
b(x)

(|ū|r(x) – |un|r(x))dx ≥ –εn‖ū – un‖V ,

where 
 is defined as in (4). On the one hand, we have

∣
∣
∣
∣

∫

B
a(x)|un|q(x)–1(ū – un) dx

∣
∣
∣
∣ ≤

∫

B
a(x)wq(x)–1

q–1 (x)|ū – un|dx

and un → ū in Lr(x)(B). On the other hand, {un} ⊂ K , and so {|ū – un|}, as {un} is a sequence
consisting of nondecreasing functions that converges to the continuous zero function.
Now thanks to Theorem 1.13, the right-hand side of the latter inequality goes to zero.
Therefore, passing to limits, we have

lim sup
n→∞


(un) ≤ 
(ū) ≤ ‖ū‖p̂
∗. (25)

Claim: There exists a positive constant C such that 
(un – ū) ≤ C
(ū), and then {
(un – ū)}
is a bounded sequence.

Firstly, assume that |∇un| ≤ |∇ū|, so that |∇un – ∇ū| ≤ 2|∇ū|. Then

∫

B
|∇un – ∇ū|p(x) dx ≤ 2p+

∫

B
|∇ū|p(x) dx ≤ c
(ū).

If |∇un| ≥ |∇ū| and thus |∇un – ∇ū| ≤ 2|∇un|, then by inequality (25)

∫

B
|∇un – ∇ū|p(x) dx ≤ 2p+

∫

B
|∇un|p(x) dx ≤ 2p+


(un) ≤ c
(ū).

Now assume that |un| ≤ |ū|. The by the inequality |un – ū| ≤ |un| + ū| ≤ 2|ū| we have

∫

B
|un – ū|p(x) dx ≤ 2p+

∫

B
|ū|p(x) dx ≤ c′
(ū).

Ultimately, if |un| ≥ |ū| and thus |un – ū| ≤ 2|un|, then from inequality (25) we have

∫

B
|un – ū|p(x) dx ≤ 2p+

∫

B
|un|p(x) dx ≤ 2p+


(un) ≤ c′
(ū).



Ragusa et al. Advances in Difference Equations        (2021) 2021:215 Page 11 of 14

Therefore 
(un – ū) ≤ C
(ū), where C = c + c′|R|∞, and thus our claim is proved. In fact,
we have un, ū ∈ W 1,p(·)

0,rad (B) and un(x) → ū(x) a.e. in B, so ∇un(x) → ∇ū(x) a.e. in B. Thus

lim
n→∞
(un – ū) =

∫

B
lim

n→∞|∇un – ∇ū|p(x) + R
(|x|) lim

n→∞|un – ū|p(x) dx = 0.

But according to Lemma 1.6, we have ‖un – ū‖∗p̌ ≤ 
(un – ū), and thus ‖un – ū‖∗ → 0. As
a result,

‖un – ū‖V = ‖un – ū‖∗ + |un – ū|a,q(·) + |un – ū|b,r(·) → 0,

and thus un → ū strongly in V , as desired. �

Lemma 2.6 Let V = W 1,p(·)
0,rad (B) ∩ Lq(·)

a (B) ∩ Lr(·)
b (B) and consider the functional I : V → R

defined by

I(u) := ψ(u) – ϕ(u),

where ψ and ϕ are as in (17) and (18), respectively. Then I has a nontrivial critical point
in K .

Proof We show that I satisfies the conditions of the MPG theorem. It is clear that I(0) = 0.
Take e ∈ K . Then it follows that

I(te) ≤ M
tp+

p(x)
‖e‖p̂

∗ +
tr+

r(x)

∫

B
b(x)|e|r(x) dx –

tq–

q(x)

∫

B
a(x)|e|q(x) dx.

Now let p+, r+ < q–. Then for t large enough, I(te) is negative.
Condition (iii) of the MPG theorem is satisfied. Let u ∈ Dom(ψ) with ‖u‖V = ρ > 0.

Notice that by Lemma 2.4, for u ∈ K , we have

‖u‖∗ ≥ ‖u‖V

1 + C1 + C2
. (26)

Also,

ϕ(u) =
1

q(x)

∫

B
a(x)|u|q(x) dx ≤ C3|u|q̃q(·) ≤ Cq̃C3‖u‖q̃

∗ ≤ C4‖u‖q̃
V = C4ρ

q̃. (27)

where C is the same as in Proposition 1.4(ii), and

q̃ =

⎧
⎨

⎩

q–, |u|p(·) < 1,

q+, |u|p(·) ≥ 1.

Relations (26) and (27) imply

IK (u) ≥ ρ p̌

p+(1 + C1 + C2)p+ – C4ρ
q̃ > 0,
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where

q̌ =

⎧
⎨

⎩

q+, ‖u‖∗ < 1,

q–, ‖u‖∗ ≥ 1,

provided that ρ > 0 is small enough as p̌ = p+ < q– = q̃ and C1, C2, C3, C4 are positive
constants. If u /∈ Dom(ψ), then clearly I(u) > 0. �

Step 2. We show that the triple (ψK ,ϕ, K) satisfies the pointwise invariance condition at
u when G = 0. To show this statement, we need following lemma.

Lemma 2.7 Let p ∈ C+(B̄), and let p′(x) = p(x)
p(x)–1 be the conjugate exponent of p(x). Let

radial function R : R → [0, +∞) satisfy in one of the following conditions:
(i) R(x) = α, where α > 0 is a real constant.

(ii) R ∈ L∞(B) and μ > 0, where μ = infu∈W 1,p(·)
0 (B)\{0}

∫

B |∇u|p(x) dξ
∫

B |u|p(x) dx .
Let f : B → R be a continuous function. Suppose there exist α,β > 0 such that for any u ∈
Lp(x)(B),

∣
∣f

(
u(x)

)∣
∣ ≤ α + β

∣
∣u(x)

∣
∣p∗(x)–1

and

f
(
u(x)

)
u(x) ≤ 0.

Then for every h ∈ Lp′(·)(B), the problem

⎧
⎨

⎩

–�p(x)u + R(x)up(x)–2u = f (u) + h(x), x ∈ B,

u = 0, x ∈ ∂B,
(28)

admits at least one weak solution.

Proof First, notice that by integration respect to u we can see that there exist α1,β1 > 0
such that

∣
∣F

(
u(x)

)∣
∣ ≤ α1 + β1

∣
∣u(x)

∣
∣p∗(x)

for all u : B → R and F(u(x)) ≤ 0 for all u ∈ Lp(x)(B), where F(t) =
∫ t

0 f (s) ds. Now consider
the following energy functional corresponding to problem (28) on W 1,p(·)

0 (B):

J(u) =
1

p(x)

∫

B
|∇u|p(x) + R(x)|u|p(x) dx –

∫

B
F(u) dx –

∫

B
hu dx.

By the Hölder inequality, Remark 1.5, and Lemma 1.6 we have

J(u) ≥ 1
p+ ‖u‖p̌

∗ – C‖u‖∗.
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Since p ∈ C(B̄), J is coercive and clearly weakly lower semicontinuous on W 1,p(·)
0 (B). So by

the Weierstrass theorem (Theorem 1.9) J has a global minimum point, which means that
problem (28) admits at least one solution. �

Lemma 2.8 Let u ∈ Dom(ψ). Then there exists v ∈ Dom(ψ) such that

–�p(x)v + R(x)vp(x)–1 = a(x)u(x)q(x)–1 – b(x)vr(x)–1.

Proof Let u ∈ Dom(ψ), so that 0 ≤ u ∈ K . For f (v(x)) = –b(x)(v(x))r(x)–1, we can see that

f
(
v(x)

)
v(x) ≤ 0 and

∣
∣f

(
v(x)

)∣
∣ ≤ C

∣
∣v(x)

∣
∣p∗(x)–1,

so by Lemma 2.7 this problem admits at least one solution if h(x) = a(x)u(x)q(x)–1 belongs
to Lp′(x)(B). However, we have

∫

B

∣
∣h(x)

∣
∣p′(x) dx ≤ C

∫

B

∣
∣u(x)

∣
∣p′(x)(q(x)–1) dx < +∞.

Since p ∈ C+(B) and p(x) < q(x), we have p′(x)(q(x) – 1) = p(x)
p(x)–1 (q(x) – 1) > 1 and also a ∈

L∞(B). The result is achieved. �
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