
Mohammed et al. Advances in Difference Equations        (2021) 2021:213 
https://doi.org/10.1186/s13662-021-03372-2

R E S E A R C H Open Access

Difference monotonicity analysis on discrete
fractional operators with discrete generalized
Mittag-Leffler kernels
Pshtiwan Othman Mohammed1* , Faraidun Kadir Hamasalh1 and Thabet Abdeljawad2,3,4*

*Correspondence:
pshtiwansangawi@gmail.com;
tabdeljawad@psu.edu.sa
1Department of Mathematics,
College of Education, University of
Sulaimani, Sulaimani, Kurdistan
Region, Iraq
2Department of Mathematics and
General Sciences, Prince Sultan
University, P.O. Box 66833, Riyadh
11586, Kingdom of Saudi Arabia
Full list of author information is
available at the end of the article

Abstract
In this paper, we present the monotonicity analysis for the nabla fractional differences
with discrete generalized Mittag-Leffler kernels (ABRa–1∇δ,γ y)(η) of order 0 < δ < 0.5,
β = 1, 0 < γ ≤ 1 starting at a – 1. If (ABRa–1∇δ,γ y)(η)≥ 0, then we deduce that y(η) is
δ2γ -increasing. That is, y(η + 1) ≥ δ2γ y(η) for each η ∈Na := {a,a + 1, . . .}. Conversely,
if y(η) is increasing with y(a) ≥ 0, then we deduce that (ABRa–1∇δ,γ y)(η)≥ 0. Furthermore,
the monotonicity properties of the Caputo and right fractional differences are
concluded to. Finally, we find a fractional difference version of the mean value
theorem as an application of our results. One can see that our results cover some
existing results in the literature.
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1 Introduction
In the past two decades, fractional calculus and its applications have been applied into
various fields due to its accurate describing in many scientific fields, such as fractional
stochastic noise [1], fraction order memristive chaotic circuits [2], fractional order finan-
cial models [3], and fractional order relaxation–oscillation models [4]. Also, it has wide
application in various research areas, which one can find in the references [5–13].

Along the years, fractional calculus has attracted more and more researchers’ attention
and has found applications in several fields of engineering and the applied sciences (see [5–
8]). Recently, many fractional models were proposed showing the significance of fractional
calculus. Discrete fractional calculus can be seen as the most recent model of fractional
calculus which has been widely used.

Recently, discrete fractional calculus gains a great deal of interest by many researchers.
In [14, 15], the authors introduced the discrete fractional sums and differences which pro-
duced directly from the Riemann–Liouville (RL) fractional integrals and derivatives, re-
spectively. To review the history of discrete fractional operators, their properties and in-
formation related to discrete fractional calculus applications one can refer to [16–22] and

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-021-03372-2
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-021-03372-2&domain=pdf
http://orcid.org/0000-0001-6837-8075
http://orcid.org/0000-0002-8889-3768
mailto:pshtiwansangawi@gmail.com
mailto:tabdeljawad@psu.edu.sa


Mohammed et al. Advances in Difference Equations        (2021) 2021:213 Page 2 of 16

the references therein. Nowadays, being new fractional integral and derivative operators
make the researchers attempt to introduce a new definition of discrete fractional sum and
difference operators corresponding to them. Those models are receiving the attention of
many researchers (see [23–26]).

Monotonocity analysis has become very important in discrete fractional calculus which
was firstly applied for the discrete fractional operators of RL version by Atici and Uyanik in
[27]. In [28], the authors found the monotonicity analysis for the Caputo–Fabrizo (CF) ver-
sion of discrete fractional operators. In [29], the monotonicity analysis for the Atangana–
Baleanu (AB) version of discrete fractional operators with discrete Mittag-Leffler (ML)
kernels was done. In addition, the monotonicity analysis has been established for the h-
discrete fractional operators in [30, 31] (see also [32]).

However, to the best of our knowledge so far, the monotonicity results have not been
considered for the discrete fractional operators with discrete generalized ML kernels [33].
Therefore, our aim in this article is to establish the monotonicity analysis for the above
model of discrete fractional operators that can cover the monotonicity results in [29].

The structure of the article is designed as follows: Sect. 2.1 deals with recalling the RL-
fractional sums and generalized discrete ML functions. Section 2.2 deals with recalling the
generalized discrete AB fractional operators with their equivalent formulas and definition
of δ-monotonicity. In Sect. 3 we discuss the monotonicity analysis for the 2-parameter
fractional difference operators involving the discrete generalized ML kernels. Section 4
deals with the application of our findings on the mean value theorem, and in Sect. 5 we
conclude the article.

2 Preliminaries
This section deals with some basic concepts on discrete fractional operators and discrete
ML functions.

2.1 RL-fractional sums and generalized ML function
Definition 2.1 ([24, 25, 33]) The � increasing factorial function of η is given by

η� =
�–1∏

�=0

(η + �), η0 = 1 (∀� ∈N1).

Generally, the increasing factorial function is given by

ηδ =
�(η + δ)

�(η)
, 0δ = 0 (δ ∈R) (2.1)

for η ∈R \ {. . . , –2, –1, 0}, where R denotes the set of real numbers.

Definition 2.2 ([24, 25, 33]) Let the backward jump operator be given by ρ(s) = r – 1.
Then, for any function f : Na →R, the nabla left fractional sum of order δ > 0 in the sense
of RL is defined by

(
a∇–δy

)
(η) =

1
�(δ)

η∑

s=a+1

(
η – ρ(s)

)δ–1f (s), η ∈Na+1. (2.2)
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Also, for any function f :b N = {b, b – 1, b – 2, . . .} → R, the nabla right fractional sum of
order δ > 0 in the sense of RL is defined by

(∇–δ
b y

)
(η) =

1
�(δ)

b–1∑

r=η

(
r – ρ(η)

)δ–1f (s), η ∈b–1 N . (2.3)

Lemma 2.1 ([24, 25, 33]) For any a, b ∈R and δ1, δ2 > 0, we have

a∇–δ1 (η – a)δ2 =
�(δ2 + 1)

�(δ1 + δ2 + 1)
(η – a)δ1+δ2 ,

∇–δ1
b (b – η)δ2 =

�(δ2 + 1)
�(δ1 + δ2 + 1)

(b – η)δ1+δ2 .

Lemma 2.2 ([24, 25, 33]) For any δ1, δ2 ∈R and any f defined on Na, we have

a∇–δ1 a∇–δ2 f (η) = a∇–(δ1+δ2)f (η) = a∇–δ2 a∇–δ1 f (η),

∇–δ1
b ∇–δ2

b f (η) = ∇–(δ1+δ2)
b f (η) = ∇–δ2

b ∇–δ1
b f (η).

Lemma 2.3 ([25]) Let f be defined on Na, then, for any 0 < δ < 1, we have

a∇–δ∇f (η) = ∇a∇–δf (η) –
(η – a)δ–1

�(δ)
f (a).

The nabla discrete ML functions are important; they are recalled now.

Definition 2.3 ([33]) For any λ ∈ R and δ,β ,γ ,η ∈ C with Re(δ) > 0, the nabla discrete
generalized ML function is defined by

Eγ

δ,β (λ,η) :=
∞∑

�=0

λ� η�δ+β–1(γ )�
�(�δ + β)�!

, |λ| < 1, (2.4)

where (γ )� = γ (γ + 1) · · · (γ + � – 1) is the Pochhammer symbol. Specifically, if γ = 1, we
get the nabla discrete two parameters ML function:

Eδ,β (λ,η) = E1
δ,β (λ,η) :=

∞∑

�=0

λ� η�δ+β–1

�(�δ + β)
, |λ| < 1. (2.5)

And if β = γ = 1, we get the nabla discrete one parameter ML function:

Eδ(λ,η) = E1
δ,1(λ,η) :=

∞∑

�=0

λ� η�δ

�(�δ + 1)
, |λ| < 1. (2.6)

Lemma 2.4 ([33]) For any δ > 0, β > –1, γ ,η ∈C and λ ∈R with |λ| < 1, we have

∇nEγ

δ,β+n(λ,η) = Eγ

δ,β (λ,η), β 	= 0.
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Figure 1 Plot of Eγ

δ,1
(λ,η) for different values of γ

Remark 2.1
(i) For any λ = – δ

1–δ
, 0 < δ < 1

2 , η ∈N and 0 < γ ≤ 1, the two parameters ML function
Eγ

δ,1(λ,η) is monotonically decreasing. Here, we find some initial values of Eγ

δ,1(λ,η):
• Eγ

δ,1(λ, 0) = 1.
• Eγ

δ,1(λ, 1) = (1 – δ)γ .
• Eγ

δ,1(λ, 2) = (1 – δ)γ (1 – δ2γ ).
• Eγ

δ,1(λ, 3) = (1–δ)γ
2 (δ4γ (γ + 1) – δ3γ – 3δ2γ + 2).

On the other hand, the Figure 1 can confirm the validity of the above results.
(ii) From (i) and Definition 2.3, we have

∇Eγ

δ,1(λ,η) =
∞∑

k=0

λk kδηkδ–1(γ )k

�(kδ + 1)k!
=

∞∑

k=1

λk ηkδ–1(γ )k

�(kδ)k!

= λ

∞∑

k=0

λk ηkδ+δ–1(γ )k+1

�(kδ + δ)(k + 1)!
:= λEγ

δ
(λ,η) < 0. (2.7)

This implies that Eγ

δ
(λ,η) is strictly positive for λ < 0.

Proof In proving (i), we need the following identity:

∞∑

k=0

λk (γ )k

k!
=

1
(1 – λ)γ

. �

2.2 Generalized discrete ABR and ABC and monotonicity definitions
The discrete ABR and ABC fractional differences and sums were introduced in [24] using
the one parameter discrete ML function. After that, the generalized discrete ABR and ABC
fractional differences and sums were introduced by Abdeljawad in [33] using the general-
ized discrete ML function:

Definition 2.4 ([33]) Let λ = – δ
1–δ

and 0 < δ < 1/2. Then, for γ ∈R and Re(β) > 0, the left
generalized discrete ABR fractional difference is defined by

(ABR
a ∇δ,β ,γ y

)
(η) =

B(δ)
1 – δ

∇η

η∑

s=a+1

Eγ

δ,β

(
λ,η – ρ(s)

)
y(s), η ∈Na, (2.8)



Mohammed et al. Advances in Difference Equations        (2021) 2021:213 Page 5 of 16

and the right generalized discrete ABR fractional difference is defined by

(ABR∇δ,β ,γ
b y

)
(η) =

–B(δ)
1 – δ


η

b–1∑

s=η

Eγ

δ,β

(
λ, s – ρ(η)

)
y(s), η ∈b N . (2.9)

Also, the left generalized discrete ABC fractional difference is defined by

(ABC
a ∇δ,β ,γ y

)
(η) =

B(δ)
1 – δ

η∑

s=a+1

Eγ

δ,β

(
λ,η – ρ(s)

)∇sy(s), η ∈Na, (2.10)

and the right generalized discrete ABC fractional difference is defined by

(ABC∇δ,β ,γ
b y

)
(η) =

–B(δ)
1 – δ

b–1∑

s=η

Eγ

δ,β

(
λ, s – ρ(η)

)

sy(s), η ∈b N , (2.11)

where B(δ) is a multiplier and it satisfies B(0) = B(1) = 1.

In this article, we consider a specific case where 0 < γ ≤ 1 and β = 1. Then we can rewrite
the above definitions as follows.

Definition 2.5 Let λ = – δ
1–δ

, 0 < δ < 1/2 and 0 < γ ≤ 1. Then the left 2-parameter discrete
ABR fractional difference is defined by

(ABR
a ∇δ,γ y

)
(η) =

B(δ)
1 – δ

∇η

η∑

s=a+1

Eγ

δ,1

(
λ,η – ρ(s)

)
y(s), η ∈Na, (2.12)

and the right 2-parameter discrete ABR fractional difference is defined by

(ABR∇δ,γ
b y

)
(η) =

–B(δ)
1 – δ


η

b–1∑

s=η

Eγ

δ,1

(
λ, s – ρ(η)

)
y(s), η ∈b N . (2.13)

Also, the left 2-parameter discrete ABC fractional difference is defined by

(ABC
a ∇δ,γ y

)
(η) =

B(δ)
1 – δ

η∑

s=a+1

Eγ

δ,1

(
λ,η – ρ(s)

)∇sy(s), η ∈Na, (2.14)

and the right 2-parameter discrete ABC fractional difference is defined by

(ABC∇δ,γ
b y

)
(η) =

–B(δ)
1 – δ

b–1∑

s=η

Eγ

δ,1

(
λ, s – ρ(η)

)

sy(s), η ∈b N . (2.15)

Theorem 2.1 ([33]) Let y be defined on Na with b ≡ a (mod 1), then, for any λ = – δ
1–δ

, 0 <
δ < 1/2, γ ∈ R and 0 < Re(β) < 1, we have the following relationships between the discrete
ABC and discrete ABR fractional differences:

(ABC
a ∇δ,β ,γ y

)
(η) =

(ABR
a ∇δ,β ,γ y

)
(η) –

B(δ)
1 – δ

y(a)Eγ

δ,β (λ,η – a) (2.16)
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in the left-side sense and

(ABC∇δ,β ,γ
b y

)
(η) =

(ABR∇δ,β ,γ
b y

)
(η) –

B(δ)
1 – δ

y(b)Eγ

δ,β (λ, b – η) (2.17)

in the right-side sense.

Definition 2.6 ([33]) y be defined on Na and a ≡ b (mod 1). Then the left generalized AB
fractional sum of order 0 < δ ≤ 1, β > 0, γ > 0 is defined by

(AB
a ∇–(δ,β ,γ )y

)
(η) =

∞∑

k=0

(
γ

k

)
δk

B(δ)(1 – δ)k–1

(
a∇–(δk+1–β)y

)
(η). (2.18)

Theorem 2.2 ([33]) Let y be defined on Na with b ≡ a (mod 1), then, for any λ = – δ
1–δ

,
0 < δ < 1/2 and γ ,β ∈ Z, we have

(ABR
a ∇δ,β ,γ y

)
(η) =

B(δ)
1 – δ

∞∑

k=0

λk (γ )k

k!
(

a∇–(δk+β–1)y
)
(η). (2.19)

Now, we recall the monotonicity definitions.

Definition 2.7 Let y : Na → R be a function satisfying y(a) ≥ 0. Then y is called a δ-
increasing function on Na, if

y(η + 1) ≥ δy(η), ∀η ∈Na.

Observe that, if y(η) is increasing on Na, then y(η + 1) ≥ y(η) for all η ∈ Na, and thus
y(η) is δ-increasing on Na.

Definition 2.8 Let y : Na → R be a function satisfying y(a) ≤ 0. Then y is called a δ-
decreasing function on Na, if

y(η + 1) ≤ δy(η), ∀η ∈Na.

Observe that, if y(η) is decreasing on Na, then y(η + 1) ≤ y(η) for all η ∈ Na, and thus
y(η) is δ-decreasing on Na.

Remark 2.2 Note that, if δ = 1 in Definition 2.7, then the increasing and δ-increasing con-
cepts coincide, and if δ = 1 in Definition 2.8, then the decreasing and δ-decreasing con-
cepts coincide.

3 Difference monotonicity outlines
Theorem 3.1 Let y : Na–1 → R be a function. Suppose that, for 0 < δ < 1

2 and 0 < γ ≤ 1,
we have

(ABR
a–1 ∇δ,γ y

)
(η) ≥ 0, η ∈Na–1,

then y(η) is δ2γ -increasing.
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Proof Rewrite (ABR
a–1 ∇δ,γ y)(η) = B(δ)

1–δ
∇S(η), where S(η) =

∑η
s=a y(s)Eγ

δ,1(λ,η – ρ(s)). From as-
sumption and since Eγ

δ,1(λ, 1) = 1, we have

S(η) – S(η – 1)

= y(η)Eγ

δ,1(λ, 1) +
η–1∑

s=a
y(s)

(
Eγ

δ,1

(
λ,η – ρ(s)

)
– Eγ

δ,1

(
λ,η – 1 – ρ(s)

))

= (1 – δ)γ y(η) +
η–1∑

s=a
y(s)

(
Eγ

δ,1(λ,η + 1 – s) – Eγ

δ,1(λ,η – s)
) ≥ 0. (3.1)

Then we proceed with our proof by induction. First, if we substitute η = a in (3.1), we
deduce that y(a) ≥ 0. If we substitute η = a + 1 in (3.1), then, in view of Remark 2.1, we can
deduce

y(a + 1) ≤
Eγ

δ,1(λ, 1) – Eγ

δ,1(λ, 2)
(1 – δ)γ

y(a)

= δ2γ y(a).

Now, we assume that

y(a + k) ≥ δ2γ y(a + k – 1) ≥ δ4γ 2y(a + k – 2) ≥ · · · ≥ δ2kγ ky(a) ≥ 0,

and we have to show that y(a + k + 1) ≥ δ2γ y(a + k). By substituting η = a + k + 1 in (3.1)
and then using Eq. (2.7), we find that

S(a + k + 1) – S(a + k)

= (1 – δ)y(a + k + 1) +
a+k∑

s=a
y(s)

(
Eγ

δ,1(λ, a + k + 2 – s) – Eγ

δ,1(λ, a + k + 1 – s)
)

= (1 – δ)γ y(a + k + 1) +
a+k∑

s=a
y(s)∇Eγ

δ,1(λ, k + 2 – s)

= (1 – δ)γ y(a + k + 1) + λ

k∑

s=0

y(s + a)Eγ

δ
(λ, k + 2 – s)

= (1 – δ)y(a + k + 1) +
[
y(a)Eγ

δ
(λ, k + 2) + y(a + 1)Eγ

δ
(λ, k + 1)

+ · · · + y(a + k – 1)Eγ

δ
(λ, 3) + y(a + k)Eγ

δ
(λ, 2)

] ≥ 0.

Then, by using Eq. (2.7) and Remark 2.1, it follows that

y(a + k + 1) ≥ –λ

(1 – δ)γ
[
y(a)Eγ

δ
(λ, k + 2) + y(a + 1)Eγ

δ
(λ, k + 1)

+ · · · + y(a + k – 1)Eγ

δ
(λ, 3) + y(a + k)Eγ +1

δ
(λ, 2)

]

≥ 0 +
δ

(1 – δ)γ +1 Eγ

δ
(λ, 2)y(a + k)
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≥ δ

(1 – δ)γ +1 · 1
λ

∇Eγ

δ,1(λ, 2)y(a + k)

≥ δ

(1 – δ)γ +1 · 1 – δ

δ

[
Eγ

δ,1(λ, 1) – Eγ

δ,1(λ, 2)
]
y(a + k)

≥ δ2γ y(a + k).

This completes the proof. �

Theorem 3.2 Let y : Na–1 → R be a function. Suppose that, for 0 < δ < 1
2 and 0 < γ ≤ 1,

we have

(ABR
a–1 ∇δ,γ y

)
(η) ≤ 0, η ∈Na–1,

then y(η) is δ2γ -decreasing.

Proof The proof is similar to Theorem 3.1. �

Corollary 3.1 Let y : Na–1 → R be a function. Suppose that, for 0 < δ < 1
2 and 0 < γ ≤ 1,

we have

(ABC
a–1 ∇δ,γ y

)
(η) ≥ B(δ)

1 – δ
Eγ

δ,1(λ,η – a + 1)y(a – 1), η ∈Na–1,

then y(η) is δ2γ -increasing.

Proof The proof follows directly from Theorem 3.1 and Theorem 2.1 with β = 1. �

Corollary 3.2 Let y : Na–1 → R be a function. Suppose that, for 0 < δ < 1
2 and 0 < γ ≤ 1,

we have

(ABC
a–1 ∇δ,γ y

)
(η) ≤ B(δ)

1 – δ
Eγ

δ,1(λ,η – a + 1)y(a – 1), η ∈Na–1,

then y(η) is δ2γ -decreasing.

Proof The proof follows directly from Theorem 3.2 and Theorem 2.1 with β = 1. �

Remark 3.1 If we take γ = 1 in Theorem 3.1, Theorem 3.2 and Corollary 3.1, then we get
Theorem 2, Theorem 6 and Theorem 3 in [29], respectively.

Theorem 3.3 Let y : Na–1 →R be a function satisfying y(a) ≥ 0 and let y(η) be increasing
on Na. Then, for 0 < δ < 1

2 and 0 < γ ≤ 1, we have

(ABR
a–1 ∇δ,γ y

)
(η) ≥ 0, η ∈Na–1.

Proof It is enough to show that S(η) is increasing, where S(η) is given in Theorem 3.1. By
substituting η = a in (3.1) and making use of the assumption, we deduce that

S(a) – S(a – 1) = (1 – δ)γ y(a) ≥ 0.
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Suppose that S(k) – S(k – 1) ≥ 0 for any k < t, then we have to show that S(η) – S(η – 1) ≥ 0.
Since y(η) is an increasing function, we have y(η) ≥ y(η – 1) ≥ y(a) ≥ 0 for each η ∈ Na.
Then, from (3.1), we have

S(η) – S(η – 1)

= (1 – δ)γ y(η) +
η–1∑

s=a
y(s)

(
Eγ

δ,1(λ,η + 1 – s) – Eγ

δ,1(λ,η – s)
)

= (1 – δ)γ y(η) – δ2γ (1 – δ)γ y(η – 1)

+
η–2∑

s=a
y(s)

(
Eγ

δ,1(λ,η + 1 – s) – Eγ

δ,1(λ,η – s)
)

= (1 – δ)γ y(η) – δ2γ (1 – δ)γ y(η – 1)

+
η–2∑

s=a

[
y(s) – y(η – 1)

]
︸ ︷︷ ︸

≤0

(
Eγ

δ,1(λ,η + 1 – s) – Eγ

δ,1(λ,η – s)
)

︸ ︷︷ ︸
≤0

+
η–2∑

s=a
y(η – 1)

(
Eγ

δ,1(λ,η + 1 – s) – Eγ

δ,1(λ,η – s)
)

≥ (1 – δ)γ y(η) – δ2γ (1 – δ)γ y(η – 1)

+
η–2∑

s=a
y(η – 1)

(
Eγ

δ,1(λ,η + 1 – s) – Eγ

δ,1(λ,η – s)
)

= (1 – δ)γ y(η) +
η–1∑

s=a
y(η – 1)

(
Eγ

δ,1(λ,η + 1 – s) – Eγ

δ,1(λ,η – s)
)
. (3.2)

Since (1 – δ)γ > 0 and y(η) ≥ y(η – 1), we have

(1 – δ)γ y(η) = (1 – δ)γ y(η) – (1 – δ)γ y(η – 1)︸ ︷︷ ︸
≥0

+(1 – δ)γ y(η – 1)

≥ (1 – δ)γ y(η – 1).

Then, by using this in (3.2), we get

S(η) – S(η – 1)

≥ (1 – δ)γ y(η – 1) +
η–1∑

s=a
y(η – 1)

(
Eγ

δ,1(λ,η + 1 – s) – Eγ

δ,1(λ,η – s)
)

= (1 – δ)γ y(η – 1)

[
1 +

1
(1 – δ)γ

η–1∑

s=a

(
Eγ

δ,1(λ,η + 1 – s) – Eγ

δ,1(λ,η – s)
)
]
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= (1 – δ)γ y(η – 1)

[
1 +

1
(1 – δ)γ

k∑

s=0

(
Eγ

δ,1(λ, k + 2 – s) – Eγ

δ,1(λ, k + 1 – s)
)
]

= (1 – δ)γ y(η – 1)
[

1 +
1

(1 – δ)γ
(
Eγ

δ,1(λ, k + 1) – Eγ

δ,1(λ, 1)
)]

︸ ︷︷ ︸
≥0 by Remark 2.1

≥ 0,

which we can rearrange to get the desired result. �

The following theorems are similar to Theorem 3.3.

Theorem 3.4 Let y : Na–1 → R be a function satisfying y(a) > 0 and let y(η) be strictly
increasing on Na. Then, for 0 < δ < 1

2 and 0 < γ ≤ 1, we have

(ABR
a–1 ∇δ,γ y

)
(η) > 0, η ∈Na–1.

Theorem 3.5 Let y : Na–1 →R be a function satisfying y(a) ≤ 0 and let y(η) be decreasing
on Na. Then, for 0 < δ < 1

2 and 0 < γ ≤ 1, we have

(ABR
a–1 ∇δ,γ y

)
(η) ≤ 0, η ∈Na–1.

Theorem 3.6 Let y : Na–1 → R be a function satisfying y(a) ≤ 0 and let y(η) be strictly
decreasing on Na. Then, for 0 < δ < 1

2 and 0 < γ ≤ 1, we have

(ABR
a–1 ∇δ,γ y

)
(η) < 0, η ∈Na–1.

Remark 3.2 If we take γ = 1 in Theorems 3.3–3.5, then we get Theorem 4, Theorem 5 and
Theorem 7 in [29], respectively.

4 MVT application
This section deals with the application of our results to the mean value theorem (MVT).
First, we need the following lemmas.

Lemma 4.1 For any 0 < δ < 1
2 and 0 < γ ≤ 1 and η ∈Na, we have

a∇–δk∇Eγ

δ,1(λ,η – a + 1) = ∇a–1∇–δkEγ

δ,1(λ,η – a + 1) – (1 – δ)γ
(η – a + 1)δk–1

�(δk)
, (4.1)

for each k = 1, 2, . . . .

Proof By applying Lemma 2.3 for f (η) = Eγ

δ,1(λ,η – a + 1), we get

a∇–δk∇Eγ

δ,1(λ,η – a + 1) = ∇a∇–δkEγ

δ,1(λ,η – a + 1) –
(η – a)δk–1

�(δk)
Eγ

δ,1(λ, 1)

= ∇a∇–δkEγ

δ,1(λ,η – a + 1) – (1 – δ)γ
(η – a)δk–1

�(δk)
, (4.2)

where we used Eγ

δ,1(λ, 1) = (1 – δ)γ .



Mohammed et al. Advances in Difference Equations        (2021) 2021:213 Page 11 of 16

On the other hand, from the definition of discrete nabla fractional sum, we have

a∇–δky(η) =
1

�(δk)

η∑

s=a+1

(
η – ρ(s)

)δk–1y(s)

=
1

�(δk)

η∑

s=a

(
η – ρ(s)

)δk–1y(s) –
(η – a + 1)δk–1

�(δk)
y(a)

= a–1∇–δky(η) –
(η – a + 1)δk–1

�(δk)
y(a).

For y(η) = Eγ

δ,1(λ,η – a + 1), it follows that

a∇–δkEγ

δ,1(λ,η – a + 1) = a–1∇–δkEγ

δ,1(λ,η – a + 1) –
(η – a + 1)δk–1

�(δk)
Eγ

δ,1(λ, 1)

= a–1∇–δkEγ

δ,1(λ,η – a + 1) – (1 – δ)γ
(η – a + 1)δk–1

�(δk)
. (4.3)

By taking ∇ to both sides of (4.3), we obtain

∇a∇–δkEγ

δ,1(λ,η – a + 1)

= ∇a–1∇–δkEγ

δ,1(λ,η – a + 1) +
(1 – δk)(1 – δ)γ

�(δk)
(η – a + 1)δk–2. (4.4)

By using (4.4) in (4.2), we obtain

a∇–δk∇Eγ

δ,1(λ,η – a + 1)

= ∇a–1∇–δkEγ

δ,1(λ,η – a + 1) +
(1 – δk)(1 – δ)γ

�(δk)
(η – a + 1)δk–2

– (1 – δ)γ
(η – a)δk–1

�(δk)

= ∇a–1∇–δkEγ

δ,1(λ,η – a + 1) +
(1 – δ)γ

�(δk)
[
(1 – δk)(η – a + 1)δk–2 – (η – a)δk–1]

= ∇a–1∇–δkEγ

δ,1(λ,η – a + 1)

+
(1 – δ)γ

�(δk)

[
(1 – δk)

�(η – a + δk – 1)
�(η – a + 1)

–
�(η – a + δk – 1)

�(η – a)

]

= ∇a–1∇–δkEγ

δ,1(λ,η – a + 1) +
(1 – δ)γ

�(δk)
�(η – a + δk – 1)

�(η – a)

[
1 – δk
η – a

– 1
]

= ∇a–1∇–δkEγ

δ,1(λ,η – a + 1) – (1 – δ)γ
(η – a + 1)δk–1

�(δk)
,

which completes the proof. �

Lemma 4.2 For any δ,γ ∈ C, we have

ABR
a ∇δ,1,–γ Eγ

δ,1(λ,η – a) =
B(δ)
1 – δ

.
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Proof The proof follows directly from [33, Example 1] and the fact that E0
δ,1(λ,

η – a) = 1. �

Remark 4.1 By using the relationship between the gamma functions

�(x + k)
�(x)

= (–1)k �(1 – x)
�(1 – x – k)

,

we can obtain the following relationship between the combination formula and the
Pochhammer symbol:

(–1)k
(

γ

k

)
= (–1)k �(γ + 1)

�(γ + 1 – k)k!
=

1
k!

�(–γ + k)
�(–γ )

=
(–γ )k

k!
.

This is a useful tool in the proof of the next theorem.

Now, from [33], we see that

(AB
a ∇–(δ,γ )ABR

a ∇δ,γ y
)
(η) = y(η). (4.5)

One can note that Eq. (4.5) does not contain y(a). However, the next result contains an
initial value y(a) which will be a great tool to prove our fractional difference MVT.

Theorem 4.1 Let y be a function defined on Na–1, then, for 0 < δ < 1
2 and 0 < γ ≤ 1, we

have

(AB
a ∇–(δ,γ )ABR

a–1 ∇δ,γ y
)
(η)

= y(η) –
δγ (1 – δ)γ –1(η – a + 1)δ–1

�(δ)
y(a)

– (1 – δ)γ y(a)
∞∑

k=2

λk (–γ )k

k!
(η – a + 1)δk–1

�(δk)
. (4.6)

Proof From the definition (2.8) with β = 1, we have

(AB
a ∇–(δ,γ )ABR

a–1 ∇δ,γ y
)
(η)

=
B(δ)
1 – δ

AB
a ∇–(δ,γ )∇η

[
η∑

s=a
Eγ

δ,1

(
λ,η – ρ(s)

)
y(s)

]

=
B(δ)
1 – δ

AB
a ∇–(δ,γ )∇η

[
η∑

s=a+1

Eγ

δ,1

(
λ,η – ρ(s)

)
y(s) + y(a)Eγ

δ,1(λ,η – a + 1)

]

= AB
a ∇–(δ,γ )ABR

a ∇δ,γ y(η) +
B(δ)
1 – δ

y(a)AB
a ∇–(δ,γ )∇ηEγ

δ,1(λ,η – a + 1)

by (4.5)= y(η) +
B(δ)
1 – δ

y(a)AB
a ∇–(δ,γ )∇ηEγ

δ,1(λ,η – a + 1).
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Then, by using the series formula (2.18) with β = 1, Lemma 4.1 and Remark 4.1, we can
deduce

(AB
a ∇–(δ,γ )ABR

a–1 ∇δ,γ y
)
(η)

= y(η) +
B(δ)
1 – δ

y(a)
∞∑

k=0

(
γ

k

)
δk

B(δ)(1 – δ)k–1 a∇–δk∇Eγ

δ,1(λ,η – a + 1)

= y(η) + y(a)
∞∑

k=0

(
γ

k

)
(–1)kλk

a∇–δk∇Eγ

δ,1(λ,η – a + 1)

= y(η) + y(a)
∞∑

k=0

λk (–γ )k

k!

[
∇a–1∇–δkEγ

δ,1(λ,η – a + 1) – (1 – δ)γ
(η – a + 1)δk–1

�(δk)

]

= y(η) + y(a)∇
∞∑

k=0

λk (–γ )k

k! a–1∇–δkEγ

δ,1(λ,η – a + 1)

– (1 – δ)γ y(a)
∞∑

k=0

λk (–γ )k

k!
(η – a + 1)δk–1

�(δk)
.

Then, by using the series formula (2.19) and Lemma 4.3, it follows that

(AB
a ∇–(δ,γ )ABR

a–1 ∇δ,γ y
)
(η)

= y(η) + y(a)∇
(

1 – δ

B(δ)
ABR
a–1 ∇δ,–γ Eγ

δ,1

(
λ,η – (a – 1)

))

– (1 – δ)γ y(a)
∞∑

k=1

λk (–γ )k

k!
(η – a + 1)δk–1

�(δk)

= y(η) + y(a)∇
(

1 – δ

B(δ)
· B(δ)

1 – δ

)
–

δγ (1 – δ)γ –1(η – a + 1)δ–1

�(δ)
y(a)

– (1 – δ)γ y(a)
∞∑

k=2

λk (–γ )k

k!
(η – a + 1)δk–1

�(δk)

= y(η) –
δγ (1 – δ)γ –1(η – a + 1)δ–1

�(δ)
y(a) – (1 – δ)γ y(a)

∞∑

k=2

λk (–γ )k

k!
(η – a + 1)δk–1

�(δk)
,

which completes the required result. �

Remark 4.2 If we put γ = 1 in Theorem 4.1, we directly obtain Theorem 8 in [29].

Proof From (4.6), we have for γ = 1
(AB

a ∇–δABR
a–1 ∇δy

)
(η)

= y(η) –
δ(η – a + 1)δ–1

�(δ)
y(a) – (1 – δ)y(a)

∞∑

k=2

λk (–1)k

k!
(η – a + 1)δk–1

�(δk)

= y(η) –
δ(η – a + 1)δ–1

�(δ)
y(a),

where the fact (–1)k = 0, k ≥ 2 is used. �



Mohammed et al. Advances in Difference Equations        (2021) 2021:213 Page 14 of 16

Now, let R(δ,η, a) = δγ (1–δ)γ –1(η–a+1)δ–1

�(δ) + (1 – δ)γ
∑∞

k=2 λk (–γ )k
k!

(η–a+1)δk–1

�(δk) , then it is clear
that R(δ,η, a) < 1.

Lemma 4.3 Let g be a strictly increasing function defined on Na. Then, for any 0 < δ < 1
2 ,

0 < γ ≤ 1, we have

g(b) – R(δ,η, a)g(a) > 0 (∀η ∈Na).

Proof Since g is strictly increasing, by using Theorem 3.4, we have

(ABR
a–1 ∇δ,γ g

)
(η) > 0 (∀η ∈Na).

Applying AB
a ∇–(δ,γ ) to both sides of the above inequality we get

(AB
a ∇–(δ,γ )ABR

a–1 ∇δ,γ g
)
(η) > AB

a ∇–(δ,γ )(0) = 0.

Considering (AB
a ∇–(δ,γ )ABR

a–1 ∇δ,γ g)(η) = g(b)–R(δ,η, a)g(a) (by using Theorem 4.1), the proof
follows. �

Then we can deduce the following MVT.

Theorem 4.2 (MVT) Suppose that f and g are two functions defined on Na,b := {a, a + 1, a +
2, . . . , b} with a ≡ b (mod 1), g is a strictly increasing and 0 < δ < 1

2 , 0 < γ ≤ 1. Then there
exist s1, s2 ∈Na,b such that

(ABR
a–1 ∇δ,γ f )(s1)

(ABR
a–1 ∇δ,γ g)(s1)

≤ f (b) – R(δ, b, a)f (a)
g(b) – R(δ, b, a)g(a)

≤ (ABR
a–1 ∇δ,γ f )(s2)

(ABR
a–1 ∇δ,γ g)(s2)

. (4.7)

Proof On the contrary, we suppose that (4.7) is not true. Then either

f (b) – R(δ, b, a)f (a)
g(b) – R(δ, b, a)g(a)

>
(ABR
a–1 ∇δ,γ f )(η)

(ABR
a–1 ∇δ,γ g)(η)

, ∀η ∈Na,b, (4.8)

or

f (b) – R(δ, b, a)f (a)
g(b) – R(δ, b, a)g(a)

<
(ABR
a–1 ∇δ,γ f )(η)

(ABR
a–1 ∇δ,γ g)(η)

, ∀η ∈Na,b. (4.9)

With the help of Lemma 4.3, we see that g(b) – R(δ, b, a)g(a) > 0. Also, by assumption g is
strictly increasing and hence (ABR

a–1 ∇δ,γ g)(η) > 0 by Theorem 3.4. Therefore, inequality (4.8)
can be written in the following form:

f (b) – R(δ, b, a)f (a)
g(b) – R(δ, b, a)g(a)

(ABR
a–1 ∇δ,γ g

)
(η) >

(ABR
a–1 ∇δ,γ f

)
(η). (4.10)

By applying the fractional sum operator (evaluated at η = b) to both sides of (4.10) and by
making use of Theorem 4.1, we can deduce

f (b) – R(δ, b, a)f (a) > f (b) – R(δ, b, a)f (a),
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which is a contradiction. By using the same method as used for (4.8), we can conclude that
(4.9) will be a contradiction. Thus the proof is completed. �

5 Conclusion
The results of the article can be summarized as follows:

• First, we have recalled the RL-fractional sums, generalized discrete ML function, and
the generalized discrete AB fractional operators with their equivalent formulas. Also,
the definition of δ-monotonicity has been recalled.

• We have considered the monotonicity analysis for the nabla fractional difference
operator with discrete generalized ML kernel (ABR

a–1 ∇δ,γ y)(η) of order 0 < δ < 0.5,
0 < γ ≤ 1 starting at a – 1.

• If (ABR
a–1 ∇δ,γ y)(η) ≥ 0, then we have deduced that y(η) is δ2γ -increasing. That is

y(η + 1) ≥ δ2y(η) for each η ∈Na.
• If y(η) is increasing and y(a) ≥ 0, then we have concluded that (ABR

a–1 ∇δ,γ y)(η) ≥ 0.
• Monotonicity results for the nabla Caputo fractional difference with discrete

generalized ML kernel have been found as well.
• Our results can be seen as the generalization of the results in [29].
• Additionally, we have established a new version of the MVT in the frame fractional

differences in the setting of generalized AB.
• In the case of the case hZ in the setting of discrete ML-kernel (AB) [30] and discrete

exponential kernel [34], it was noticed that the monotonicity factor depends on the
step h. However, for the discrete power law case [31] the monotonicity factor is
independent of the step h. Since our results in this article generalize those in [29], it is
of interest to generalize the results in this article for the hZ case so that the
monotonicity factor will depend on δ, γ , and h!

• We have been able to address the monotonicity analysis for the ML kernels with
parameters 0 < δ < 0.5, β = 1, and 0 < γ ≤ 1. Is it possible to register homogeneous
monotonicity properties on certain discrete intervals for the case when β 	= 1?

• In Remark 2.1, we described the decreasing behavior of the discrete ML functions of
order 0 < δ < 0.5, β = 1, and 0 < γ ≤ 1 by calculating the first 4 terms and by providing
graphs. However, the proof of this behavior analytically is still open!

Acknowledgements
The last author would like to thank Prince Sultan University for funding this work through research group Nonlinear
Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Authors’ contributions
All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Author details
1Department of Mathematics, College of Education, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq.
2Department of Mathematics and General Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Kingdom of



Mohammed et al. Advances in Difference Equations        (2021) 2021:213 Page 16 of 16

Saudi Arabia. 3Department of Medical Research, China Medical University, Taichung 40402, Taiwan. 4Department of
Computer Science and Information Engineering, Asia University, Taichung, Taiwan.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 8 March 2021 Accepted: 8 April 2021

References
1. Cottone, G., Paola, M.D., Santoro, R.: A novel exact representation of stationary colored Gaussian processes (fractional

differential approach). J. Phys. A, Math. Theor. 43(8), Article ID 085002 (2010)
2. Meng, F., Zeng, X., Wang, Z.: Impulsive anti-synchronization control for fractional-order chaotic circuit with memristor.

Indian J. Phys. 93(9), 1187–1194 (2019)
3. Xu, C.-J., Liao, M.-X., Li, P.-L., Xiao, Q.-M., Yuan, S.: PD9 control strategy for a fractional-order chaotic financial model.

Complexity 2019, Article ID 2989204 (2019)
4. Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 7(9),

1461–1477 (1996)
5. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York

(1993)
6. AbuArqub, O., Maayah, B.: Numerical solutions of integrodifferential equations of Fredholm operator type in the

sense of the Atangana–Baleanu fractional operator. Chaos Solitons Fractals 117, 117–124 (2018)
7. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland

Mathematical Studies, vol. 204. Elsevier, Amsterdam (2006)
8. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)
9. AbuArqub, O., Maayah, B.: Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati

and Bernoulli equations in the Atangana–Baleanu fractional sense. Chaos Solitons Fractals 125, 163–170 (2019)
10. Tarasov, V.: Handbook of Fractional Calculus with Applications, Applications in Physics, Part A, vol. 4. de Gruyter, Berlin

(2019)
11. Srivastava, H.M., Mohammed, P.O., Guirao, J.L.G., Hamed, Y.S.: Some higher-degree Lacunary fractional splines in the

approximation of fractional differential equations. Symmetry 422(13), 1–13 (2021)
12. Martinez, M., Mohammed, P.O., Valdes, J.E.N.: Non-conformable fractional Laplace transform. Kragujev. J. Math. 46(3),

341–354 (2022)
13. Srivastava, H.M.: Fractional-order derivatives and integrals: introductory overview and recent developments’.

Kyungpook Math. J. 60, 73–116 (2020)
14. Gray, H.L., Zhang, N.-F.: On a new definition of the fractional difference. Math. Comput. 50(182), 513–529 (1988)
15. Miller, K.S., Ross, B.: Fractional difference calculus. In: Proceedings of the International Symposium on Univalent

Functions, Fractional Calculus and Their Applications, pp. 139–152. Nihon University, Koriyama (1989)
16. Atici, F., Eloe, P.: A transform method in discrete fractional calculus. Int. J. Difference Equ. 2(2), 165–176 (2007)
17. Atici, F., Eloe, P.: Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 137, 981–989 (2009)
18. Srivastava, H.M., Mohammed, P.O.: A correlation between solutions of uncertain fractional forward difference

equations and their paths. Front. Phys. 8, 280 (2020)
19. Goodrich, C., Peterson, A.C.: Discrete Fractional Calculus. Springer, Berlin (2015)
20. Goodrich, C.: Existence of a positive solution to a system of discrete fractional boundary value problems. Appl. Math.

Comput. 217, 4740–4753 (2011)
21. Mohammed, P.O.: A generalized uncertain fractional forward difference equations of Riemann–Liouville type. J. Math.

Res. 11(4), 43–50 (2019)
22. Abdeljawad, T.: Dual identities in fractional difference calculus within Riemann. Adv. Differ. Equ. 2017, 36 (2017)
23. Abdeljawad, T.: On delta and nabla Caputo fractional differences and dual identities. Discrete Dyn. Nat. Soc. 2013, 12

(2013)
24. Abdeljawad, T., Baleanu, D.: Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels. Adv. Differ.

Equ. 2016, 232 (2016)
25. Abdeljawad, T.: Different type kernel h-fractional differences and their fractional h-sums. Chaos Solitons Fractals 116,

146–156 (2018)
26. Abdeljawad, T., Al-Mdallal, Q.M.: Discrete Mittag-Leffler kernel type fractional difference initial value problems and

Gronwall’s inequality. J. Comput. Appl. Math. 339, 218–230 (2018)
27. Atici, F., Uyanik, M.: Analysis of discrete fractional operators. Appl. Anal. Discrete Math. 9, 139–149 (2015)
28. Abdeljawad, T., Baleanu, D.: On fractional derivatives with exponential kernel and their discrete versions. Rep. Math.

Phys. 80(1), 11–27 (2017)
29. Abdeljawad, T., Baleanu, D.: Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler

kernel. Chaos Solitons Fractals 102, 106–110 (2017)
30. Suwan, I., Abdeljawad, T., Jarad, F.: Monotonicity analysis for nabla h-discrete fractional Atangana–Baleanu

differences. Chaos Solitons Fractals 117, 50–59 (2018)
31. Suwan, I., Owies, S., Abdeljawad, T.: Monotonicity results for h-discrete fractional operators and application. Adv.

Differ. Equ. 2018, 207 (2018)
32. Ghanbari, B., Günerhan, H., Srivastava, H.M.: An application of the Atangana–Baleanu fractional derivative in

mathematical biology: a three-species predator-prey model. Chaos Solitons Fractals 138, Article ID 109919 (2020)
33. Abdeljawad, T.: Fractional difference operators with discrete generalized Mittag-Leffler kernels. Chaos Solitons

Fractals 126, 315–324 (2019)
34. Suwan, I., Owies, S., Abdeljawad, T.: Fractional h-differences with exponential kernels and their monotonicity

properties (2020). https://doi.org/10.1002/mma.6213

https://doi.org/10.1002/mma.6213

	Difference monotonicity analysis on discrete fractional operators with discrete generalized Mittag-Lefﬂer kernels
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	RL-fractional sums and generalized ML function
	Generalized discrete ABR and ABC and monotonicity deﬁnitions

	Difference monotonicity outlines
	MVT application
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Consent for publication
	Authors' contributions
	Author details
	Publisher's Note
	References


