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Abstract
In this paper, we investigate the approximate controllability of fractional evolution
inclusions with hemivariational inequalities of order 1 < r < 2. The main results of this
paper are verified by using the fractional theories, multivalued analysis, cosine
families, and fixed-point approach. At first, we discuss the existence of the mild
solution for the class of fractional systems. After that, we establish the approximate
controllability of linear and semilinear control systems. Finally, an application is
presented to illustrate our theoretical results.
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1 Introduction
Fractional calculus, as a significant area of mathematics, was initiated in 1695. Currently,
the concept of fractional calculation has been powerfully tested in many social, physical,
signal and image processing, biological, control theory, and engineering problems, etc.
For more specifics, refer to the book [32] and the research papers [1–6, 14]. The notion of
exact controllability has an essential role in mathematical control theories and technology.
In recent years, many authors have done fruitful achievements on exact and approximate
controllability of different nonlinear dynamical problems; one can refer to the research
articles [16, 30].

It is common knowledge that many problems from mechanics (elasticity theory,
semipermeability, electrostatics, hydraulics, fluid flow), economics, and so on can be mod-
eled by subdifferential inclusions or hemivariational inequalities, and we refer to [31] for
more applications of hemivariational inequalities. Recently, the existence of solutions for
hemivariational inequalities has been proved by many authors. Furthermore, the hemi-
variational inequalities were initiated by Panagiotopoulos in 1980. They are handled for
the mechanical problems with nonconvex, nonsmooth superpotentials, and optimal con-
trol problems; several researchers investigated the existence and approximate control-
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lability results by applying the various approaches and different fixed-point theorems.
We suggest the articles [23–25] and the references therein. Recently, in [20], the authors
discussed the existence results for quasilinear parabolic hemivariational inequalities by
use of the theory of multivalued pseudomonotone operators, the notion of the gener-
alized gradient of Clarke, and the property of the first eigenfunction. The authors built a
Landesman–Lazer theory in the nonsmooth framework of quasilinear parabolic hemivari-
ational inequalities. Inspired by the above-mentioned paper, in [21], the authors studied
the approximate controllability for control systems described by a class of hemivariational
inequalities. The authors introduced the concept of mild solutions for hemivariational in-
equalities and then the approximate controllability was formulated and proved by utilizing
a fixed-point theorem of multivalued maps and properties of generalized Clarke subdif-
ferential.

Currently, a growing number of researchers have made successful progress in existence
and exact controllability results for fractional evolution systems of order r ∈ (1, 2). In par-
ticular, in [41], the authors introduced a new approach for finding mild solutions for the
considered system. Additionally, the authors developed the controllability of fractional dif-
ferential systems with order r ∈ (1, 2) by applying fractional calculus, cosine families, mul-
tivalued analysis, the Laplace transform, measure of noncompactness, Mainardi’s Wright-
type function, and a fixed-point theorem. Further, the authors established the nonlocal
condition in fractional system with order r ∈ (1, 2) (see [12]). Moreover, there are some
interesting and improved outcomes on the existence and exact controllability of the frac-
tional system of order r ∈ (1, 2) with delay, without delay by referring to the theory of
fractional calculus, cosine families, multivalued analysis, and the fixed-point approach.
For more details, see the research articles [26–29].

The approximate controllability for fractional evolution inclusions of order r ∈ (1, 2) by
using the ideas of hemivariational inequalities, Mainardi’s Wright function and strongly
continuous cosine families is still an untreated topic [18, 19]. The above facts inspired the
present work. Therefore, we consider the fractional differential hemivariational inequali-
ties with order r ∈ (1, 2) having the form

⎧
⎨

⎩

CDr
t u(t) ∈ Au(t) + Bx(t) + ∂G(t, u(t)), t ∈ W := [0, c],

u(0) = u0, u′(0) = u1 ∈ U ,
(1.1)

where CDr
t denotes the Caputo fractional derivative of order r ∈ (1, 2), A : D(A) ⊆ U × U

is the infinitesimal generator of a strongly continuous cosine family {C(t)}t≥0 in a Hilbert
space U . The control function x(·) takes values in L2(W , Y ) and the admissible controls’
set Y is a Hilbert space. Furthermore, B is a bounded linear operator from Y into U ,
and ∂G(t, ·) denotes the generalized Clarke’s subdifferential of a locally Lipschitz function
G(t, ·) mapping U into R.

The main contributions of our manuscript are as follows: (i) A new set of sufficient con-
ditions are formulated and used to prove the existence and approximate controllability re-
sults of fractional evolution inclusions with hemivariational inequalities of order 1 < r < 2
under simple and fundamental assumptions on the system operators, in particular, that the
corresponding linear system is approximately controllable. (ii) In this paper, we establish
sufficient conditions for the approximate controllability results of fractional evolution in-
clusions with hemivariational inequalities for the linear system. (iii) Further, we extend the
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result to obtain the conditions for the solvability of approximate controllability results for
fractional evolution inclusions with hemivariational inequalities for the semilinear case.
(iv) We show that our result has no analog for the concept of complete controllability, and
finally we give an example of the system which is not completely controllable, but approx-
imately controllable. (v) More precisely, the controllability problem can be converted into
a solvability problem of a functional operator equation in an appropriate Hilbert spaces
and the fixed point approach is used to solve the problem.

The rest of this manuscript is organized as follows: Sect. 2 gives basic definitions and
preliminary results to be used in this paper. In Sect. 3, we present the existence of solutions
to (1.1) and investigate the approximate controllability of the linear system (4.1) in Sect. 4.
In Sect. 5, we provide the approximate controllability of (1.1). Finally, an application is
provided to illustrate the theory of the obtained results.

2 Preliminaries
Now, we introduce the well-known definitions, lemmas, notations, and facts about frac-
tional calculus which will be used in the sequel [15, 32]. Let X be a Banach space with
the norm ‖ · ‖X ; X∗ denotes its dual and (·, ·)X is the duality pairing between X∗ and X;
C(W , X) denotes the Banach space of all continuous functions from W into X with the
‖u‖C(W ,X) = supt∈W ‖u(t)‖X . We set P := supt∈[0,∞) ‖C(t)‖ < +∞.

Denote by D(A) and R(A) the domain and range of A, respectively. We denote the resol-
vent set of A by ρ(A) and the resolvent of A by

R(�, A) = (�I – A)–1 ∈ Lc(X).

We now present some theories based on fractional calculus, which are discussed
in [15].

Definition 2.1 The Riemann–Liouville fractional integral of order γ ∈R
+ with the lower

limit zero for a function g : [0,∞) →R
+ is defined by

Iγ g(t) =
1

�(γ )

∫ t

0
(t – s)γ –1g(s) ds, t > 0,

provided the right-hand side is pointwise defined on [0,∞), where �(·) is the gamma func-
tion.

Definition 2.2 The Riemann–Liouville fractional derivative of order γ ∈ R
+ with the

lower limit zero for a function g : [0,∞) →R
+ is defined by

LDγ g(t) =
1

�(k – γ )
dk

dtk

∫ t

0
(t – s)k–γ –1g(k)(s) ds, t > 0, k – 1 < γ < k.

Definition 2.3 The Caputo fractional derivative of order γ ∈R
+ with the lower limit zero

for a function g : [0,∞) →R
+ is defined by

CDγ g(t) = LDγ

(

g(t) –
k–1∑

i=1

g(i)(0)
i!

ti

)

, t > 0, k – 1 < γ < k.
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Remark 2.4
(1) The Caputo derivative of a constant is equal to zero.
(2) If g ∈C[0,∞), then

CDγ g(t) =
1

�(k – γ )

∫ t

0
(t – s)k–γ –1g(k)(s) ds = Ik–γ g(k)(t),

with t > 0, k – 1 < γ < k.
(3) If g is an abstract function with values in U , then the integrals which appear in

Definitions 2.2 and 2.3 are taken in Bochner’s sense.

Let us recall the well-known definitions and results of multivalued analysis. For more
details on multivalued analysis, see the books [10, 13].

(i) A multivalued map E : X → 2X \ {∅} := ψ(X) is convex (closed) valued, if E(u) is
convex (closed) for all u ∈ X .

(ii) A multivalued map E is said to be upper semicontinuous on X if for each u ∈ X , the
set E(u) is a nonempty, closed subset of X , and if for each open set V of X
containing E(u), there exists an open neighborhood Q of u such that

E(Q) ⊆ V.

(iii) E is said to be completely continuous if E(V) is relatively compact, for every
bounded subset V ⊆ X .

(iv) Let (F ,�) and (X, d) be a measurable space and separable metric space,
respectively. A multivalued mapping E : W → ψ(X) is said to be measurable, if for
every closed set F ⊆ X , we have

E–1(F ) =
{

t ∈ W : E(t) ∩ F �= ∅} ∈ � .

We present the definition of the Clarke’s subdifferential for a locally Lipschitz function μ

mapping X into R [13]. We denote by μ0(m, n) the Clarke’s generalized directional deriva-
tive of μ at m in the direction n, i.e.,

μ0(m, n) := lim
σ→0+

sup
ν→m

μ(ν + σn) – μ(ν)
σ

.

Recall also that the generalized Clarke’s subdifferential of μ at m is the subset of X∗ given
by

∂μ(m) :=
{

m∗ ∈ X∗ : μ0(m, n) ≥ 〈
m∗, n

〉
for all n ∈ X

}
.

Lemma 2.5 ([25]) Let μ be locally Lipschiz of rank F near m, then
(a) ∂μ(m) is a nonempty, convex, weak∗-compact subset of X∗ and ‖m∗‖X∗ ≤ F , for

every m∗ ∈ ∂μ(m);
(b) for every n ∈ X , one has μ0(m, n) = max{〈m∗, n〉 : for all m∗ ∈ ∂μ(m)}.

Definition 2.6 ([34]) A one-parameter family {C(t)}t∈R of bounded linear operators map-
ping the Hilbert space U to itself is said to be a strongly continuous cosine family if and
only if
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(i) C(0) = I ;
(ii) C(s + t) + C(s – t) = 2C(s)C(t) for all s, t ∈R;

(iii) C(t)u is strongly continuous in t on R for each fixed point u ∈ U .

Let {S(t)}t∈R denote the strongly continuous sine family associated with the strongly
continuous cosine family {C(t)}t∈R, where

S(t)u =
∫ t

0
C(s)u ds, u ∈ U , t ∈R. (2.1)

Additionally, A is called an infinitesimal generator of a cosine family {C(t)}t∈R if

Au =
d2

dt2 C(t)u
∣
∣
∣
∣
t=0

, ∀u ∈ D(A),

where D(A) is determined by

D(A) =
{

u ∈ U : C(t)u ∈C
2(R, U)

}
.

Denote a set

A =
{

u ∈ U : C(t)u ∈C
1(R, U)

}
.

The infinitesimal generator A is a closed, densely-defined operator in U . We set b = r
2 for

r ∈ (1, 2), as in [12, 40].

Definition 2.7 Any u ∈C(W , U) is said to be a mild solution of system (1.1) on W if

u(t) = Cb(t)u0 + Kb(t)u1 +
∫ t

0
(t – s)b–1Tb(t – s)g(s) ds

+
∫ t

0
(t – s)b–1Tb(t – s)Bx(s) ds, t ∈ W ,

where

Cb(t) =
∫ ∞

0
Sb(τ )C

(
tbτ

)
dτ , Kb(t) =

∫ t

0
Cb(s) ds,

Tb(t) =
∫ ∞

0
bτSb(τ )S

(
tbτ

)
dτ , Sb(τ ) =

1
b
τ–1– 1

b ζb
(
τ– 1

b
)
,

ζb(τ ) =
1
π

∞∑

k=1

(–1)k–1τ–kb–1 �(kb + 1)
k!

sin(kπb), τ ∈ (0,∞),

and Sb(·) is the Mainardi’s Wright-type function defined on (0,∞) such that

Sb(τ ) ≥ 0 for τ ∈ (0,∞) and
∫ ∞

0
Sb(τ ) dτ = 1.
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Let

Nc(G) =
{

u(c) ∈ U : u(·) is a mild solution of system (1.1) corresponding to a control

x ∈ L2(W , Y ) with u0, u1 ∈ U
}

,

which is said to be the reachable set of (1.1). If G = 0, then this system is said to be the cor-
responding linear system of (1.1). Let Nc(0) denote the reachable set of the linear system.

Definition 2.8 ([18]) The control system (1.1) is said to be approximately controllable
on W = [0, c], if Nc(G) = U , where Nc(G) denotes the closure of Nc(G). Clearly, the corre-
sponding linear system is approximately controllable on W , if Nc(0) = U .

Lemma 2.9 ([12]) The operators Cb(t), Kb(t), and Tb(t) have the following properties:
(i) For any t ≥ 0, Cb(t), Kb(t), and Tb(t) are linear and bounded operators such that for

all u ∈ U ,

∥
∥Cb(t)u

∥
∥ ≤ P‖u‖,

∥
∥Kb(t)u

∥
∥ ≤ P‖u‖t,

∥
∥Tb(t)u

∥
∥ ≤ P

�(2b)
‖u‖tb;

(ii) The operators {Cb(t), t ≥ 0}, {Kb(t), t ≥ 0}, and {tb–1Tb(t), t ≥ 0} are strongly
continuous;

(iii) For any t ≥ 0, Cb(t), Kb(t), and Tb(t) are also compact operators if T(t) is compact.

Lemma 2.10 ([34]) The following results are true:
(i) There exist P ≥ 1 and ω ≥ 0 such that ‖C(t)‖Lc(U) ≤ Peω|t|, for all t ∈R;

(ii) ‖S(t2) – S(t1)‖Lc(U) ≤ P| ∫ t2
t1

eω|s| ds| for all t2, t1 ∈R;
(iii) If u ∈A, then S(t)u ∈ D(A) and d

dt C(t)u = AS(t)u.

Lemma 2.11 ([41]) Let {C(t)}t∈R be a strongly continuous cosine family in U , and A be the
infinitesimal generator of {C(t)}t∈R. Then

lim
t→0

1
t

S(t)u = u, ∀u ∈ U .

Lemma 2.12 ([34]) Let {C(t)}t∈R be a strongly continuous cosine family in U satisfying
‖C(t)‖Lc(U) ≤ Peω|t|, t ∈R. Then for Re� > ω, �2 ∈ ρ(A) and

�R
(
�2; A

)
u =

∫ ∞

0
e–�tC(t)u dt, R

(
�2; A

)
u =

∫ ∞

0
e–�tS(t)u dt, for u ∈ U .

Theorem 2.13 ([22]) Let X is a Banach space andH : X → 2X be a compact convex valued,
upper semicontinuous multivalued map such that there exists a closed neighborhood V of
zero for which H(V) is relatively compact set. If

� =
{

u ∈ X : λu ∈H(u) for some λ > 1
}

is bounded, then H has a fixed point.
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3 Existence results
In this section, we study the existence of mild solutions of system (1.1). Before starting
and proving the main results of this section, we impose the following hypotheses:

(H1) The operator {C(t)} is compact for all t ≥ 0.
(H2) G : W × U →R is a function such that

(i) the function t �→ G(t, u) is measurable for all u ∈ U ;
(ii) the function u �→ G(t, u) is locally Lipschitz for all t ∈ W ;

(iii) there exists a function β ∈ L2(W ,R+) and j > 0 such that

∥
∥∂G(t, u)

∥
∥

U = sup
{‖g‖U : g ∈ ∂G(t, u)

} ≤ β(t) + j‖u‖U ,

for every u ∈ U and for all t ∈ W .
Now, we consider the operator V : L2(W , U) → 2L2(W ,U) as follows:

V(u) =
{

z ∈ L2(W , U) : z(t) ∈ ∂G
(
t; u(t)

)
, for any t ∈ W

}
, for all u ∈ L2(W , U).

Lemma 3.1 ([25]) If (H2) holds, then for every u ∈ L2(W , U), the set V(u) has nonempty,
convex, and weakly compact values.

Lemma 3.2 ([24]) If (H2) holds, the operatorP has the property that if uk → u ∈ L2(W , U),
zk → z weakly in L2(W , U) and zk ∈P(uk), then we have z ∈P(u).

Theorem 3.3 If (H1) and (H2) are satisfied, then system (1.1) has a mild solution on W .

Proof For each x ∈ L2(W , U) and all u ∈ C(W , U) ⊂ L2(W , U), from Definition 2.7, we
introduce the multivalued map G : C(W , U) → 2C(W ,U) as follows:

G(u) =
{

y ∈C(W , U) : y(t) = Cb(t)u0 + Kb(t)u1 +
∫ t

0
(t – s)b–1Tb(t – s)g(s) ds

+
∫ t

0
(t – s)b–1Tb(t – s)Bx(s) ds, g ∈ V(u)

}

, for u ∈C(W , U).

Then our problem is reduced to finding the fixed point of H. For this, we shall check that
H satisfies all the assumptions of Theorem 2.13. Now, H(u) is convex by the convexity of
V(u). Now, we split our discussion into following steps for ease of exposition.

Step 1: H maps bounded subsets into bounded subsets in C(W , U).
For any u ∈ Bp = {u ∈ C(W , U) : ‖u‖C ≤ p}, p > 0, ϑ ∈ H(u), we obtain g ∈ V(u) such

that

ϑ(t) = Cb(t)u0 + Kb(t)u1 +
∫ t

0
(t – s)b–1Tb(t – s)g(s) ds

+
∫ t

0
(t – s)b–1Tb(t – s)Bx(s) ds, t ∈ W . (3.1)

Using (H2)(iii), Lemma 2.10, and Hölder inequality, we get

∥
∥ϑ(t)

∥
∥

U

≤ ∥
∥Cb(t)u0

∥
∥

U +
∥
∥Kb(t)u1

∥
∥

U +
∫ t

0
(t – s)b–1∥∥Tb(t – s)g(s)

∥
∥

U ds
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+
∫ t

0
(t – s)b–1∥∥Tb(t – s)Bx(s)

∥
∥

U ds

≤ P‖u0‖U + Pc‖u1‖U +
P

�(2b)

∫ t

0
(t – s)2b–1∥∥g(s)

∥
∥

U ds

+
P

�(2b)

∫ t

0
(t – s)2b–1∥∥Bx(s)

∥
∥

U ds

≤ P‖u0‖U + Pc‖u1‖U +
P

�(2b)

∫ t

0
(t – s)2b–1(β(s) + j

∥
∥u(s)

∥
∥

U

)
ds

+
P

�(2b)

∫ t

0
(t – s)2b–1‖B‖∥∥x(s)

∥
∥

U ds

≤ P‖u0‖U + Pc‖u1‖U +
P‖β‖L2(W ,R+)

�(2b)

(∫ t

0
(t – s)

2b–1
1–b1 ds

)1–b1

+
Pjc2bp

�(2b + 1)

+
P

�(2b)

(∫ t

0
(t – s)

2b–1
1–b1 ds

)1–b1

‖B‖‖x‖L2(W ,Y )

≤ P‖u0‖U + Pc‖u1‖U +
Pc2b– 1

2√
4b – 1�(2b)

[‖β‖L2(W ,R+) + ‖B‖‖x‖L2(W ,Y )
]

+
Pjc2bp

�(2b + 1)
.

Hence, H(Bp) is bounded in C(W , U).
Step 2: {H(u) : u ∈ Bp} is equicontinuous for every p > 0.
For any u ∈ Bp, ϑ ∈H(u) there exists g ∈ V(u) such that (3.1) holds true. Now, for every

ε > 0, from (H2)(iii), we have for all t ∈ W ,

∥
∥ϑ(t) – ϑ(0)

∥
∥

U

≤ ∥
∥Cb(t)u0 – u0

∥
∥

U +
∥
∥Kb(t)u1 – u1

∥
∥

U +
∫ t

0
(t – s)b–1∥∥Tb(t – s)g(s)

∥
∥

U ds

+
∫ t

0
(t – s)b–1∥∥Tb(t – s)Bx(s)

∥
∥

U ds

≤ ∥
∥Cb(t)u0 – u0

∥
∥

U +
∥
∥Kb(t)u1 – u1

∥
∥

U +
Pc2b– 1

2√
4b – 1�(2b)

× (‖β‖L2(W ,R+) + ‖B‖‖x‖L2(W ,Y )
)

+
Pjc2bp

�(2b + 1)
.

Then, there exists η1 > 0 sufficiently small such that for all 0 < t ≤ η1,

∥
∥ϑ(t) – ϑ(0)

∥
∥

U <
ε

2
.

Since, for each ε > 0, all �1,�2 ∈ [0,η1], and every ϑ ∈H(Bp), we obtain

∥
∥ϑ(�2) – ϑ(�1)

∥
∥

U < ε

independently of u ∈ Bp. Next, for all u ∈ Bp, and η1
2 ≤ �1 < �2 ≤ c, we get

∥
∥ϑ(�2) – ϑ(�1)

∥
∥

U ≤ ∥
∥Cb(�2)u0 – Cb(�1)u0

∥
∥

U +
∥
∥Kb(�2)u1 – Kb(�1)u1

∥
∥

U

+
∫ �1

0

[
(�2 – s)b–1 – (�1 – s)b–1]∥∥Tb(�2 – s)g(s)

∥
∥

U ds
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+
∫ �1

0
(�1 – s)b–1∥∥

[
Tb(�2 – s) – Tb(�1 – s)

]
g(s)

∥
∥

U ds

+
∫ �2

�1

(�2 – s)b–1∥∥Tb(�2 – s)g(s)
∥
∥

U ds

+
∫ �1

0

[
(�2 – s)b–1 – (�1 – s)b–1]∥∥Tb(�2 – s)Bx(s)

∥
∥

U ds

+
∫ �1

0
(�1 – s)b–1∥∥

[
Tb(�2 – s) – Tb(�1 – s)

]
Bx(s)

∥
∥

U ds

+
∫ �2

�1

(�2 – s)b–1∥∥Tb(�2 – s)Bx(s)
∥
∥

U

:=
8∑

k=1

Ek .

Using Lemma 2.9, (H2)(iii), and Hölder inequality, we get

E3 ≤ P
�(2b)

∫ �1

0

[
(�2 – s)2b–1 – (�1 – s)2b–1]∥∥g(s)

∥
∥

U ds

≤ P
�(2b)

∫ �1

0

[
(�2 – s)2b–1 – (�1 – s)2b–1](β(s) + j

∥
∥u(s)

∥
∥

U

)
ds

≤ P‖β‖L2(W ,R+)

�(2b)

(∫ �1

0

[
(�2 – s)2b–1 – (�1 – s)2b–1] 1

1–b1 ds
)1–b1

+
Pjp

�(2b)

∫ �1

0

[
(�2 – s)2b–1 – (�1 – s)2b–1]ds

≤ P‖β‖L2(W ,R+)√
4b – 1�(2b)

(
� 4b–1

2 – (�2 – �1)4b–1 – � 4b–1
1

) 1
2

+
Pjp

�(2b + 1)
(
� 2b

2 – (�2 – �1)2b – � 2b
1

) 1
2 .

Let Mb(t) = tb–1Tb(t) for all t ∈ W . From Lemma 2.9(ii), we get that Mb(t) is a strongly
continuous operator. Choosing η2 > 0, we have

E4 ≤
∫ �1–η2

0

∥
∥
[
Mb(�2 – s) – Mb(�1 – s)

]∥
∥
∥
∥g(s)

∥
∥

U ds

+
∫ �1

�1–η2

∥
∥
[
Mb(�2 – s) – Mb(�1 – s)

]∥
∥
∥
∥g(s)

∥
∥

U ds

≤ sup
s∈[0,�1–η2]

∥
∥
[
Mb(�2 – s) – Mb(�1 – s)

]∥
∥

∫ �1–η2

0

(
β(s) + j

∥
∥u(s)

∥
∥

U

)
ds

+
2P(�2 – �1 + η2)2b–1

�(2b)

∫ �1

�1–η2

(
β(s) + j

∥
∥u(s)

∥
∥

U

)
ds

≤ sup
s∈[0,�1–η2]

∥
∥
[
Mb(�2 – s) – Mb(�1 – s)

]∥
∥
(‖β‖L2(W ,R+) + jp

)

+
2P(�2 – �1 + η2)2b–1

�(2b)

(∫ �1

�1–η2

β(s) ds + pj
)

,
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E5 ≤ P
�(2b)

∫ �2

�1

(�2 – s)2b–1∥∥g(s)
∥
∥

U ds

≤ P
�(2b)

∫ �2

�1

(�2 – s)2b–1(β(s) + j
∥
∥u(s)

∥
∥

U

)
ds

≤ P‖β‖L2(W ,R+)

�(2b)

(∫ �2

�1

(�2 – s)
2b–1
1–b1 ds

)1–b1

+
Pjp

�(2b)

∫ �2

�1

(�2 – s)2b–1 ds

≤ P‖β‖L2(W ,R+)√
4b – 1�(2b)

(�2 – �1)2b– 1
2 +

Pjp
�(2b + 1)

(�2 – �1)2b,

E6 ≤ P
�(2b)

∫ �1

0

[
(�2 – s)2b–1 – (�1 – s)2b–1]‖Bx‖ds

≤ P
�(2b)

(∫ �1

0

[
(�2 – s)2b–1 – (�1 – s)2b–1] 1

1–b1 ds
)1–b1

‖B‖‖x‖L2(W ,Y )

≤ P‖B‖‖x‖L2(W ,Y )√
4b – 1�(2b)

(
� 4b–1

2 – (�2 – �1)4b–1 – � 4b–1
1

) 1
2 .

Let Mb(t) = tb–1Tb(t) for all t ∈ W . From Lemma 2.9(ii), we get that Mb(t) is a strongly
continuous operator. Choosing η2 > 0, we have

E7 ≤
∫ �1–η2

0

∥
∥
[
Mb(�2 – s) – Mb(�1 – s)

]∥
∥‖Bx‖ds

+
∫ �1

�1–η2

∥
∥
[
Mb(�2 – s) – Mb(�1 – s)

]∥
∥‖Bx‖ds

≤ sup
s∈[0,�1–η2]

∥
∥
[
Mb(�2 – s) – Mb(�1 – s)

]∥
∥

∫ �1–η2

0
‖Bx‖ds

+
2P(�2 – �1 + η2)2b–1

�(2b)

∫ �1

�1–η2

‖Bx‖ds

≤ sup
s∈[0,�1–η2]

∥
∥
[
Mb(�2 – s) – Mb(�1 – s)

]∥
∥√

�1‖B‖‖x‖L2(W ,Y )

+
2P(�2 – �1 + η2)2b–1

�(2b)
√

η2‖B‖‖x‖L2(W ,Y ),

E8 ≤ P
�(2b)

∫ �2

�1

(�2 – s)2b–1‖Bx‖ds

≤ P
�(2b)

(∫ �2

�1

(�2 – s)
2b–1
1–b1 ds

)1–b1

‖B‖‖x‖L2(W ,Y )

≤ P‖B‖‖x‖L2(W ,Y )√
4b – 1�(2b)

(�2 – �1)2b– 1
2 .

Now Lemma 2.9 and the compactness of T(t) (t > 0) gives the continuity of Tb(t) (t > 0)
in the uniform operator topology. Then E4, E7 → 0 independently of u ∈ Bp as �2 → �1,
η2 → 0, and E1 – E3, E5, E6, E8 → 0 as �2 → �1 does not depend on a particular choice
of u. Hence,

∥
∥ϑ(�2) – ϑ(�1)

∥
∥

U → 0

independently of u ∈ Bp as �2 → �1 and η2 → 0.
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Let η = min{η1,η2}. In addition, for all ε > 0, all �1,�2 ∈ [0, c], |�2 – �1| < η, and all
ϑ ∈ H(Bp), we easily prove that ‖ϑ(�2) – ϑ(�1)‖U < ε independently of u ∈ Bp. Hence
{H(u) : u ∈ Bp} is an equicontinuous family of functions in C(W , U).

Step 3: For each positive constant p, set ϒp = {u ∈ U : |u| ≤ p}. Obviously, ϒp a bounded
subset in U . We need to verify that ∀ p > 0 and t > 0,

T (t) =
{∫ ∞

0
bτSb(τ )S

(
tbτ

)
u dτ , u ∈ ϒp

}

is relatively compact in U .
Let t > 0 be fixed. For every η > 0 and 0 < ε ≤ t, define the subset in U by

Tε,η(t) =
{

S(εbη)
εbη

∫ ∞

η

bτSb(τ )S
(
tbτ – εbη

)
u dτ , u ∈ ϒp

}

.

Clearly, for each fixed t > 0, Tε,η(t) is well-defined. In fact, by the uniformly boundedness
of cosine family τ ∈ (η,∞), we have for every u ∈ ϒp,

∣
∣
∣
∣
S(εbη)
εbη

∫ ∞

η

bτSb(τ )S
(
tbτ – εbη

)
u dτ

∣
∣
∣
∣ ≤ P2|u|

∫ ∞

η

bτSb(τ )
(
tbτ + εbη

)
dτ

≤ 2P2|u|tb
∫ ∞

η

bτ 2Sb(τ ) dτ ≤ 2P2

�(2b)
|u|tb.

Hence, the set Tε,η(t) is relatively compact since S(εbη) is compact for εbη > 0.
Moreover, we have

∣
∣
∣
∣
S(εbη)
εbη

∫ ∞

η

bτSb(τ )S
(
tbτ – εbη

)
u dτ –

∫ ∞

0
bτSb(τ )S

(
tbτ

)
u dτ

∣
∣
∣
∣

≤
∣
∣
∣
∣
S(εbη)
εbη

∫ ∞

η

bτSb(τ )S
(
tbτ – εbη

)
u dτ –

∫ ∞

η

bτSb(τ )S
(
tbτ

)
u dτ

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ ∞

η

bτSb(τ )S
(
tbτ

)
u dτ –

∫ ∞

0
bτSb(τ )S

(
tbτ

)
u dτ

∣
∣
∣
∣

≤
∫ ∞

η

bτSb(τ )
∣
∣
∣
∣
S(εbη)
εbη

S
(
tbτ – εbη

)
u – S

(
tbτ

)
u
∣
∣
∣
∣dτ +

∫ η

0
bτSb(τ )

∣
∣S

(
tbτ

)
u
∣
∣dτ

:= l1 + l2.

Since

bτSb(τ )
∣
∣
∣
∣
S(εbη)
εbη

S
(
tbτ – εbη

)
u – S

(
tbτ

)
u
∣
∣
∣
∣ ≤ 2P2tbbτ 2Sb(τ )|u|

and
∫ ∞

0
bτ 2Sb(τ ) dτ =

2
�(1 + 2b)

,

we can see that
∫ ∞

0
bτSb(τ )

∣
∣
∣
∣
S(εbη)
εbη

S
(
tbτ – εbη

)
u – S

(
tbτ

)
u
∣
∣
∣
∣dτ
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is uniformly convergent. Further, due to the strong continuity of {S(t)}t>0, for τ ∈ (η,∞),
using Lemma 2.9, we have

∣
∣
∣
∣
S(εbη)
εbη

S
(
tbτ – εbη

)
u – S

(
tbτ

)
u
∣
∣
∣
∣

≤
∣
∣
∣
∣
S(εbη)
εbη

S
(
tbτ – εbη

)
u – S

(
tbτ – εbη

)
u
∣
∣
∣
∣ +

∣
∣S

(
tbτ – εbb

)
u – S

(
tbτ

)
u
∣
∣ → 0,

as b → 0. Hence, we have

l1 ≤
∫ ∞

0
bτSb(τ )

∣
∣
∣
∣
S(εbη)
εbη

S
(
tbτ – εbη

)
u – S

(
tbτ

)
u
∣
∣
∣
∣dτ → 0, when η → 0.

On the other hand, since
∫ b

0 bτ 2Sb(τ ) dτ → 0 as b → 0, we have

l2 ≤ P|u|tb
∫ η

0
bτ 2Sb(τ ) dτ → 0, as η → 0.

Hence, there are relatively compact sets arbitrarily close to T (t) for every t > 0. Therefore,
the set T (t) is relatively compact in U for every t > 0. By Arzela–Ascoli’s theorem, H is
completely continuous.

Step 4: We have to prove that H is upper semicontinuous. First, we prove that H has a
closed graph.

Let uk → u∗ ∈ C(W , U), ϑk ∈H(uk) and ϑk → ϑ∗ ∈C(W , U). We prove that ϑ∗ ∈H(u∗).
In fact, ϑk ∈H(uk) implies there exists gk ∈ V(uk) such that

ϑk(t) = Cb(t)u0 + Kb(t)u1 +
∫ t

0
(t – s)b–1Tb(t – s)gk(s) ds

+
∫ t

0
(t – s)b–1Tb(t – s)Bx(s) ds, t ∈ W . (3.2)

Using (H2)(iii), {gk}k≥1 ∈ L2(W , U) is bounded. Then, moving to a subsequence, if neces-
sary, we obtain that

gk → g∗, weakly in L2(W , U). (3.3)

From (3.2), (3.3), and the compactness of the operator Tb, we see that

ϑk(t) → Cb(t)u0 + Kb(t)u1 +
∫ t

0
(t – s)b–1Tb(t – s)g∗(s) ds

+
∫ t

0
(t – s)b–1Tb(t – s)Bx(s) ds, t ∈ W . (3.4)

Note that ϑk → ϑ∗ in C(W , U) and gk ∈ V(uk). From Lemma 3.2 and (3.4), we have
g∗ ∈ V(u∗). Therefore, we get ϑ∗ ∈ H(u∗), thus H has a closed graph. By [25], H is up-
per semicontinuous.

From the above steps, we get that H is upper semicontinuous, compact and convex val-
ued, and H(Bp) is relatively compact.
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Step 5: A priori estimate.
We now prove that � is bounded to obtain that H has a fixed point, where � is

� =
{

u ∈C(W , U) : ϕu ∈H(u),ϕ > 1
}

.

For any u ∈ �, there exists g ∈ V(u) such that

u(t) = ϕ–1Cb(t)u0 + ϕ–1Kb(t)u1 + ϕ–1
∫ t

0
(t – s)b–1Tb(t – s)g(s) ds

+ ϕ–1
∫ t

0
(t – s)b–1Tb(t – s)Bx(s) ds.

Using (H2)(iii), we obtain

∥
∥u(t)

∥
∥

U

≤ ∥
∥Cb(t)u0

∥
∥

U +
∥
∥Kb(t)u1

∥
∥

U +
∫ t

0
(t – s)b–1∥∥Tb(t – s)g(s)

∥
∥

U ds

+
∫ t

0
(t – s)b–1∥∥Tb(t – s)Bx(s)

∥
∥

U ds

≤ P‖u0‖U + Pc‖u1‖U +
P

�(2b)

∫ t

0
(t – s)2b–1∥∥g(s)

∥
∥

U ds

+
P

�(2b)

∫ t

0
(t – s)2b–1∥∥Bx(s)

∥
∥

U ds

≤ P‖u0‖U + Pc‖u1‖U +
P

�(2b)

∫ t

0
(t – s)2b–1(β(s) + j

∥
∥u(s)

∥
∥

U

)
ds

+
P

�(2b)

∫ t

0
(t – s)2b–1‖B‖∥∥x(s)

∥
∥

U ds

≤ P‖u0‖U + Pc‖u1‖U +
P‖β‖L2(W ,R+)

�(2b)

(∫ t

0
(t – s)

2b–1
1–b1 ds

)1–b1

+
Pj

�(2b)

∫ t

0
(t – s)2b–1∥∥u(s)

∥
∥ds +

P
�(2b)

(∫ t

0
(t – s)

2b–1
1–b1 ds

)1–b1

‖B‖‖x‖L2(W ,Y )

≤ P‖u0‖U + Pc‖u1‖U +
Pc2b– 1

2√
4b – 1�(2b)

[‖β‖L2(W ,R+) + ‖B‖‖x‖L2(W ,Y )
]

+
Pj

�(2b)

∫ t

0
(t – s)2b–1∥∥u(s)

∥
∥

U ds

≤ ℘ +
Pj

�(2b)

∫ t

0
(t – s)2b–1∥∥u(s)

∥
∥

U ds, (3.5)

where

℘ = P‖u0‖U + Pc‖u1‖U +
Pc2b– 1

2√
4b – 1�(2b)

[‖β‖L2(W ,R+) + ‖B‖‖x‖L2(W ,Y )
]
.

From (3.5) and [39], we easily conclude that

∥
∥u(t)

∥
∥

U ≤ ℘Eb
(
Pjt2b).
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Therefore, � is bounded. Then by Theorem 2.13, H has a fixed point u, which is a mild
solution of system (3.1). The proof is finished. �

4 Approximate controllability of the linear system
Our focus here is on the approximate controllability of the following linear fractional sys-
tems:

⎧
⎨

⎩

CDr
t u(t) = Au(t) + Bx(t), t ∈ W := [0, c], 1 < r < 2,

u(0) = u0, u′(0) = u1 ∈ U .
(4.1)

In the continuation, let us define the bounded linear operator Q : L2(W , U) → U as
follows:

Qj =
∫ c

0
(c – s)b–1Tb(c – s)j(s) ds, j(·) ∈ L2(W , U).

Now, we examine the approximate controllability of (4.1) and introduce the following hy-
pothesis:

(H3) For any j(·) ∈ L2(W , U), there exists a function f (·) ∈ R(B) such that Qj = Qf , where
R(B) denotes the range of operator B and R(B) is the closure of R(B).

Theorem 4.1 If (H3) is satisfied, then system (4.1) is approximately controllable on W if
C(t) is a differentiable cosine family.

Proof Our main idea of the proof comes from the paper [17]. Since the domain D(A) of
the operator A is dense in U , it is sufficient to show that D(A) ⊂ Nc(0), that is, for any ε > 0
and � ∈ D(A), there exists x ∈ L2(W , Y ) such that

∥
∥� – Cb(c)u0 – Kb(c)u1 – QBx

∥
∥

U < ε. (4.2)

Firstly, for any u0, u1 ∈ U , we know that Cb(c)u0, Kb(c)u1 ∈ D(A), since C(t) is a differ-
entiable cosine family. Letting � ∈ D(A), we can be seen that there exists a function
j(·) ∈ L2(W , U) such that Qj = � – Cb(c)u0 – Kb(c)u1.

For example, we have

j(t) =
(�(2b))2(c – t)1–2b

c

(

Tb(c – t) + 2t
dTb(c – t)

dt

)
[
� – Cb(c)u0 – Kb(c)u1

]
,

with t ∈ (0, c).
Next, we prove that one can get a control function xα ∈ L2(W , Y ) such that the inequality

(4.2) holds. From (H3), we know that for j(·) ∈ L2(W , U), there exists f ∈ R(B) such that the
following equality holds:

Qj =
∫ c

0
(c – s)b–1Tb(c – s)j(s) ds =

∫ c

0
(c – s)b–1Tb(c – s)f (s) ds.

Since f ∈ R(B), given α > 0, there exists a control function xα ∈ L2(W , Y ) such that

‖Bxα – f ‖L2 <
�(2b)

P
√

4b – 1c
1
2 –2bα.
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Then for α > 0 and xα ∈ L2(W , Y ) from the above arguments, we obtain

∥
∥� – Cb(c)u0 – Kb(c)u1 – QBx

∥
∥

U = ‖Qj – QBxα‖U

= ‖Qf – QBxα‖U

≤
∫ c

0
(c – s)b–1∥∥Tb(c – s)

∥
∥
∥
∥Bxα(s) – f (s)

∥
∥

U ds

≤ P
�(2b)

(∫ c

0
(c – s)

2b–1
1–b1 ds

)1–b1

‖Bxα – f ‖U

≤ Pc2b– 1
2√

4b – 1�(2b)
‖Bxα – f ‖U < α.

Since α is arbitrary, we can deduce D(A) ⊂ Nc(0). The density of D(A) in U implies the
approximate controllability of system (4.1) on W and the proof is finished. �

We consider the two relevant operators connected with (4.1):

�c
0 =

∫ c

0
(c – s)b–1Tb(c – s)BB∗T∗

b (c – s) ds

and

R
(
α,�c

0
)

=
1

(αI,�c
0)

, α > 0,

where B∗, T∗
b (t) denote the adjoints of B and Tb(t), respectively.

Theorem 4.2 (Lemma 2.10 of [21]) The linear fractional control system (4.1) is approx-
imately controllable on W if and only if αR(α,�c

0) → 0 as α → 0+ in the strong operator
topology.

5 Approximate controllability for the semilinear case
In this section, we present our main result on approximate controllability of control system
(1.1). Firstly, for any u ∈ C(W , U) ⊂ L2(W , U), from Lemma 3.1, we know that V(u) �= ∅.
Therefore, for every α > 0, let us introduce the multivalued map Gα : C(W , U) → 2C(W ,U)

as follows:

Gα(u) =
{

j ∈C(W , U) : j(t) = Cb(t)u0 + Kb(t)u1 +
∫ t

0
(t – s)b–1Tb(t – s)g(s) ds

+
∫ t

0
(t – s)b–1Tb(t – s)Bxα(s) ds, g ∈ V(z)

}

,

where

xα(t) = B∗T∗
b (c – t)R

(
α,�c

0
)
[

uc – Cb(t)u0 – Kb(t)u1 –
∫ c

0
(c – υ)b–1Tb(c – υ)g(υ) dυ

]

.
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Theorem 5.1 If the hypotheses (H1), (H2)(i), and (H2)(ii) are satisfied and, in addition, if
there exists φ ∈ L2(W ,R+) such that

∥
∥∂G(t, u)

∥
∥

U ≤ φ(t), for a.e. t ∈ W , for all u ∈ U ,

then Gα has a fixed point on the interval W .

Proof The verification is similar to that of Theorem 3.3. To finish the work, we introduce
the straightforward interpretation of our proof. Obviously, for all u ∈ C(W , U),Gα(u) is
convex due to V(u). Now, we split our discussion into the following steps for clarity of
exposition:

Step 1: Hα maps bounded subsets into bounded subsets in C(W , U).
For any u ∈ B� = {u ∈C(W , U) : ‖u‖C ≤ �}, � > 0, ϑ ∈Hα(u), we have g ∈ V(u) such that

ϑ(t) = Cb(t)u0 + Kb(t)u1 +
∫ t

0
(t – s)b–1Tb(t – s)g(s) ds

+
∫ t

0
(t – s)b–1Tb(t – s)Bxα(s) ds, t ∈ W . (5.1)

Because ‖∂G(t, u)‖U ≤ φ(t), and from Hölder inequality, we get

∥
∥xα(t)

∥
∥

U

=
∥
∥
∥
∥B∗T∗

b (c – t)R
(
α,�c

0
)
[

uc – Cb(t)u0 – Kb(t)u1 –
∫ c

0
(c – υ)b–1Tb(c – υ)g(υ) dυ

]∥
∥
∥
∥

U

≤ ∥
∥B∗∥∥∥

∥T∗
b (c – t)

∥
∥

U

∥
∥R

(
α,�c

0
)∥
∥

U

×
∥
∥
∥
∥

[

uc – Cb(t)u0 – Kb(t)u1 –
∫ c

0
(c – υ)b–1Tb(c – υ)g(υ) dυ

]∥
∥
∥
∥

U

≤ ∥
∥B∗∥∥ P

�(2b)
1
α

[

‖uc‖U +
∥
∥Cb(t)u0

∥
∥

U +
∥
∥Kb(t)u1

∥
∥

U

+
∫ c

0
(c – υ)b–1∥∥Tb(c – υ)g(υ)

∥
∥

U dυ

]

≤ ∥
∥B∗∥∥ P

α�(2b)

[

‖uc‖U + P‖u0‖U + Pc‖u1‖U +
P

�(2b)

∫ c

0
(c – υ)2b–1∥∥g(υ)

∥
∥

U dυ

]

≤ ∥
∥B∗∥∥ P

α�(2b)

[

‖uc‖U + P‖u0‖U + Pc‖u1‖U

+
P

�(2b)

(∫ c

0
(c – υ)

2b–1
1–b1 dυ

)1–b1

‖φ‖L2(W ,R+)

]

≤ ∥
∥B∗∥∥ P

α�(2b)

[

‖uc‖U + P‖u0‖U + Pc‖u1‖U +
P‖φ‖L2(W ,R+)√

4b – 1�(2b)
c2b– 1

2

]

:= �. (5.2)

Using (5.2), we have

∥
∥ϑ(t)

∥
∥

U ≤ ∥
∥Cb(t)u0

∥
∥

U +
∥
∥Kb(t)u1

∥
∥

U +
∫ t

0
(t – s)b–1∥∥Tb(t – s)g(s)

∥
∥

U ds

+
∫ t

0
(t – s)b–1∥∥Tb(t – s)Bxα(s)

∥
∥

U ds
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≤ P‖u0‖U + Pc‖u1‖U +
P

�(2b)

∫ t

0
(t – s)2b–1∥∥g(s)

∥
∥ds

+
P

�(2b)

∫ t

0
(t – s)2b–1∥∥Bxα(s)

∥
∥

U ds

≤ P‖u0‖U + Pc‖u1‖U +
P‖φ‖L2(W ,R+)

�(2b)

(∫ t

0
(t – s)

2b–1
1–b1 ds

)1–b1

+
P

�(2b)

∫ t

0
(t – s)2b–1 ds‖B‖∥∥xα(t)

∥
∥

U

≤ P‖u0‖U + Pc‖u1‖U +
P

�(2b)

(‖φ‖L2(W ,R+)c2b– 1
2√

4b – 1
+

‖B‖�c2b

2b

)

.

Then, we get that Hα(B�) is bounded in C(W , U).
Step 2: Next, we prove that {Hα(u) : u ∈ B�} is equicontinuous.
Firstly, for any u ∈ B�, ϑ ∈Hα , there exists g ∈ V(u) such that

ϑ(t) = Cb(t)u0 + Kb(t)u1 +
∫ t

0
(t – s)b–1Tb(t – s)g(s) ds

+
∫ t

0
(t – s)b–1Tb(t – s)Bxα(s) ds, t ∈ W .

From the value of ‖xα(t)‖ as in (5.2) and thus Step 2 of Theorem 3.3, it follows that {Hα(u) :
u ∈ B�} is equicontinuous.

Step 3: For each positive constant �, set ϒ� = {u ∈ U : |u| ≤ �}. Obviously, ϒ� a bounded
subset in U . We need to check that for every � > 0 and t > 0,

T (t) =
{∫ ∞

0
bτSb(τ )S

(
tbτ

)
u dτ , u ∈ ϒ�

}

is relatively compact in U .
Let t > 0 be determined. For all η > 0 and 0 < ε ≤ t, define a subset in U by

Tε,η(t) =
{

S(εbη)
εbη

∫ ∞

η

bτSb(τ )S
(
tbτ – εbη

)
u dτ , u ∈ ϒ�

}

.

Clearly, for each fixed t > 0, Tε,η(t) is well-defined. Indeed, by using the uniform bounded-
ness of the cosine family τ ∈ (η,∞), we obtain that for any u ∈ ϒp,

∣
∣
∣
∣
S(εbη)
εbη

∫ ∞

η

bτSb(τ )S
(
tbτ – εbη

)
u dτ

∣
∣
∣
∣ ≤ P2|u|

∫ ∞

η

bτSb(τ )
(
tbτ + εbη

)
dτ

≤ 2P2|u|tb
∫ ∞

η

bτ 2Sb(τ ) dτ ≤ 2P2

�(2b)
|u|tb.

Hence, the set Tε,η(t) is relatively compact since S(εbη) is compact for εbη > 0.
Moreover, we have

∣
∣
∣
∣
S(εbη)
εbη

∫ ∞

η

bτSb(τ )S
(
tbτ – εbη

)
u dτ –

∫ ∞

0
bτSb(τ )S

(
tbτ

)
u dτ

∣
∣
∣
∣

≤
∣
∣
∣
∣
S(εbη)
εbη

∫ ∞

η

bτSb(τ )S
(
tbτ – εbη

)
u dτ –

∫ ∞

η

bτSb(τ )S
(
tbτ

)
u dτ

∣
∣
∣
∣
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+
∣
∣
∣
∣

∫ ∞

η

bτSb(τ )S
(
tbτ

)
u dτ –

∫ ∞

0
bτSb(τ )S

(
tbτ

)
u dτ

∣
∣
∣
∣

≤
∫ ∞

η

bτSb(τ )
∣
∣
∣
∣
S(εbη)
εbη

S
(
tbτ – εbη

)
u – S

(
tbτ

)
u
∣
∣
∣
∣dτ +

∫ η

0
bτSb(τ )

∣
∣S

(
tbτ

)
u
∣
∣dτ

:= l1 + l2.

Since

bτSb(τ )
∣
∣
∣
∣
S(εbη)
εbη

S
(
tbτ – εbη

)
u – S

(
tbτ

)
u
∣
∣
∣
∣ ≤ 2P2tbbτ 2Sb(τ )|u|

and

∫ ∞

0
bτ 2Sb(τ ) dτ =

2
�(1 + 2b)

,

we can see that

∫ ∞

0
bτSb(τ )

∣
∣
∣
∣
S(εbη)
εbη

S
(
tbτ – εbη

)
u – S

(
tbτ

)
u
∣
∣
∣
∣dτ

is uniformly convergent. Further, from the strong continuity of {S(t)}t>0, for τ ∈ (η,∞),
using Lemma 2.9, we get

∣
∣
∣
∣
S(εbη)
εbη

S
(
tbτ – εbη

)
u – S

(
tbτ

)
u
∣
∣
∣
∣

≤
∣
∣
∣
∣
S(εbη)
εbη

S
(
tbτ – εbη

)
u – S

(
tbτ – εbη

)
u
∣
∣
∣
∣ +

∣
∣S

(
tbτ – εbb

)
u – S

(
tbτ

)
u
∣
∣ → 0,

as b → 0. Hence, we get

l1 ≤
∫ ∞

0
bτSb(τ )

∣
∣
∣
∣
S(εbη)
εbη

S
(
tbτ – εbη

)
u – S

(
tbτ

)
u
∣
∣
∣
∣dτ → 0, when η → 0.

On the other hand, since
∫ b

0 bτ 2Sb(τ ) dτ → 0 as b → 0, we have

l2 ≤ P|u|tb
∫ η

0
bτ 2Sb(τ ) dτ → 0, as η → 0.

Therefore, there are relatively compact sets arbitrarily close to T (t) for every t > 0. Hence,
T (t) is relatively compact in U for any t > 0. From Arzela–Ascoli’s theorem, we get that,
for α > 0, Hα is completely continuous.

Step 4: We have to verify Hα is upper semicontinuous.
First, we need to verify Hα has a closed graph.
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Let uk → u∗ ∈ C(W , U), ϑk ∈ Hα(uk) and ϑk → ϑ∗ ∈ C(W , U). We prove that ϑ∗ ∈
Hα(u∗). In fact, ϑk ∈Hα(uk) means that there exists gk ∈ V(uk) such that

ϑk(t) = Cb(t)u0 + Kb(t)u1 +
∫ t

0
(t – s)b–1Tb(t – s)gk(s) ds

+
∫ t

0
(t – s)b–1Tb(t – s)BB∗T∗

b (c – t)R
(
α,�c

0
)

×
[

uc – Cb(t)u0 – Kb(t)u1 –
∫ c

0
(c – υ)b–1Tb(c – υ)gk(υ) dυ

]

ds. (5.3)

Using ‖∂G(t, u)‖U ≤ φ(t), {gk}k≥1 ⊆ L2(W , U) is bounded. Therefore, we may assume,
passing to a subsequence if necessary, that

gk → g∗ weakly in L2(W , U). (5.4)

From (5.3), (5.4), and the compactness of the operator Tb(t), we have

ϑk(t) → Cb(t)u0 + Kb(t)u1 +
∫ t

0
(t – s)b–1Tb(t – s)g∗(s) ds

+
∫ t

0
(t – s)b–1Tb(t – s)BB∗T∗

b (c – t)R
(
α,�c

0
)

×
[

uc – Cb(t)u0 – Kb(t)u1 –
∫ c

0
(c – υ)b–1Tb(c – υ)g∗(υ) dυ

]

ds,

t ∈ W . (5.5)

Note that ϑk → ϑ∗ in C(W , U) and gk ∈ V(uk). From Lemma 3.2 and (5.5), we have g∗ ∈
V(u∗). Therefore, we get ϑ∗ ∈ Hα(u∗), and so Hα has a closed graph. From [25], Hα is
upper semicontinuous.

From the above steps, we get that Hα is upper semicontinuous, compact and convex
valued, and Hα(B�) is relatively compact.

Step 5: A priori estimate.
We show that � is bounded to get that Hα has a fixed point, where � is

� =
{

u ∈C(W , U) : u ∈ ϕHα(u),ϕ > 1
}

.

Let for any u ∈ �, there exists g ∈ V(u) such that

u(t) = ϕ–1Cb(t)u0 + ϕ–1Kb(t)u1 + ϕ–1
∫ t

0
(t – s)b–1Tb(t – s)g(s) ds

+ ϕ–1
∫ t

0
(t – s)b–1Tb(t – s)B

(

B∗T∗
b (c – t)R

(
α,�c

0
)

×
[

uc – Cb(t)u0 – Kb(t)u1 –
∫ c

0
(c – υ)b–1Tb(c – υ)g(υ) dυ

])

ds.
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Using (H2)(iii), we have

∥
∥u(t)

∥
∥

U ≤ ∥
∥Cb(t)u0

∥
∥

U +
∥
∥Kb(t)u1

∥
∥

U +
∫ t

0
(t – s)b–1∥∥Tb(t – s)g(s)

∥
∥

U ds

+
∫ t

0
(t – s)b–1∥∥Tb(t – s)B

∥
∥

U

∥
∥
∥
∥

(

B∗T∗
b (c – t)R

(
α,�c

0
)

×
[

uc – Cb(t)u0 – Kb(t)u1 –
∫ c

0
(c – υ)b–1Tb(c – υ)g(υ) dυ

])∥
∥
∥
∥

U
ds.

Using (5.2), we have

∥
∥u(t)

∥
∥

U = P‖u0‖U + Pc‖u1‖U +
P‖φ‖L2(W ,R+)√

4b – 1�(2b)
c2b– 1

2 +
P2‖B‖2c2b

α�(2b + 1)�(2b)

×
[

‖uc‖U + P‖u0‖U + Pc‖u1‖U +
P‖φ‖L2(W ,R+)√

4b – 1�(2b)
c2b– 1

2

]

.

Therefore, � is bounded. Then, by Theorem 2.13, one can get that Hα has a fixed point
and the proof is finished. �

Next, we will prove the main results of this article.

Theorem 5.2 If the hypotheses of Theorem 5.1 are satisfied, then (1.1) is approximately
controllable on the interval W if the system (4.1) is approximately controllable on the same
interval W .

Proof In the previous Theorem 5.1, we proved that the operator Hα has a fixed point
in C(W , U) for any α > 0. Let uα be a fixed point of Hα in C(W , U). Hence, there exists
gα ∈ V(uα) such that for any t ∈ W ,

uα(t) = Cb(t)u0 + Kb(t)u1 +
∫ t

0
(t – s)b–1Tb(t – s)gα(s) ds

+
∫ t

0
(t – s)b–1Tb(t – s)B

(

B∗T∗
b (c – t)R

(
α,�c

0
)

×
[

uc – Cb(t)u0 – Kb(t)u1 –
∫ c

0
(c – υ)b–1Tb(c – υ)gα(υ) dυ

])

ds.

Considering I → �c
0R(α,�c

0) = αR(α,�c
0), we obtain

uα(c) = uc – αR
(
α,�c

0
)
P

(
gα

)
,

where

P
(
gα

)
= uc – Cb(c)u0 – Kb(c)u1 –

∫ c

0
(c – υ)b–1Tb(c – υ)gα(υ) dυ.

Because ‖∂G(t, u)‖U ≤ φ(t), we get

∫ c

0

∥
∥gα(s)

∥
∥ds ≤ ‖φ‖L2(W ,R+)

√
c.
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Further, the sequence {gα} is bounded in L2(W , U). Hence, there is a subsequence, still
denoted by {gα}, which converges weakly to g ∈ L2(W , U). Denote

j = uc – Cb(c)u0 – Kb(c)u1 –
∫ c

0
(c – υ)b–1Tb(c – υ)gα(υ) dυ.

Because the corresponding linear system (4.1) is approximately controllable, by Theo-
rem 4.2, we have

αR
(
α,�c

0
) → 0 as α → 0.

Then

∥
∥P

(
gα

)
– j

∥
∥ =

∥
∥
∥
∥

∫ c

0
(c – υ)b–1Tb(c – υ)

[
gα(υ) – g(υ)

]
dυ

∥
∥
∥
∥

≤ sup
t∈W

∥
∥
∥
∥

∫ t

0
(t – υ)b–1Tb(t – υ)

[
gα(υ) – g(υ)

]
dυ

∥
∥
∥
∥ → 0,

as α → 0+, due to the compactness of the operator

g →
∫ ·

0
(· – υ)b–1Tb(· – υ)g(υ) dυ : L1(W , U) →C(W , U).

Therefore, we get by the previous arguments

∥
∥uα(c) – uc

∥
∥ ≤ ∥

∥αR
(
α,�c

0
)
P

(
gα

)∥
∥

≤ ∥
∥αR

(
α,�c

0
)
(j)

∥
∥ +

∥
∥αR

(
α,�c

0
)[
P

(
gα

)
– j

]∥
∥

≤ ∥
∥αR

(
α,�c

0
)
(j)

∥
∥ +

∥
∥P

(
gα

)
– j

∥
∥, as α → 0+.

Hence, the system (1.1) is approximately controllable on W and the proof is finished. �

Remark 5.3 The idea of “nonlocal conditions” has been introduced by Byszewski [8] for
the augmentation of issues dependent on classical conditions. When comparing nonlocal
and classical initial conditions, which are more precise to depict the nature marvels, since
more information is considered, along these lines we lessen the negative impacts initiated
by a potentially incorrect single estimation taken toward the beginning time. For excep-
tionally valuable discussion about differential systems under nonlocal conditions, one can
refer to [5, 8, 11, 12, 16, 26–29, 33, 35–38]. The nonlocal term h has a superior impact
on the solution and is more accurate for physical measurements than the classical condi-
tion u(0) = u0 alone. For example, h(u) can be presented by h(u) =

∑n
i=1 ciu(ti), where ci

(i = 1, 2, 3, . . . , m) are the constants and 0 < t1 < · · · < tm ≤ c. Inspired by this fact and [5],
we may extend our current work to the fractional system with nonlocal conditions too, by
replacing the equation u(0) = u0 + h(u) and introducing the required hypothesis related to
the function h.
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6 Application
Let � ⊂R

N be a bounded domain with sufficiently smooth boundary and U = Y = L2(�).
As an application of the obtained theory, we consider a control system which is repre-
sented by fractional partial differential systems of the form

⎧
⎪⎪⎨

⎪⎪⎩

∂r
t u(t, v) = �u(t, v) + μ(t, v) + E(t, v), t ∈ W , v ∈ �,

u(t, v) = 0, t ∈ W , v ∈ ∂�,

u(0, v) = u0(v), u′(0, v) = u1(v), v ∈ �,

(6.1)

where ∂r
t is the Caputo fractional partial derivative of order 1 < r < 2 and x(t)(v) = μ(t, v).

The bounded linear operator B is defined by Bx = μ(t, v), t ∈ W , 0 ≤ v ≤ 1, x ∈ U . Let us
consider E(t, v) = E(t, v) + E(t, v), where E(t, v) is provided and E(t, v) is a known function
of the temperature of the form

–E(t, v) ∈ ∂G
(
t, v, u(t, v)

)
, (t, v) ∈ W × �.

In this place, G = G(t, v, ζ ) is a locally Lipschitz energy function which is generally non-
smooth and nonconvex; ∂G denotes the generalized Clarke’s gradient in the third vari-
able ζ [9]. A simple example of a function G which satisfies hypothesis (H2) is G(ζ ) =
min{j1(ζ ), j2(ζ )}, where jk : R →R (k = 1, 2) are convex quadratic functions [23]. Dynamic
systems modeled by (6.1) arise in the theory of contact mechanics for elastic bodies in
many engineering applications. In such a framework, the set � stands for a planar de-
formable purely elastic body which remains in contact with another medium introducing
frictional effects. In the system of small deformations, the body is subjected to nonmono-
tone friction skin effects (skin friction, adhesion, etc.), E is the reaction force of the con-
straint introducing the skin effect (e.g., due to the gluing material), u is the displacement
field.

Let A be the Laplace operator with Dirichlet boundary conditions given by A = � and

D(A) =
{

g ∈ H1
0 (�), Ag ∈ L2(�)

}
.

Clearly, we have D(A) = H1
0 (�) ∩ H2(�). An operator A produces C(t) for t ≥ 0 (refer to

[7]).
Indeed, let ψk = k2π2 and φk(v) =

√
(2/π ) sin(kπv), ∀k ∈ N. Let {–ψk ,φk}∞k=1 be the eigen-

system of operator A, then 0 < ψ1 ≤ ψ2 ≤ · · · , ψk → ∞ as k → ∞, and {φk}∞k=1 form an
orthonormal basis of U . Next,

Au = –
∞∑

k=1

ψk〈u,φk〉φk , u ∈ D(A),

where 〈·, ·〉 denotes an inner product in U . Then the cosine family is given by

C(t)u =
∞∑

k=1

cos(
√

ψkt)〈u,φk〉φk , u ∈ U ,
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and the sine family S(t) associated with cosine family is given by

S(t)u =
∞∑

k=1

1√
ψk

sin(
√

ψkt)〈u,φk〉φk , u ∈ U .

Clearly, C(t) is compact for t ≥ 0 and ‖C(t)‖Lc(U) ≤ 1, for all t ∈ R. Let the infinite-
dimensional Hilbert space Y be defined by

Y :=

{

x : x =
∞∑

k=2

xkφk ,
∞∑

k=2

x2
k < ∞

}

.

The norm in Y is defined by ‖x‖Y = (
∑∞

k=2 x2
k) 1

2 . Define the mapping B ∈ L(W , U) as fol-
lows:

Bx = 2x2φ1 +
∞∑

k=2

xkφk for x =
∞∑

k=2

xkφk ∈ Y ,

also let y =
∑∞

k=1 ykφk ∈ U , and consider the inner product 〈Bx, y〉 = 〈x, B∗y〉. Then

B∗y = (2y1 + y2)φ2 +
∞∑

k=3

ykφk ,

and

B∗C∗(t)u =
(
2u1φ

–t + u2φ
–4t)φ2 +

∞∑

k=3

cos(
√

φkt)ukφk .

It follows that having ‖BC∗(t)u‖U = 0 for some t ∈ W , implies u = 0. Hence, the linear
control system corresponding to (6.1) is approximately controllable on W .

Thus, all the assumptions of Theorem 5.2 are satisfied. Therefore (6.1) is approximately
controllable on W .

7 Conclusion
In our paper, we discussed the approximate controllability of fractional evolution inclu-
sions with hemivariational inequalities of order 1 < r < 2. Initially, we presented the exis-
tence of the mild solution for the class of fractional systems. After that, we established the
approximate controllability of linear and semilinear control systems. In the end, an appli-
cation was presented to illustrate our theoretical results. In our future work, the focus will
be on the hemivariational inequalities for the exact controllability of fractional differential
system having order r ∈ (1, 2) via a measure of noncompactness.
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