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Abstract
Ablowitz–Kaup–Newell–Segur (AKNS) linear spectral problem gives birth to many
important nonlinear mathematical physics equations including nonlocal ones. This
paper derives two fractional order AKNS hierarchies which have not been reported in
the literature by equipping the AKNS spectral problem and its adjoint equations with
local fractional order partial derivative for the first time. One is the space-time
fractional order isospectral AKNS (stfisAKNS) hierarchy, three reductions of which
generate the fractional order local and nonlocal nonlinear Schrödinger (flnNLS) and
modified Kortweg–de Vries (fmKdV) hierarchies as well as reverse-t NLS (frtNLS)
hierarchy, and the other is the time-fractional order non-isospectral AKNS (tfnisAKNS)
hierarchy. By transforming the stfisAKNS hierarchy into two fractional bilinear forms
and reconstructing the potentials from fractional scattering data corresponding to
the tfnisAKNS hierarchy, three pairs of uniform formulas of novel N-fractal solutions
with Mittag-Leffler functions are obtained through the Hirota bilinear method (HBM)
and the inverse scattering transform (IST). Restricted to the Cantor set, some obtained
continuous everywhere but nondifferentiable one- and two-fractal solutions are
shown by figures directly. More meaningfully, the problems worth exploring of
constructing N-fractal solutions of soliton equation hierarchies by HBM and IST are
solved, taking stfisAKNS and tfnisAKNS hierarchies as examples, from the point of view
of local fractional order derivatives. Furthermore, this paper shows that HBM and IST
can be used to construct some N-fractal solutions of other soliton equation
hierarchies.

Keywords: Fractional order isospectral AKNS hierarchy; Fractional order
non-isospectral AKNS hierarchy; Local fractional order partial derivative; N-fractal
solutions with Mittag-Leffler functions; Hirota bilinear method; Inverse scattering
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1 Introduction
It is well known that AKNS spectral equation [1] is an important linear problem, from
which and its associated time evolution equations of eigenfunctions abundant nonlinear
partial differential equations (PDEs) [2, 3] have been derived, such as the KdV equation,
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mKdV equation, NLS equation, Burgers equation, sinh-Gordon (sG) equation, loop soli-
ton equations, Harry–Dym (HD) equation, Heisenberg ferromagnet (HF) equation, and
the N-wave equations. Besides, from the same AKNS linear problem, isopsectral and non-
isospectral hierarchies of nonlinear PDEs can be derived. Researchers often called such de-
rived hierarchies the isospsectral AKNS (isAKNS) hierarchies and non-isospectral AKNS
(nisAKNS) hierarchies, respectively. It was Ablowitz et al. [1] who first solved the isAKNS
equations by IST. In 1998, Gesztesy and Ratnaseelan [4] obtained algebro-geometric solu-
tions of the AKNS hierarchy based on elementary algebraic methods. In 2004, Ning et al.
[5] solved the nisAKNS hierarchy by IST. In 2008, Yin et al. [6] solved the isAKNS hierar-
chy by its bilinear form. In 2012, Chen et al. [7] solved the isAKNS hierarchy by HBM. In
2017, Zhang and Gao [8] solved a generalized isAKNS hierarchy by HBM. In 2018, Zhang
and Hong [9] solved a generalized isAKNS hierarchy by IST. In 2018, Zhang and Hong [10]
solved a generalized nisAKNS hierarchy by IST. Recently, some nonlocal integrable evo-
lution equations [11, 12] have been found from the symmetry reductions of the isAKNS
hierarchy. In 2011, Wu and Zhang [13] constructed Hamiltonian structures of a fractional
AKNS hierarchy by a generalized Tu formula. In 2020, Gao et al. [14] solved the (2 + 1)-
dimensional AKNS equation with conformable derivatives and a perturbation parameter
by the sine-Gordon expansion method. However, to the best of our knowledge, there are
no reports on HBM, IST, and fractal solutions for fractional AKNS equations.

The aim of this paper is to derive the stfisAKNS hierarchy

Dα
t

(
u
v

)
= Lmα

(
–u
v

)
(m = 1, 2, . . .), (1)

with the fractional order operator
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(
–Dα

x + 2uIα
x,av 2uIα

x,au
–2vIα

x,av Dα
x – 2vIα

x,au

)
, (2)

and the tfnisAKNS hierarchy
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(
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with the following operator:
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–∞
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(4)

and then solve the fractional order AKNS hierarchies (1) and (3) by extending HBM [15]
and IST [1], respectively. Here, Dα

x and Iα
x,a represent the local fractional order partial

derivative operator [16]

Dα
x φ(x, t) = �(1 + α) lim

ε→0

φ(x + ε, t) – φ(x, t)
εα

(0 < α ≤ 1) (5)
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and the local fractional integral operator [16]

Iα
x,aϕ(x, t) =

1
�(1 + α)

∫ x

a
ϕ(ω, t)(dω)α (0 < α ≤ 1) (6)

for any nondifferentiable functions φ(x, t) and ϕ(x, t) defined on a fractal set 
, respec-
tively. The concept of local fractional derivative was first proposed by Kolwankar and
Gangal [17], and it has received continuous developments and extensive applications like
[18–25]. In addition, this article will show some obtained fractal solutions for more in-
sights into novel nonlinearities hidden behind the fractional order models.

The rest of this article consists of four parts: Sect. 2 derives the stfisAKNS and
tfnisAKNS hierarchies and gives three reductions for the fractional order nonlocal hier-
archies of evolution equations; Sect. 3 constructs N-fractal solutions with Mittag-Leffler
functions of the stfisAKNS hierarchy by considering two fractional order bilinear forms
and shows the obtained one- and two-fractal solutions restricted to the Cantor set; Sect. 4
extends IST for constructing N-fractal solutions with Mittag-Leffler functions of the
tfnisAKNS hierarchy and shows the obtained one-fractal solutions restricted to the Can-
tor set; Sect. 5 concludes this article.

2 Derivations of the fractional order AKNS hierarchies
Based on the Lax scheme [26], this section derives the stfisAKNS and tfnisAKNS hierar-
chies (1) and (3).

2.1 Fractional order isospectral AKNS hierarchy
Theorem 1 Suppose

A = Iα
x,a(v, u)

(
–B
C

)
–

1
2
(
2iαk

)m, (7)

where iα is the necessary formal imaginary number unit [16] to connect the relationships
between Mittag-Leffler functions and trigonometric functions defined in a fractal set 
.
Then the stfisAKNS hierarchy (1) can be derived from the fractional order zero curvature
equation, i.e., the fractional order compatibility condition

Dα
t U – Dα

x V + [U , V ] = 0, [U , V ] ≡ UV – VU (8)

of the following fractional order linear spectral problem:

Dα
x F = UF , U =

(
–iαk u

v iαk

)
, F =

(
F1

F2

)
, (9)

and its associated time-fractional order evolution equation

Dα
t F = VF , V =

(
A B
C –A

)
. (10)

Here, u = u(x, t) and v = v(x, t) and their local fractional order derivatives with respect to x
and t are all nondifferentiable functions, iαk is the spectral parameter being independent
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of x and t, while A, B, and C are all undetermined local fractional differentiable functions
of x, t, u, v, and k.

Proof On the one hand, from Eq. (9) we obtain the α-order local fractional derivative with
respect to t:

Dα
t
(
Dα

x F
)

=
(
Dα

t U
)
F + U

(
Dα

t F
)
. (11)

On the other hand, the local fractional derivative of Eq. (10) with respect to x gives

Dα
x
(
Dα

t F
)

=
(
Dα

x V
)
F + V

(
Dα

x F
)
. (12)

Since u, v, A, B, and C are all local fractional differentiable functions, F is local frac-
tional continuous (see Definition 1.2 of [25]), and then we have Dα

x (Dα
t F) = Dα

t (Dα
x F) from

Theorem 3 in [25]. Thus, Eqs. (9)–(12) lead to

(
Dα

t V + UV
)
F =

(
Dα

x V + VU
)
F , (13)

which is namely Eq. (8) by using the arbitrariness of F .
Substituting the matrices U and V of Eqs. (9) and (10) into Eq. (8) yields

Dα
x A = uC – vB, (14)

Dα
t u = Dα

x B + 2iαkB + 2uA, Dα
t v = Dα

x C – 2iαkC – 2vA. (15)

In view of Eq. (7), we rewrite Eqs. (14) and (15) as

Dα
t
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u
v

)
= Lα

(
–B
C

)
– 2iαk

(
–B
C

)
+

(
2iαk

)m
(

–u
v

)
. (16)

Further supposing

(
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C

)
=

m∑
l=1

(
–bl

cl

)(
2iαk

)m–l (17)

and substituting it into Eq. (16), then comparing the coefficients of the same powers of
2iαk in Eq. (17), we have

(
2iαk
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)
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(
–bl

cl

)
= Lα

(
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=
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)
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Equations (19) and (20) give

(
–bm

cm

)
= L(m–1)α

(
–u
v

)
. (21)

Finally, the substitution of Eq. (21) into Eq. (18) leads to the stfisAKNS hierarchy (1). �

2.2 Fractional order non-isospectral AKNS hierarchy
Theorem 2 Let the spectral parameter ik satisfy

Dα
t (ik) =

1
2

(2ik)m, (22)

and suppose

A = ∂–1(v, u)

(
–B
C

)
–

1
2

(2ik)mx, (23)

then the time-fractional order zero curvature equation

Dα
t U – Vx + [U , V ] = 0, (24)

i.e., the time-fractional order compatibility condition of the following linear spectral prob-
lem:

Fx = UF , U =

(
–ik u
v ik

)
, F =

(
F1

F2

)
, (25)

and its associated time-fractional order evolution Eq. (10) generate the tfnisAKNS hierar-
chy (3). Here, u = u(x, t), v = v(x, t) and their integer order derivatives with respect to x are
all smooth functions, but u = u(x, t), v = v(x, t) and their fractional order derivatives with
respect to t are all nondifferentiable functions.

Proof In a similar way to the proof of Theorem 1, with the help of the matrices U and V
of Eqs. (25) and (10), we convert Eq. (24) into

Ax = uC – vB –
1
2

(2ik)m, (26)

Dα
t u = Bx + 2ikB + 2uA, Dα

t v = Cx – 2ikC – 2vA, (27)

which can be written as

Dα
t

(
u
v

)
= Lα

(
–B
C

)
– 2ik

(
–B
C

)
+ (2ik)m

(
–xu
xv

)
(28)

by using Eq. (23). Introducing [3]

(
–B
C

)
=

m∑
l=1

(
–bl

cl

)
(2ik)m–l (29)
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and substituting it into Eq. (28), then comparing the coefficients of the same powers of 2ik
in Eq. (28) yield

(2ik)0 : Dα
t

(
u
v

)
= L

(
–bm

cm

)
, (30)

(2ik)m+1–l :

(
–bl

cl

)
= L

(
–bl–1

cl–1

)
(l = 2, . . . , m), (31)

(2ik)m :

(
–b1

c1

)
=

(
–xu
xv

)
. (32)

Then we have
(

–bm

cm

)
= Lm–1

(
–xu
xv

)
, (33)

and hence we reach the tfnisAKNS hierarchy (3). �

2.3 Nonlocal and reverse-t reductions of stfisAKNS hierarchy
Conveniently, we rewrite the stfisAKNS hierarchy (1) as the following equivalent form:

Dα
tm+1

(
u
v

)
= Kα

m =

(
Kα

1,m

Kα
2,m

)
= LαDα

tm

(
u
v

)
(m = 1, 2, . . .) (34)

by introducing the variables t1 = x, t2, t3, . . . and treating u and v as two infinite-dimensional
functions of these variables.

As special cases of Eq. (34), we would like to give three reductions. The first one is the
flnNLS hierarchy

iαuα
t2s = Kα,flnNLS

2s = –Kα
1,2s|(36) (s = 1, 2, . . .) (35)

reduced from Eq. (34) with transformation

v(x, t) = δu∗(σx, t), δ,σ = ±1, t → iαt, t ∈ R, (36)

the representative of which is the flnNLS equation

iαDα
t2 u = Kα,flnNLS

2 = D2α
x u – 2δu2u∗(δx, t). (37)

The second one is the frtNLS hierarchy

uα
t2s = Kα,frtNLS

2s = Kα
1,2s|(39) (s = 1, 2, . . .) (38)

reduced from Eq. (34) with transformation

v(x, t) = δu(σx, –t), δ,σ = ±1, (39)



Xu et al. Advances in Difference Equations        (2021) 2021:223 Page 7 of 27

one representative of which is the frtNLS equation

Dα
t2 u = Kα,NLS

2 = –D2α
x u + 2δu2u(δx, –t). (40)

And the last one is the fmKdV hierarchy

uα
t2s+1 = Kα,fmKdV

2s+1 = Kα
1,2s+1|(42) (s = 1, 2, . . .) (41)

reduced from Eq. (34) with transformation

v(x, t) = δu(σx,σ t), δ,σ = ±1, (42)

one representative of which is the fmKdV equation

Dα
t3 u = Kα,fmKdV

3 = D3α
x u – 6δu

(
Dα

x u
)
u(δx,σ t). (43)

3 HBM for N-fractal solutions of the stfisAKNS hierarchy
To construct N-fractal solutions, we first derive the fractional bilinear forms of the stfi-
AKNS hierarchy (34). We then employ two reduced fractional bilinear forms to construct
N-fractal solutions.

3.1 Fractional bilinear forms
Theorem 3 Letting

u =
g
f

, v =
h
f

, (44)

then the stfiAKNS hierarchy (34) can be bilinearized as

(
Hα

tm+1 + Hα
x Hα

tm

)
g · f = fgIα

x,0

{
Dα

tm

[
1
f 2

(
H2α

x f · f + 2gh
)]}

, (45)

(
Hα

tm+1 – Hα
x Hα

tm

)
h · f = –fhIα

x,0

{
Dα

tm

[
1
f 2

(
H2α

x f · f + 2gh
)]}

, (46)

where Hα
tm+1 , Hα

tm , and Hα
x are local fractional versions [27] of the Hirota bilinear operator

[15].

Proof We write the component forms of Eq. (34) as

Dα
tm+1 u + D2α

tm ,xu = 2uIα
x,0

[
Dα

tm (uv)
]
, (47)

Dα
tm+1 v – D2α

tm ,xv = –2vIα
x,0

[
Dα

tm (uv)
]
. (48)

In view of Eq. (44), we have

Dα
tm+1 u =

Dα
tm+1 gDα

x f – gDα
tm+1 f

f 2 , (49)
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D2α
tm ,xu =

(D2α
tm+1,xg)f – Dα

tm+1 gDα
x f – Dα

x gDα
tm+1 f – gD2α

tm+1,xf
f 2 +

2gDα
x fDα

tm+1 f
f 3 , (50)

2uIα
x,0

[
Dα

tm (uv)
]

=
2g
f

Iα
x,0Dα

tm

gh
f 2 . (51)

Using Eqs. (49)–(51), we convert the left- and right-hand sides of Eq. (47) into

LHS =
Dα

tm+1 gDα
x f – gDα

tm+1 f
f 2

+
(D2α

tm+1,xg)f – Dα
tm+1 gDα

x f – Dα
x gDα

tm+1 f + gD2α
tm+1,xf

f 2 , (52)

RHS =
2gD2α

tm+1,xf
f 2 –

2gDα
x fDα

tm+1 f
f 3 +

2g
f

Iα
x,0Dα

tm

gh
f 2

=
2g
f

Iα
x,0

{
Dα

tm

[
(D2α

x f )f – (Dα
x f )2 + gh

f 2

]}
. (53)

With the help of Eqs. (52) and (53), we can rewrite Eq. (47) as Eq. (45) by employing the
fractional order Hirota bilinear operators. In a similar way we reach Eq. (48). Thus, we
finish the proof. �

Generally, if we construct N-fractal solutions of the stfisANKS hierarchy (34) directly by
using Eqs. (45) and (46), the calculation is relatively complex and difficult. Inspired by the
work [7], this section employs two reductions of the fractional bilinear forms (45) and (46)
to construct fractional N-fractal solutions. The one adopts the constraint H2α

x f · f +2gh = 0,
and the other weakens this constraint by letting H2α

x f · f + 2gh = a2f 2, here a is a constant.

3.2 First reduced bilinear forms and N-fractal solutions
We set

H2α
x f · f + 2gh = 0, (54)

then the fractional order bilinear forms (45) and (46) become

(
Hα

tm+1 + Hα
x Hα

tm

)
g · f = 0, (55)(

Hα
tm+1 – Hα

x Hα
tm

)
h · f = 0. (56)

For the fractional one-fractal solutions, we assume that

f = 1 + ε2f (2) + ε4f (4) + · · · + ε2jf (2j) + · · · , (57)

g = ε1g(1) + ε3g(3) + · · · + ε2j+1g(2j+1) + · · · , (58)

h = ε1h(1) + ε3h(3) + · · · + ε2j+1h(2j+1) + · · · , (59)
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and substitute Eqs. (57)–(59) into Eqs. (54)–(56). Collecting the coefficients of the same
order of ε yields a system of fractional differential equations as follows:

Dα
tm+1 g(1) + D2α

tm ,xg(1) = 0, (60)

Dα
tm+1 h(1) – Dα

tm ,xh(1) = 0, (61)

D2α
x f (2) + g(1)h(1) = 0, (62)(

Dα
tm+1 + Dα

tm ,x
)
g(3) = –

(
Hα

tm+1 + Hα
x Hα

tm

)
g(1)f (2), (63)(

Dα
tm+1 – Dα

tm ,x
)
h(3) = –

(
Hα

tm+1 – Hα
x Hα

tm

)
h(1)f (2), (64)

2D2α
x f (4) = –H2α

x f (2)f (2) – 2
(
g(1)h(3) + g(3)h(1)), (65)(

Dα
tm+1 + Dα

tm ,x
)
g(5) = –

(
Hα

tm+1 + Hα
x Hα

tm

)(
g(1)f (4) + g(3)f (2)), (66)(

Dα
tm+1 – Dα

tm ,x
)
h(5) = –

(
Hα

tm+1 – Hα
x Hα

tm

)(
h(1)f (4) + h(3)f (2)), (67)

2D2α
x f (6) = –H2α

x f (2)f (4) – 2
(
g(1)h(5) + g(3)h(3) + g(5)h(1)), (68)

...

and so forth. Letting

g(1) = Eα

(
ξα

1
)
, ξ1 = k1x +

∞∑
m=1

w1,m+1tm+1 + ξ
(0)
1 , (69)

h(1) = Eα

(
ηα

1
)
, η1 = p1x +

∞∑
m=1

q1,m+1tm+1 + η
(0)
1 , (70)

from Eqs. (60) and (61) we have

wα
1,m+1 = –kα

1 wα
1,m, wα

1,1 = kα
1 , (71)

qα
1,m+1 = pα

1 qα
1,m, qα

1,1 = pα
1 . (72)

In view of Eq. (62), we suppose that

f (2) = Eα

(
ξα

1 + ηα
1 + θα

13
)
, (73)

where θα
13 is a constant determined later and the Mittag-Leffler function is defined on a

fractal set 
 [16]:

Eα

(
μα

)
=

∞∑
k=0

μkα

�(1 + kα)
. (74)

Then Eqs. (69), (70), and (73) hint

Eα

(
θα

13
)

= –
1

(k1 + k2)2 . (75)
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Substituting Eqs. (69)–(74) into Eqs. (63)–(65) and setting

g(3) = h(3) = f (4) = · · · = 0, (76)

we can see that Eq. (61) and the equations behind all hold. In this case, we write

f1 = 1 + Eα

(
ξα

1 + ηα
1 + θα

13
)
, g1 = Eα

(
ξα

1
)
, h1 = Eα

(
ηα

1
)
, (77)

and hence we obtain the fractional one-fractal solutions of the stfisAKNS hierarchy (34):

u =
Eα(ξα

1 )
1 + Eα(ξα

1 + ηα
1 + θα

13)
, v =

Eα(ηα
1 )

1 + Eα(ξα
1 + ηα

1 + θα
13)

. (78)

The one-fractal solutions (78) restricted to the Cantor set are shown in Figs. 1–3, where
the parameters k1 = i and p1 = 0.5.

For the two-fractal solutions, we assume that

g(1) = Eα

(
ξα

1
)

+ Eα

(
ξα

2
)
, ξi = kix +

∞∑
m=1

wi,m+1tm+1 + ξ
(0)
i (i = 1, 2), (79)

h(1) = Eα

(
ηα

1
)

+ Eα

(
ηα

2
)
, ηi = pix +

∞∑
m=1

qi,m+1tm+1 + η
(0)
i (i = 1, 2), (80)

Figure 1 Space-time structures of one-fractal solutions (78) with α = ln2/ ln 3.

Figure 2 Profiles along the t2 axis of one-fractal solutions (78) with α = ln2/ ln 3.
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Figure 3 Profiles along the x axis of one-fractal solutions (78) with α = ln2/ ln 3.

and substitute Eqs. (79) and (80) into Eqs. (60) and (61). Then the resulting equations show

wα
2,m+1 = –kα

2 wα
2,m, wα

2,1 = kα
2 , (81)

qα
2,m+1 = pα

2 qα
2,m, qα

2,1 = pα
2 . (82)

In view of Eq. (57), we further let

f (2) = Eα

(
ξα

1 + ηα
1 + θα

13
)

+ Eα

(
ξα

1 + ηα
2 + θα

14
)

+ Eα

(
ξα

2 + ηα
1 + θα

23
)

+ Eα

(
ξα

2 + ηα
2 + θα

24
)
, (83)

where θα
14, θα

23, and θα
24 are constants. Substituting Eq. (83) into Eq. (62) yields

Eα

(
θα

14
)

= –
1

(k1 + l2)2 , Eα

(
θα

23
)

= –
1

(k2 + l1)2 , Eα

(
θα

24
)

= –
1

(k2 + l2)2 . (84)

Taking into consideration Eq. (63), we select

g(3) = Eα

(
ξα

1 + ξα
2 + ηα

1 + θα
12 + θα

13 + θα
23

)
+ Eα

(
ξα

1 + ξα
2 + ηα

2 + θα
12 + θα

14 + θα
24

)
, (85)

where θα
12 is a constant. We then obtain from Eq. (63)

Eα

(
θα

12
)

= –(k1 – k2)2. (86)

In view of Eqs. (64) and (65), we set

h(3) = Eα

(
ξα

1 + ηα
1 + ηα

2 + θα
13 + θα

14 + θα
34

)
+ Eα

(
ξα

2 + ηα
1 + ηα

2 + θα
23 + θα

24 + θα
34

)
, (87)

f (4) = Eα

(
ξα

1 + ξα
2 + ηα

1 + ηα
2 + θα

12 + θα
13 + θα

14 + θα
23 + θα

24 + θα
34

)
, (88)

and then obtain

Eα

(
θα

34
)

= –(p1 – p2)2. (89)

Substituting Eqs. (86)–(89) into Eq. (66), we can see that if

g(5) = h(5) = f (6) = · · · = 0, (90)
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then Eq. (67) and those equations behind all hold. In this case, we obtain two-fractal so-
lutions of the stfisAKNS hierarchy (34):

u =
g2

f2
, v =

h2

f2
, (91)

where

g2 = Eα

(
ξα

1
)

+ Eα

(
ξα

2
)

+ Eα

(
ξα

1 + ξα
2 + ηα

1 + θα
12 + θα

13 + θα
23

)
+ Eα

(
ξα

1 + ξα
2 + ηα

2 + θα
12 + θα

14 + θα
24

)
, (92)

h2 = Eα

(
ξα

1
)

+ Eα

(
ξα

2
)

+ Eα

(
ξα

1 + ηα
1 + ηα

2 + θα
13 + θα

14 + θα
34

)
+ Eα

(
ξα

2 + ηα
1 + ηα

2 + θα
23 + θα

24 + θα
34

)
, (93)

f2 = 1 + Eα

(
ξα

1 + ηα
1 + θα

13
)

+ Eα

(
ξα

1 + ηα
2 + θα

14
)

+ Eα

(
ξα

2 + ηα
1 + θα

23
)

+ Eα

(
ξα

2 + ηα
2 + θα

24
)

+ Eα

(
ξα

1 + ξα
2 + ηα

1 + ηα
2 + θα

12 + θα
13 + θα

14 + θα
23 + θα

24 + θα
34

)
, (94)

Eα

(
θα

12
)

= –(k1 – k2)2, Eα

(
θα

34
)

= –(p1 – p2)2,

Eα

[
θα

i(j+2)
]

= –
1

(ki + pj)2 (i, j = 1, 2).
(95)

In Figs. 4–6, the two-fractal solutions (91) restricted to the Cantor set are shown, where
k1 = iα , k2 = 3iα , p1 = 0.01, p2 = 3, and α = ln 2/ ln 3.

Figure 4 Space-time structures of two-fractal solutions (91) with α = ln2/ ln 3.

Figure 5 Profiles along the t2 axis of one-fractal solutions (91) with α = ln2/ ln 3.
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Figure 6 Profiles along the x axis of one-fractal solutions (91) with α = ln2/ ln 3.

Proceeding with a similar manipulation, we can obtain three-fractal solutions and in-
duce the uniform formulas of the N-fractal solutions of the stfisAKNS hierarchy (34):

u =
gN

fN
, v =

hN

fN
, (96)

with

gN =
∑
μ=0,1

Z2(μ)Eα

( 2N∑
i=1

μiξi +
2N∑

1≤i<j

μiμjθij

)
, (97)

hN =
∑
μ=0,1

Z3(μ)Eα

( 2N∑
i=1

μiξi +
2N∑

1≤i<j

μiμjθij

)
, (98)

fN =
∑
μ=0,1

Z1(μ)Eα

( 2N∑
i=1

μiξi +
2N∑

1≤i<j

μiμjθij

)
, (99)

ξi = kix +
∞∑

m=1

wi,m+1tm+1 + ξ
(0)
i , wi,m+1 = –kiwi,m, wi,1 = ki, (100)

ηi = pix +
∞∑

m=1

qi,m+1tm+1 + η
(0)
i , qi,m+1 = piqi,m,

qi,1 = pi, ξα
N+i = ηα

i (i = 1, 2, . . . , N),

(101)

Eα(θij) = –(ki – kj)2, Eα[θ(i+N)(j+N)] = –(pi – pj)2 (i < j = 2, 3, . . . , N), (102)

Eα[θi(j+N)] = –
1

(ki + pj)2 (i, j = 1, 2, . . . , N), (103)

where the summation
∑

μ=0,1 refers to all possible combinations of each μi = 0, 1 for
i = 1, 2, . . . , 2N , Z1(μ), Z2(μ), and Z3(μ) denote that when we select all the possible com-
binations μi = 0, 1 (i = 1, 2, . . . , 2N ) the following conditions hold, respectively:

N∑
i=1

μi =
N∑

i=1

μN+i,
N∑

i=1

μi =
N∑

i=1

μN+i + 1,
N∑

i=1

μi + 1 =
N∑

i=1

μN+i. (104)
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3.3 Second reduced bilinear forms and N-fractal solutions
Without loss of generality, we suppose

H2α
x f · f + 2gh = a2f 2, (105)

then the fractional order bilinear forms (45) and (46) become

(
Hα

tm+1 + Hα
x Hα

tm

)
g · f = cfg, (106)(

Hα
tm+1 – Hα

x Hα
tm

)
h · f = –cfh, (107)

where c = a2 is a non-zero constant. Further letting

f = f̃ , g = Eα

(
ctα

m+1
)
g̃, h = Eα

(
–ctα

m+1
)
h̃, (108)

we transform Eqs. (105)–(107) into

H2
x f̃ · f̃ = –2g̃h̃ + a2 f̃ 2, (109)(

Hα
tm+1 + Hα

x Hα
tm

)
g̃ · f̃ = 0, (110)(

Hα
tm+1 – Hα

x Hα
tm

)
h̃ · f̃ = 0. (111)

In what follows, we employ Eqs. (109)–(111) to construct N-fractal solutions of the
stfisAKNS hierarchy (34). To construct one-fractal solutions, we suppose that

f̃ = 1 + εf̃ (1) + ε2 f̃ (2) + · · · + εj f̃ (j) + · · · , (112)

g̃ = g̃(0) + εg̃(1) + ε2g̃(2) + · · · + εjg̃(j) + · · · , (113)

h̃ = h̃(0) + εh̃(1) + ε2h̃(2) + · · · + εjh̃(j) + · · · . (114)

Substituting Eqs. (112)–(114) into Eqs. (109)–(110) and collecting the coefficients of the
same order of ε yield a system of fractional differential equations, the first several equa-
tions of which are as follows:

2g̃(0)h̃(0) = a2, (115)

Dα
tm+1 g̃(0) + D2α

x,tm g̃(0) = 0, (116)

Dα
tm+1 h̃(0) + D2α

x,tm h̃(0) = 0, (117)

D2α
x f (1) = –g̃(0)h̃(1) – g̃(1)h̃(0) + a2 f̃ (1), (118)

Dα
tm+1 g̃(1) + D2α

x,tm g̃(1) = –
(
Hα

tm+1 + Hα
x Hα

tm

)
g̃(0) · f̃ (1), (119)

Dα
tm+1 h̃(1) – D2α

x,tm h̃(1) = –
(
Hα

tm+1 – Hα
x Hα

tm

)
h̃(0) · f̃ (1), (120)

D2α
x f̃ (2) = –

1
2

H2α
x f̃ (1) · f̃ (1) – g̃(0)h̃(2) – g̃(1)h̃(1) – g̃(2)h̃(0) + a2

[
f̃ (2) +

1
2
(
f̃ (1))2

]
, (121)

Dα
tm+1 g̃(2) + D2α

x,tm g̃(2) = –
(
Hα

tm+1 + Hα
x Hα

tm

)(
g̃(0) · f̃ (2) + g̃(1) · f̃ (1)), (122)

Dα
tm+1 h̃(2) + D2α

x,tm h̃(2) = –
(
Hα

tm+1 – Hα
x Hα

tm

)(
h̃(0) · f̃ (2) + h̃(1) · f̃ (1)), (123)
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Dα
x f̃ (3) = –H2α

x f̃ (1) · f̃ (2) – g̃(0)h̃(3) – g̃(1)h̃(2) – g̃(2)h̃(1) – g̃(3)h̃(0) + a2(f̃ (3) + f̃ (1) f̃ (2)), (124)

Dα
tm+1 g̃(3) + D2α

x,tm g̃(3) = –
(
Hα

tm+1 + Hα
x Hα

tm

)(
g̃(0) · f̃ (3) + g̃(1) · f̃ (2) + g̃(2) · f̃ (1)), (125)

Dα
tm+1 h̃(3) + D2α

x,tm h̃(3) = –
(
Hα

tm+1 – Hα
x Hα

tm

)(
h̃(0) · f̃ (3) + h̃(1) · f̃ (2) + h̃(2) · f̃ (1)). (126)

Setting

g̃(0) = h̃(0) =
a√
2

(127)

and then substituting Eq. (127) into Eqs. (118)–(120), we have

f̃ (1) = 2Eα

(
ξα

1
)
, g̃(1) =

√
2aEα

(
ξα

1 + 2ϑα
1
)
, h̃(1) =

√
2aEα

(
ξα

1 – 2ϑα
1
)
, (128)

ξ1 = k1x +
∞∑

m=1

w1,m+1tm+1 + ξ
(0)
1 ,

w2α
1,1 = k2α

1 = –2a2 sinh2
α ϑα

1 , w2α
1,m+1 = –2a2w2α

1,m cosh2
α ϑα

1 ,

(129)

where the hyperbolic functions sinhα μα and coshα μα are defined on the fractal set 
 [16]:

sinhα μα =
Eα(μα) – Eα(–μα)

2
, coshα μα =

Eα(μα) + Eα(–μα)
2

. (130)

If we set g̃(2) = g̃(3) = h̃(2) = h̃(3) = f̃ (2) = f̃ (3) = · · · = 0, we can see that Eqs. (128) and (129)
satisfy Eqs. (118)–(126) and the other equations not explicitly written in the system of
fractional differential equations. In this case, we write

f̃1 = 1 + 2Eα

(
ξα

1
)
, g̃1 =

a[1 + 2Eα(ξα
1 + 2ϑα

1 )]√
2

,

h̃1 =
a[1 + 2Eα(ξα

1 – 2ϑα
1 )]√

2
,

(131)

and then we obtain one-fractal solutions of the stfisAKNS hierarchy (34):

u =
aEα(ctα

m+1)[1 + 2Eα(ξα
1 + 2ϑα

1 )]√
2(1 + 2Eα(ξα

1 ))
, v =

aEα(–ctα
m+1)[1 + 2Eα(ξα

1 – 2ϑα
1 )]√

2(1 + 2Eα(ξα
1 ))

, (132)

by using Eqs. (108), (112)–(114), (128), (129), and (131).
In order to construct two-fractal solutions, we let

f̃ (1) = 2
(
Eα

(
ξα

1
)

+ Eα

(
ξα

2
))

, (133)

g̃(1) =
√

2a
[
Eα

(
ξα

1 + 2ϑα
1
)

+ Eα

(
ξα

2 + 2ϑα
2
)]

, (134)

h̃(1) =
√

2a
[
Eα

(
ξα

1 – 2ϑα
1
)

+ Eα

(
ξα

2 – 2ϑα
2
)]

, (135)

where

ξi = kix +
∞∑

m=1

wi,m+1tm+1 + ξ
(0)
i , w2α

i,1 = k2α
i = –2a2 sinh2

α ϑα
i ,

w2α
i,m+1 = –2a2w2α

i,m cosh2
α ϑα

i (i = 1, 2),

(136)
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and suppose

(
Hα

tm+1 + Hα
x Hα

tm

)(
g̃(1) · f̃ (2) + g̃(2) · f̃ (1)) = 0, (137)(

Hα
tm+1 – Hα

x Hα
tm

)(
h̃(1) · f̃ (2) + h̃(2) · f̃ (1)) = 0. (138)

H2α
x f̃ (1) · f̃ (2) + g̃(1)h̃(2) + g̃(2)h̃(1) – a2 f̃ (1) f̃ (2) = 0. (139)

We then obtain from Eqs. (121)–(123) and Eqs. (136)–(138)

f̃ (2) = 4Eα

(
ξα

1 + ξα
2 + Aα

12
)
, (140)

g̃(2) = 2
√

2aEα

(
ξα

1 + ξα
2 + 2ϑα

1 + 2ϑα
2 + Aα

12
)
, (141)

h̃(2) = 2
√

2aEα

(
ξα

1 + ξα
2 – 2ϑα

1 – 2ϑα
2 + Aα

12
)
. (142)

Substituting Eqs. (133)–(135) and Eqs. (140)–(142) into Eqs. (137)–(139) yields

f̃ (3) = g̃(3) = h̃(3) = f̃ (4) = g̃(4) = h̃(4) = · · · = 0. (143)

Thus, from Eqs. (105)–(107) we have

f2 = 1 + 2
(
Eα

(
ξα

1
)

+ Eα

(
ξα

2
))

+ 4Eα

(
ξα

1 + ξα
2 + Aα

12
)
, (144)

g2 = aEα(ctα
m+1){1 + 2[Eα(ξα

1 + 2ϑα
1 ) + Eα(ξα

2 + 2ϑα
2 )] + 4Eα(ξα

1 + ξα
2 + 2ϑα

1 + 2ϑα
2 + Aα

12)}√
2

, (145)

h2 = aEα(–ctα
m+1){1 + 2[Eα(ξα

1 – 2ϑα
1 ) + Eα(ξα

2 – 2ϑα
2 )] + 4Eα(ξα

1 + ξα
2 – 2ϑα

1 – 2ϑα
2 + Aα

12)}√
2

, (146)

and hence we obtain two-fractal solutions of the stfisAKNS hierarchy (34):

u = aEα(ctα
m+1){1 + 2[Eα(ξα

1 + 2ϑα
1 ) + Eα(ξα

2 + 2ϑα
2 )] + 4Eα(ξα

1 + ξα
2 + 2ϑα

1 + 2ϑα
2 + Aα

12)}√
2[1 + 2(Eα(ξα

1 ) + Eα(ξα
2 )) + 4Eα(ξα

1 + ξα
2 + Aα

12)]
, (147)

v = aEα(–ctα
m+1){1 + 2[Eα(ξα

1 – 2ϑα
1 ) + Eα(ξα

2 – 2ϑα
2 )] + 4Eα(ξα

1 + ξα
2 – 2ϑα

1 – 2ϑα
2 + Aα

12)}√
2[1 + 2(Eα(ξα

1 ) + Eα(ξα
2 )) + 4Eα(ξα

1 + ξα
2 + Aα

12)]
, (148)

where

Eα

(
Aα

12
)

=
sinh2

α

ϑα
1 –ϑα

2
2

sinh2
α

ϑα
1 +ϑα

2
2

. (149)

Selecting c = 2.5, k1 = 1, k2 = –4, ϑ1 = 1, ϑ2 = 2, and α = ln 2/ ln 3, we show the two-fractal
solutions (147) and (148) in Figs. 7–9.

Similarly, we can obtain three-fractal and then determine the uniform formulas (96) for
the N-fractal solutions of the stfisAKNS hierarchy (34) by

fN =
∑
μ=0,1

Eα

[ N∑
i=1

μi
(
ξα

i + lnα 2
)

+
N∑

1≤i<l

μiμlAα
il

]
, (150)

gN =
aEα(ctα

m+1)
∑

μ=0,1 Eα[
∑N

i=1 μi(ξα
i + 2ϑα

i + lnα 2) +
∑N

1≤i<l μiμlAα
il]√

2
, (151)
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Figure 7 Space-time structures of two-fractal solutions (147) and (148) with α = ln2/ ln 3.

Figure 8 Profiles along the t2 axis of two-fractal solutions (147) and (148) with α = ln2/ ln 3.

Figure 9 Profiles along the x axis of two-fractal solutions (147) and (148) with α = ln2/ ln 3.

hN =
aEα(–ctα

m+1)
∑

μ=0,1 Eα[
∑N

i=1 μi(ξα
i – 2ϑα

i + lnα 2) +
∑N

1≤i<l μiμlAα
il]√

2
, (152)

ξi = kix +
∞∑

m=1

wi,m+1tm+1 + ξ
(0)
i , (153)

w2α
i,1 = k2α

i = –2a2 sinh2
α ϑα

i , w2α
i,m+1 = –2a2w2α

i,m cosh2
α ϑα

i (i = 1, 2, . . . , N), (154)

eAα
il =

sinh2 θα
i –θα

l
2

sinh2 θα
i +θα

l
2

(1 ≤ i < l ≤ N). (155)
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4 IST for N-fractal solutions of the tfnisAKNS hierarchy
Since the space derivative of the linear spectral problem (25) is integer order, all the ex-
isting results [2, 3] about the spectral problem (25) are valid for the tfnisAKNS hierarchy
(3). The main objective of this section is to determine the time-dependence of scattering
data by using the associated time-fractional order evolution Eq. (10).

4.1 Time-dependence of scattering data
Theorem 4 Suppose that the potentials u and v of the linear spectral problem (25)
equipped with the non-isospectral parameter ik satisfying Eq. (22) develop according to
the tfnisAKNS hierarchy (3), then the scattering data

{
κj(t), cj(t), R(t, k) =

γ (t, k)
δ(t, k)

, j = 1, 2, . . . , N
}

, (156)

{
κ̄l(t), c̄l(t), R̄(t, k) =

γ̄ (t, k)
δ̄(t, k)

, l = 1, 2, . . . , N̄
}

(157)

have the following time-dependence:

Dα
t κj = –

i
2

(2iκj)m, c2
j (t) = c2

j (0)Eα

(
mIα

0,t(2iκj)m–1), (158)

δ(t, k) = δ(0, k), γ (t, k) = γ (0, k), (159)

Dα
t κ̄l = –

i
2

(2iκ̄l)m, c̄2
l (t) = c̄2

l (0)Eα

(
–mIα

0,t(2iκ̄l)m–1), (160)

δ̄(t, k) = δ̄(0, k), γ̄ (t, k) = γ̄ (0, k), (161)

where c2
j (0), c̄2

l (0), R(0, k) = β(0, k)/α(0, k), and R̄(0, k) = β̄(0, k)/ᾱ(0, k) are the correspond-
ing scattering data of the linear spectral problem (25) in the case of (u(x, 0), v(x, 0))T .

Proof Since F(x, k) solves Eq. (25), P(x, k) = Dα
t F(x, k) – NF(x, k) is a solution of Eq. (25).

So, P(x, k) can be expressed by F(x, k) and F̃(x, k), which is another solution of Eq. (25) but
independent of F(x, k), i.e., there exist two functions μ(t, k) and τ (t, k) such that

Dα
t F(x, k) – Vφ(x, k) = μ(t, k)F(x, k) + τ (t, k)F̃(x, k). (162)

We next consider the first case, i.e., discrete spectral k = κj (Imκj > 0). It is easy to see that
F(x,κj) decays exponentially, while F̃(x,κj) increases as x → +∞. Thus, we have τ (t, k) = 0
and simplify Eq. (162) as

Dα
t F(x,κj) – VF(x,κj) = μ(t,κj)F(x,κj). (163)

The left-multiplication on Eq. (163) by the inner product (F2(x,κj), F1(x,κj)) yields

Dα
t F1(x,κj)F2(x,κj) –

[
CF2

1 (x,κj) + BF2
2 (x,κj)

]
= 2μ(t,κj)F1(x,κj)F2(x,κj). (164)

Since F(x,κj) is a normalized eigenfunction and

2
∫ ∞

–∞
c2

j F1(x,κj)F2(x,κj) dx = 1, (165)
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we can rewrite Eq. (164) as

μ(t,κj) = –c2
j
((

F2
2 (x,κj), F2

1 (x,κj)
)T , (B, C)T)

. (166)

Making use of Eq. (25), we have

(
F1(x,κj)F2(x,κj)

)
x = u(x)F2

2 (x,κj) + v(x)F2
1 (x,κj). (167)

The integration of Eq. (167) with respect to x from –∞ to +∞ gives

∫ ∞

–∞

(
u(x)F2

2 (x,κj) + v(x)F2
1 (x,κj)

)
dx =

∫ ∞

–∞

(
F1(x,κj)F2(x,κj)

)
x dx = 0. (168)

At the same time, we rewrite Eq. (29) as

(
B
C

)
=

m∑
l=1

(2ik)m–lL̄l–1

(
xu
xv

)
, L̄ = σ∂ – 2

(
u
v

)
∂–1(–v, u). (169)

Then with the help of the conjugation operator L̄ [3]

L̄∗ = –σ∂ + 2

(
–v
u

)
∂–1(u, v) (170)

and the results
(

L̄∗l–1(F2
2 (x,κj), F2

1 (x,κj)
)T ,

(
xu
xv

))

=
(
2iκj(t)

)l–1
((

F2
2 (x,κj), F2

1 (x,κj)
)T ,

(
xu
xv

))
, (171)

((
F2

2 (x,κj), F2
1 (x,κj)

)T ,

(
xu
xv

))
=

∫ ∞

–∞
x
[
F1(x,κj)F2(x,κj)

]
x dx = –

1
2c2

j
, (172)

we gain from Eq. (167)

μ(t,κj) = –c2
j
((

F2
2 (x,κj), F2

1 (x,κj)
)T , (B, C)T)

= –c2
j

((
F2

2 (x,κj), F2
1 (x,κj)

)T ,
m∑

l=1

(2ik)m–lL̄l–1

(
xu
xv

))

= –c2
j

m∑
l=1

(2iκj)m–l

((
F2

2 (x,κj), F2
1 (x,κj)

)T , L̄l–1

(
xu
xv

))

=
1
2

m(2iκj)m–1. (173)

Thus, Eq. (163) becomes

Dα
t F(x,κj) – VF(x,κj) =

1
2

m(2iκj)m–1F(x,κj). (174)
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Noting that when x → +∞,

V →
(

– 1
2 (2iκj)mx 0

0 1
2 (2iκj)mx

)
, (175)

F(x,κj) → cj

(
0
1

)
eiκjx,

Dα
t F(x,κj) → (

Dα
t cj

)(
0
1

)
eiκjx + i

(
Dα

t κj
)
xcj

(
0
1

)
eiκjx,

(176)

from Eq. (174) we then have

iDα
t κj –

1
2

(2iκj)m = 0, Dα
t cj –

1
2

m(2iκj)m–1cj = 0. (177)

Similarly, the following fractional order equations can be obtained:

iDα
t κ̄l –

1
2

(2iκ̄l)m = 0, Dα
t c̄l +

1
2

m(2iκ̄l)m–1c̄l = 0. (178)

We further consider the second case, i.e., real continuous spectral k. We select a solution
G(x, k) of Eq. (25), then

Q(x, k) = Dα
t G(x, k) – NG(x, k) (179)

solves Eq. (25). Therefore, there exists a pair of linearly independent fundamental solutions
G(x, k) and Ḡ(x, k) and two determined functions ω(t, k) and ϑ(t, k) such that

Gt(x, k) – VG(x, k) = ω(t, k)G(x, k) + ϑ(t, k)Ḡ(x, k). (180)

In view of the asymptotic properties

Dα
t G(x, k) → –i

(
Dα

t k
)
x

(
1
0

)
e–ikx, G(x, k) →

(
1
0

)
e–ikx,

Ḡ(x, k) →
(

0
–1

)
eikx,

(181)

as x → –∞, from Eqs. (180) and (181) we have

ϑ(t, k) = 0, ω(t, k) = 0. (182)

The substitution of the Jost relationship G(x, k) = γ (t, k)F̄(x, k)+δ(t, k)F(x, k) into Eq. (180)
yields

Dα
t
(
γ (t, k)F̄(x, k) + δ(t, k)F(x, k)

)
– V

(
γ (t, k)F̄(x, k) + δ(t, k)F(x, k)

)
= 0. (183)

Letting x → +∞ and using

F(x, k) →
(

0
1

)
eikx, F̄(x, k) →

(
1
0

)
e–ikx, (184)
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then Eq. (183) hints

Dα
t γ (t, k) = 0, Dα

t δ(t, k) = 0. (185)

Similarly, we have

Dα
t γ̄ (t, k) = 0, Dα

t δ̄(t, k) = 0. (186)

Finally, from Eqs. (177), (178), (185), and (186) we can obtain Eqs. (158)–(161). We finish
the proof. �

4.2 Exact solutions
Theorem 5 The tfnisAKNS hierarchy (3) has the following exact solutions:

u = –2K1(x, x, t), v =
K2x(x, x, t)
K1(x, x, t)

, (187)

where K(x, y, t) = (K1(x, y, t), K2(x, y, t))T satisfies the Gel’fand–Levitan–Marchenko (GLM)
integral equation

K(x, y, t) –

(
1
0

)
F̄(x + y, t) +

(
0
1

)∫ ∞

x
F(z + x, t)F̄(z + y, t) dz

+
∫ ∞

x
K(x, s, t)

∫ ∞

x
F(z + s, t)F̄(z + y, t) dz ds = 0, (188)

while

F(x, t) =
1

2π

∫ ∞

–∞
R(t, k)eikx dk +

N∑
j=1

c2
j eiκjx, (189)

F̄(x, t) =
1

2π

∫ ∞

–∞
R̄(t, k)e–ikx dk –

N̄∑
j=1

c̄2
j e–iκ̄jx (190)

are determined by the scattering data (158)–(160).

Proof The proof is similar to the integer case [3], and the essential difference is that The-
orem 5 has the different scattering data (158)–(160). We omit the proof here for simplifi-
cation. �

4.3 N-fractal solutions
Theorem 6 Suppose that

M(x, t) = I + P(x, t)PT (x, t), P(x, t) =
(

cj(t)c̄m(t)
κj – κ̄m

ei(κj–κ̄m)x
)

N̄×N
, (191)

z̄ =
(
c̄1(t)e–iκ̄1x, c̄2(t)e–iκ̄2x, . . . , c̄n(t)e–iκ̄N x)T (192)
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are determined by the scattering data (158)–(160) and M–1(x, t) exists, while I is an N̄ × N̄
unit matrix, then the tfnisAKNS hierarchy (3) has N-fractal solutions

u = 2 tr
(
M–1(x, t)z̄(x, t)z̄T (x, t)

)
, (193)

v = –
∂
∂x tr(M–1(x, t)P(x, t) ∂

∂x PT (x, t))
tr(M–1(x, t)z̄(x, t)z̄T (x, t))

, (194)

where tr(·) represents the trace of a given matrix.

Proof Considering the reflectionless case, i.e., R(t, k) = R̄(t, k) = 0, from Eq. (189) we have

∫ ∞

x
Fd(t, s + z)F̄d(t, z + y) dz = –

N∑
j=1

N̄∑
m=1

ic2
j (t)c̄2

m(t)
κj – κ̄m

eκj(x+s)–iκ̄m(x+y). (195)

Further suppose that the components of K(x, y, t) = (K1(x, y, t), K2(x, y, t))T can be ex-
pressed by

K1(x, y, t) =
N̄∑

p=1

c̄p(t)gp(x, t)e–iκ̄py, K2(x, y, t) =
N̄∑

p=1

c̄p(t)hp(x, t)e–iκ̄py, (196)

then we can convert Eq. (188) into a set of algebraic equations

gm(x, t) + c̄m(t)e–iκ̄mx +
N∑

j=1

N̄∑
p=1

c2
j (t)c̄m(t)c̄p(t)

(κj – κ̄m)(κj – κ̄p)
ei(2κj–κ̄m–κ̄p)xgp(x, t) = 0, (197)

hm(x, t) –
N∑

j=1

c2
j (t)c̄m(t)
κj – κ̄m

ei(2κj–κ̄m)x

+
N∑

j=1

N̄∑
p=1

c2
j (t)c̄m(t)c̄p(t)

(κj – κ̄m)(κj – κ̄p)
ei(2κj–κ̄m–κ̄p)xhp(x, t) = 0 (198)

for m = 1, 2, . . . , N̄ . Introducing vectors

g(x, t) =
(
g1(x, t), g2(x, t), . . . , gN̄ (x, t)

)T , (199)

h(x, t) =
(
h1(x, t), h2(x, t), . . . , hN̄ (x, t)

)T , (200)

z =
(
c1(t)eiκ1x, c2(t)eiκ2x, . . . , cn(t)eiκN x)T , (201)

we can rewrite the above set of algebraic equations as

M(x, t)g(x, t) = –N̄(x, t), M(t, x)h(t, x) = iP(t, x)z(t, x), (202)

namely

g(x, t) = –M–1(x, t)z(x, t), h(x, t) = iM–1(x, t)P(x, t)z(x, t). (203)



Xu et al. Advances in Difference Equations        (2021) 2021:223 Page 23 of 27

Substituting Eq. (203) into Eq. (196) yields

K1(x, y, t) = – tr
(
M–1(x, t)z̄(x, t)z̄T (y, t)

)
, (204)

K2(x, y, t) = i tr
(
M–1(x, t)P(x, t)z(x, t)z̄T (y, t)

)
. (205)

Then we reach Eqs. (193) and (194) by means of Eqs. (187), (204), and (205). The proof is
complete. �

Particularly, when N = N̄ = 1, Eqs. (193) and (194) give one-fractal solutions

u =
2c̄2

1(0)e–2iκ̄1xEα(–mIα
t,0(2iκ̄j)m–1)

1 + c2
1(0)c̄2

1(0)
(κ1–κ̄1)2 e2i(κ1–κ̄1)xEα(mIα

t,0((2iκj)m–1 – (2iκ̄j)m–1))
, (206)

v =
2c2

1(0)e2iκ1xEα(mIα
t,0(2iκj)m–1)

1 + c2
1(0)c̄2

1(0)
(κ1–κ̄1)2 e2i(κ1–κ̄1)xEα(mIα

t,0((2iκj)m–1 – (2iκ̄j)m–1))
, (207)

where κ1 and κ̄1 are determined by

Dα
t κ1 = –

i
2

(2iκ1)m, Dα
t κ̄1 = –

i
2

(2iκ̄1)m. (208)

To be more specific, given m = 2, the second member equations of the tfnisAKNS hier-
archy (3) read

Dα
t

(
u
v

)
=

(
–2ux – xuxx + 2u∂–1(uv) + 2xu2v
2vx + xvxx – 2u∂–1(uv) – 2xuv2

)
, (209)

which have one-fractal solutions

u =
2c̄2

1(0)e–2iκ̄1xEα(– i
2 ln[�(1 + α) – 2iκ̄1(0)tα])

1 + c2
1(0)c̄2

1(0)
(κ1–κ̄1)2 e2i(κ1–κ̄1)xEα( i

2 ln [�(1+α)–2iκ1(0)tα ]
[�(1+α)–2iκ̄1(0)tα ] )

, (210)

v =
2c2

1(0)e2iκ1xEα( i
2 ln[�(1 + α) – 2iκ1(0)tα])

1 + c2
1(0)c̄2

1(0)
(κ1–κ̄1)2 e2i(κ1–κ̄1)xEα( i

2 ln [�(1+α)–2iκ1(0)tα ]
[�(1+α)–2iκ̄1(0)tα ] )

, (211)

where

κ1 =
iκ1(0)�(1 + α)

2κ1(0)tα + i�(1 + α)
, κ̄1 =

iκ̄1(0)�(1 + α)
2κ̄1(0)tα + i�(1 + α)

. (212)

Figures 10–12 show the spatial structures and profiles of one-fractal solutions (206) and
(207) restricted to the Cantor set by selecting κ1(0) = 1, κ̄1(0) = 1.8, c1(0) = –1, c̄1(0) = 9,
and α = ln 2/ ln 3.

5 Conclusions
Though there are many results for both the important AKNS linear spectral and the non-
linear AKNS partial differential systems, the local fractional versions of them and N-
fractal solutions of the AKNS systems are still blank. HBM and IST are two very important



Xu et al. Advances in Difference Equations        (2021) 2021:223 Page 24 of 27

Figure 10 Space time structures of one-fractal solutions (206) and (207) with α = ln2/ ln 3.

Figure 11 Profiles along the t axis of one-fractal solutions (206) and (207) with α = ln2/ ln 3.

Figure 12 Profiles along the t axis of one-fractal solutions (206) and (207) with α = ln2/ ln 3.

analytical methods for solving soliton equations in the field of nonlinear sciences, which
are extended to the stfisAKNS and tfnisAKNS hierarchies by introducing the fractional
order bilinear operators [27] and fractional order scattering data (see [24] for our prelim-
inary work). Compared with the existing literature, the work of this paper is novel. For
the comparisons, we would like to point out that when α = 1, both the derived stfisAKNS
and tfnisAKNS hierarchies and the obtained N-fractal solutions become the known hier-
archies [3, 7] and their corresponding exact solutions [3, 5, 7]. All the derived fractional
AKNS hierarchies and the obtained N-fractal solutions benefit from the local fractional
order partial derivatives with graceful properties [16] and the existing results [3] about the
spectral problem (25) which are valid for the tfnisAKNS hierarchy (3).
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As shown in Figs. 1–12, the obtained N-fractal solutions restricted to the Cantor set
are continuous everywhere but nondifferentiable. This is essentially different from the
existing classical soliton solutions. Though the obtained one-fractal solutions (78), (206),
and (207) and two-fractal solutions (91), (147), and (148) are shown by figures, the features
of one-fractal solutions and two-fractal solutions and the differences between them could
not be concluded from them. On the one hand, these fractal solutions are limited to the
Cantor set; on the other hand, they may be related to the properties of the fractional AKNS
hierarchies and the parameters selected for plotting the figures.

This paper could extend IST to the tfnisAKNS hierarchy (3) but not the space-time frac-
tional one. It is because of the fact that if the space derivative of the spectral problem (25)
is fractional order, then the corresponding analysis is complex. At the same time, extend-
ing HBM to the tfnisAKNS hierarchy (3) is worth exploring. Integrable couplings [28–
32] include the original integrable systems as sub-systems. Extending HBM and IST to
the integrable couplings and their fractional order generalizations is worthy of study. At
the same time, the practical application of fractional calculus in medicine, for example
the conformable fractional mathematical model [33], is worth further research and ex-
ploration. With the developments [34–39] of fractional calculus, more and more theories
and methods will be extended to fractional order nonlinear differential equations. Among
them, two efficient methods called q-homotopy analysis transform method and fractional
natural decomposition method used by Gao et al. [40] for numerical solution of fractional
Benney–Lin equation deserve attention.
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