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Abstract
Depopulation of birds has been authenticated to be an effective measure in
controlling avian influenza transmission. In this work, we establish a Filippov
avian-only model incorporating a threshold policy control. We choose the index—the
maximum between the infected threshold level IT and the product of the number of
susceptible birds S and a ratio threshold value ξ—to decide on whether to trigger the
control measures or not, which then leads to a discontinuous separation line and two
pieces of sliding-mode domains. Meanwhile, one more sliding-mode domain gives
birth to more complex dynamics. We investigate the global dynamical behavior of
the Filippov model, including the real and/or virtual equilibria and the two sliding
modes and their dynamics. The solutions will eventually stabilize at the real endemic
equilibrium of the subsystem or the pseudoequilibria on the two sliding modes due
to different threshold values. Therefore an effective and efficient threshold policy is
essential to control the influenza by driving the number of infected birds below a
certain level or at a previously given level.

Keywords: Nonsmooth threshold policy; Filippov control; Global stability; Sliding
modes

1 Introduction
Highly pathogenic avian influenza A virus causes high flock mortality [1]. The disease not
only causes significant social and economic loss on domestic fowl in affected areas [2] but
composes a potentially serious threat for humans [3, 4]. Governments worldwide have
paid a lot to treat the patients and control the pandemic [5]. Hence, it is an emergent issue
to identify any effective control strategies to eliminate the influenza or at least to reduce
the impact to a tolerant level; in particular, bringing down the number of infected birds
becomes a priority.

The Chinese government has begun to release avian influenza A(H7N9) data via web-
sites and official news agency daily since the first case was reported in March 2013 [6].
Hence people could understand the progress and then avoid some unnecessary contact.
At the same time, some cities like Nanjing, Guangzhou, and Shanghai have closed sev-
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eral poultry markets, culled poultry and disinfected the environment, and the first two
measures were proved to be more effective in controlling A(H7N9) infections [7].

Indeed, depopulation of infected birds and those with close contact has been authenti-
cated to be an effective measure in controlling avian influenza transmission, however, this
is also a risky enterprise with the risk of killing the susceptible birds during the infection
prevention [8, 9]. Therefore the identified culling strategy should not only be effective but
also efficient to avoid overkilling of the susceptible birds, and then further establish a bal-
ance among acceptable control measures safeguarding the livelihoods of farmers and the
health of the population [10].

Mathematical modeling is a useful tool and has been applied widely to illustrate the
transmission dynamics of various pandemic diseases. Based on the epidemiology and dif-
ferent control strategies, ordinary differential equations [11, 12], delay differential equa-
tions [13–16], and discrete differential equations [17] have been proposed and analyzed.
Andronicoa et al. [18] established a mathematical model to study the spatiotemporal evo-
lution of the disease and evaluate the impact of control measures. The authors obtained
that a faster culling of diagnosed infected targets would have a larger impact on the total
number of infections.

Several conventional control methods considering a threshold policy may be employed
in disease management. A threshold policy is such that there exists a tolerance threshold
so that whenever the number of the infected is below that threshold, the infection is con-
sidered to be tolerable. Otherwise, the infection might cause intolerable economic dam-
age. Mathematical models with a threshold policy, which is biologically and economically
desirable, are described by the so-called Filippov systems with discontinuous right-hand
sides [19–21].

Xiao et al. [22] extended the classical SIR model to a Filippov SIR model by including a
piecewise incidence rate to represent behavioral change of general individuals and imple-
mentation of necessary precautionary measures. They suggested that choosing a proper
combination of threshold and control intensities based on a threshold policy can pre-
clude outbreaks or stabilize the infection at a desired level. Zhou et al. [23] proposed a
Filippov-type model of interrupting transmission of West Nile virus to birds by imple-
menting culling of mosquitoes once the number of infected birds exceeds a threshold level.
They showed that strengthening the culling of mosquitoes together with protecting birds
is a good choice in controlling the spread of West Nile virus. Bolzoni et al. [24] studied
a two-patches metapopulation mathematical model in wildlife diseases. They considered
both proactive end reactive localized culling strategies. The localized reactive control is
described by a Filippov system with a piecewise-constant culling effort function. The au-
thors indicated that when the host fecundity is affected by the infection, localized culling
may be ineffective in controlling wildlife diseases.

Chong et al. [25] considered an avian-only model considering a threshold policy. The
authors chose the number of infected birds as an index, that is, once the index exceeds
the threshold level IT , culling of infected birds is employed, otherwise, no action is taken.
However, when the number of infected birds exceeds the threshold level IT and the num-
ber of susceptible birds is large enough, it is not always necessary to take control strategies.
In fact, if the interaction ratio of the number of infected and susceptible birds is smaller
than a ratio threshold value, then more effort is needed to take care of the susceptible birds
to maximize the profits rather than to take control strategies, which then could lead to la-
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Figure 1 Schematic diagram of the threshold policy

bor shortage and cause economic loss for farmers. This nonsmooth threshold mechanism
has been adopted by Li et al. [26] for a plant disease model. Therefore, reconsidering the
avian-only model in [25] by incorporating this kind of a threshold policy may be more
reasonable, which also results in a nonsmooth separation line compared to the model in
[25].

The rest of the paper is structured as follows. In Sect. 2, we establish an avian-only Filip-
pov model with considering a more realistic threshold policy which leads to a nonsmooth
separation line. The dynamical behavior of the proposed Filippov system, including the
real and/or virtual equilibria, the two sliding-mode domains and their dynamics is inves-
tigated in Sects. 3–5. We conclude this work in Sect. 6.

2 Filippov avian-only model
In order to better control the avian influenza transmission, minimize the economic dam-
age, and optimize the profits, control strategies should be applied based on whether the
number of infected birds and/or the interaction ratio of the number of infected and sus-
ceptible birds exceed the given tolerant threshold levels or not. If the number of infected
birds is below the infected threshold level IT , then no control is taken; above IT , the con-
trol strategies should be carried out depending on the number of susceptible birds and
the interaction ratio of the number of infected and susceptible birds. When the number
of susceptible birds S is small (S < IT

ξ
), we cull infected birds at a rate of c2 and susceptible

birds at a rate of c1, ci > 0, i = 1, 2, respectively. Whilst when the number of susceptible
birds is large enough (S > IT

ξ
) and the interaction ratio is below the ratio threshold value ξ ,

which means the number of infected birds is relatively small compared to the susceptible
birds, then the control strategy is not taken to save the effort and maximize the profits;
otherwise, if the interaction ratio exceeds the ratio threshold value ξ , control measures
are triggered. A schematic diagram depicting the threshold policy is shown in Fig. 1. The
reason for culling susceptible birds is that as the influenza progresses, more susceptible
birds may be infected later and cause a more severe outbreak, here we assume c1 < c2.

Chong et al. [25] assumed that the avian populations are subject to the rule of con-
stant growth. But migrant birds are mostly viewed as the original infection source [12, 27].
Pathogens may be transmitted to new areas by migratory hosts, which leads to new host
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species’ exposure and potential infection. Then those resident hosts, which are immuno-
logically naive to these novel pathogens, may subsequently act as local amplifiers [18]. For
example, West Nile virus’s global spread is greatly facilitated by migratory birds, which
transmit the pathogens to other wildlife and humans in many parts of the world [28]. It
is well known that the logistic growth is more reasonable than the constant growth for
the wildlife birds, including resident and migratory birds [12]. Hence, we choose logistic
growth here for avian populations. Let S(t) and I(t) denote the numbers of susceptible and
infected birds at time t. The susceptible birds are subject to logistic growth rS(1 – S/K),
where r is the intrinsic growth rate and K is the maximal carrying capacity.

Then the Filippov avian-only model with a nonsmooth separation line can be listed by
the following system:

(
S′

I ′

)
=

(
rS(1 – S

K ) – βSI – u1S
βSI – μI – dI – u2I

)
=

(
f1(S, I)
f2(S, I)

)
, (1)

with

(u1, u2) =

⎧⎨
⎩(0, 0) for I – max{IT , ξS} < 0,

(c1, c2) for I – max{IT , ξS} > 0,
(2)

where β is the transmission rate of the disease from infected birds I to susceptible birds
S, μ is the natural death rate, d is the disease-induced death rate. Here we assume r > c1

and ξ > 0; when ξ = 0, it becomes the model in [25] with constant growth.
Denote the nonsmooth separation line as � = {(S, I) ∈ R2

+ : H(S, I) = I – max{IT , ξS} = 0},
then the S, I space R2

+ consists of the following four regions:

G1 =
{

(S, I) ∈ R2
+ : I < max{IT , ξS}},

G2 =
{

(S, I) ∈ R2
+ : I > max{IT , ξS}},

�1 =
{

(S, I) ∈ R2
+ : I = IT , S < IT /ξ

}
,

�2 =
{

(S, I) ∈ R2
+ : I = ξS, S > IT /ξ

}
.

The dynamics in subregion Gi are governed by Fi, i = 1, 2, where

F1(S, I) =

(
F11(S, I)
F12(S, I)

)
=

(
rS(1 – S

K ) – βSI
βSI – μI – dI

)
, (3)

F2(S, I) =

(
F21(S, I)
F22(S, I)

)
=

(
rS(1 – S

K ) – βSI – c1S
βSI – μI – dI – c2I

)
. (4)

Note that the manifolds �1 and �2 are discontinuity surfaces connecting the two differ-
ent structures of system (1)–(2). We consider the solutions of system (1)–(2) in Filippov’s
sense, as the right-hand side of the system is discontinuous. The theory of existence and
uniqueness of solutions of Filippov systems is developed and can be found in [29]. We
present the definitions of real equilibrium, virtual equilibrium, sliding mode, and pseu-
doequilibrium that are necessary throughout the paper [26, 30–33].
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Definition 2.1 ER is called a real equilibrium of system (1)–(2) if F1(ER) = 0, ER ∈ G1 or
F2(ER) = 0, ER ∈ G2; EV is called a virtual equilibrium of system (1)–(2) if F1(EV ) = 0, EV ∈
G2 or F2(EV ) = 0, EV ∈ G1.

Definition 2.2 If there exists a subset � of the manifold �i such that the flows of f (outside
of �i) are directed towards each other on them, i = 1, 2, then � is called a sliding mode.

By applying the well-known Filippov convexity method [29] or Utkin’s equivalent con-
trol method [34], we can obtain the dynamics on the sliding mode. Here we present the
Filippov convexity method, that is,

dx
dt

= σF1 + (1 – σ )F2 = �(S, I), x = (S, I)T ∈ �,

where σ = 〈∇H,F2〉
〈∇H,F2–F1〉 , (·)T means the transpose of the vector, 〈·, ·〉 denotes the standard

scalar product.

Definition 2.3 EP is called a pseudoequilibrium if EP is an equilibrium on the sliding
mode �, that is, �(EP) = 0 and EP ∈ � ⊂ �i, i = 1, 2.

2.1 Dynamics in subregion Gi, i = 1, 2
By applying the next generation matrix method [35], we can obtain the basic reproduction
number R0i for the system in region Gi, i = 1, 2,

R01 =
Kβ

μ + d
, R02 =

Kβ(1 – c1
r )

μ + d + c2
.

The equilibria of the system in region Gi are two disease-free equilibria, E1
i0 and E2

i0, and
a unique endemic equilibrium Ei = (S∗

i , I∗
i ) if R0i > 1, i = 1, 2, where

E1
10 = (0, 0), E2

10 = (K , 0), E1 =
(
S∗

1, I∗
1
)

=
(

μ + d
β

,
1
β

(
r –

r(μ + d)
Kβ

))
,

E1
20 = (0, 0), E2

20 =
(

K
(

1 –
c1

r

)
, 0

)
,

E2 =
(
S∗

2, I∗
2
)

=
(

μ + d + c2

β
,

1
β

(
r – c1 –

r(μ + d + c2)
Kβ

))
.

The system in subregions G1 and G2 has been studied with different methods, here we
just present the main results; more detailed proofs can be found in [9, 12].

Proposition 2.1 (i) The disease-free equilibrium E1
i0 of the system in subregion Gi is always

unstable; (ii) If R0i ≤ 1, the disease-free equilibrium E2
i0 of the system in subregion Gi is

globally asymptotically stable; (iii) If R0i > 1, the endemic equilibrium Ei of the system in
subregion Gi is globally asymptotically stable, i = 1, 2.

In the following three sections (Sects. 3–5), we investigate the existence and global sta-
bility of the real equilibrium, virtual equilibrium, and the pseudoequilibria on the two slid-
ing modes with different threshold values. By Proposition 2.1, we only consider the case
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when R0i > 1, then system Fi in each subregion Gi admits the unique global asymptotical
stable endemic equilibrium Ei, i = 1, 2. Since S∗

1 < S∗
2 , we then consider the following three

cases generated by S∗
1 < S∗

2 < IT
ξ

, S∗
1 < IT

ξ
< S∗

2 , and IT
ξ

< S∗
1 < S∗

2 . We illustrate the dynamical
behaviors of system (1)–(2) from one case to another.

3 Case A: global dynamics when S∗
1 < S∗

2 < IT
ξ

(ξ < IT
S∗

2
)

3.1 Sliding mode on �1 and its dynamics
Firstly, we present the existence of the sliding mode and its dynamics on the discontinuity
surface �1. Since the scalar function H(S, I) = I – IT on �1, ∇H = (0, 1)T , then it can be
easily obtained that

〈∇H , F1〉|x∈�1 = βIT
(
S – S∗

1
)
, 〈∇H , F2〉|x∈�1 = βIT

(
S – S∗

2
)
.

For S∗
1 < S∗

2 < IT
ξ

, therefore, by Definition 2.2 of the sliding mode, we can obtain the sliding-
mode domain �1 ⊂ �1 as follows:

�1 =
{

(S, I) ∈ �1 : S∗
1 < S < S∗

2
}

. (5)

Here, we apply the Filippov convexity method [36, 37] to obtain the sliding-mode dy-
namics along the sliding mode �1,(

S′

I ′

)
= σ1F1 + (1 – σ1)F2, where σ1 =

〈∇H , F2〉
〈∇H , F2 – F1〉 .

That is,⎧⎨
⎩S′ = rS(1 – S

K ) – βSIT – c1
c2

S(βS – μ – d),

I ′ = 0.
(6)

System (6) has a unique positive equilibrium, denoted by Ep1 = (S∗
p1, IT ), where

S∗
p1 =

r – βIT + c1
c2

(μ + d)
r
K + c1

c2
β

,

if IT <
r+ c1

c2
(μ+d)
β

= g1.
Next, we present the conditions for Ep1 to be a pseudoequilibrium on �1 ⊂ �1 and in-

vestigate its stability.

Proposition 3.1 Ep1 is a pseudoequilibrium on �1 ⊂ �1 if and only if S∗
1 < S∗

p1 < S∗
2 , that

is, I∗
2 < IT < I∗

1 .

Theorem 3.1 Ep1 is stable on �1 ⊂ �1 when it is a pseudoequilibrium.

Proof It can be obtained by simple calculation that

∂

∂S

(
rS

(
1 –

S
K

)
– βSIT –

c1

c2
S(βS – μ – d)

)∣∣∣∣
Ep1

= –
r
K

S∗
p1 –

c1

c2
βS∗

p1 < 0.

Hence, Ep1 is stable. �
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3.2 Sliding mode on �2 and its dynamics
Since the scalar function H(S, I) = I – ξS on �2, ∇H = (–ξ , 1)T , then we can obtain that

〈∇H , F1〉|x∈�2 = ξS
(

r
K

+ ξβ + β

)(
S – S–)

,

〈∇H , F2〉|x∈�2 = ξS
(

r
K

+ ξβ + β

)(
S – S+)

,

where

S– =
r + μ + d

r
K + ξβ + β

, S+ =
r + μ + d + c2 – c1

r
K + ξβ + β

.

Denote

H1 =
IT ( r

K + c1
c2

β)
r + c1

c2
(μ + d) – βIT

,

H2 =
IT ( r

K + β)
r + μ + d – βIT

,

H3 =
IT ( r

K + β)
r + μ + d + c2 – c1 – βIT

,

g1 =
r + c1

c2
(μ + d)
β

, g2 =
r + μ + d

β
, g3 =

r + μ + d + c2 – c1

β
.

Obviously, we have H2 > H3, g1 < g2 < g3.

Proposition 3.2 According to different values of IT and ξ , we have the following results:
(i) If IT < g2 and ξ > H2, then IT

ξ
< S– and the sliding-mode domain on �2 is

�2 =
{

(S, I) ∈ �2 : S– < S < S+}
;

(ii) If IT < g2 and H3 < ξ < H2 or g2 < IT < g3 and ξ > H3, then S– < IT
ξ

< S+ and the
sliding-mode domain on �2 is

�2 =
{

(S, I) ∈ �2 :
IT

ξ
< S < S+

}
;

(iii) If IT > g3 or IT < g3 and ξ < H3, then S+ < IT
ξ

and there does not exist a sliding-mode
domain on �2.

Agian, we apply the Filippov convexity method [36, 37] to obtain the sliding-mode dy-
namics along the sliding mode �2,

(
S′

I ′

)
= σ2F1 + (1 – σ2)F2 where σ2 =

〈∇H , F2〉
〈∇H , F2 – F1〉 .
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That is,

⎧⎨
⎩S′ = S

c2–c1
{rc2(1 – S

K ) – c2ξβS – c1(βS – μ – d)} = g(S),

I ′ = ξg(S).
(7)

System (7) admits a unique positive equilibrium Ep2 = (S∗
p2, ξS∗

p2), where

S∗
p2 =

r + c1
c2

(μ + d)
r
K + ξβ + c1

c2
β

.

Theorem 3.2 Ep2 is stable on �2 ⊂ �2 when it is a pseudoequilibrium.

Proof We have

∂g(S)
∂S

∣∣∣∣
Ep2

=
S∗

p2

c1 – c2

(
r
K

c2 + c2ξβ + c1β

)
< 0,

since c1 < c2. Hence, Ep2 is stable. �

The following result gives the conditions for Ep2 to be a pseudoequilibrium on �2 ⊂ �2.

Proposition 3.3 According to the relationship between S–, S+, and IT
ξ

, we have:
(i) If IT

ξ
< S–, that is, IT < g2 and ξ > H2, Ep2 becomes a pseudoequilibrium on �2 ⊂ �2

if and only if

I∗
2

S∗
2

< ξ <
I∗

1
S∗

1
;

(ii) If S– < IT
ξ

< S+, that is, IT < g2 and H3 < ξ < H2 or g2 < IT < g3 and ξ > H3, Ep2

becomes a pseudoequilibrium on �2 ⊂ �2 if and only if

IT < g1 and ξ > max

{
I∗

2
S∗

2
, H1

}
.

Proof (i) If IT
ξ

< S–, then Ep2 becomes a pseudoequilibrium on �2 ⊂ �2 if and only if S– <
S∗

p2 < S+. On the other hand, we have

S– < S∗
p2 ⇐⇒ r + μ + d

r
K + ξβ + β

<
r + c1

c2
(μ + d)

r
K + ξβ + c1

c2
β

⇐⇒ (r + μ + d)
(

c2
r
K

+ c2ξβ + c1β

)
<

(
c2r + c1(μ + d)

)( r
K

+ ξβ + β

)

⇐⇒ ξ <
r

μ + d
–

r
Kβ

=
β

μ + d
· 1
β

[
r –

r(μ + d)
Kβ

]
=

I∗
1

S∗
1

.

Similarly, S∗
p2 < S+ ⇐⇒ ξ > I∗2

S∗
2

. Hence, the result is obtained.
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(ii) If S– < IT
ξ

< S+, then Ep2 becomes a pseudoequilibrium on �2 ⊂ �2 if and only if
IT
ξ

< S∗
p2 < S+. And

IT

ξ
< S∗

p2 ⇐⇒ ξ
(
c2r + c1(μ + d)

)
> c2IT

r
K

+ c2βITξ + c1βIT

⇐⇒ ξ
(
c2r + c1(μ + d) – c2βIT

)
> c2IT

r
K

+ c1βIT

⇐⇒ ξ > H1, IT < g1.

Together with S∗
p2 < S+, that is, ξ > I∗2

S∗
2

, one can obtain the result. �

The next proposition will play a crucial role in the following analysis.

Proposition 3.4 We have:
• IT < I∗

2 if and only if H1 < H3 < H2, H1 < I∗2
S∗

2
, H3 < I∗2

S∗
2

, IT
S∗

2
> H1, IT

S∗
2

> H3, IT
S∗

2
< I∗2

S∗
2

;
• I∗

2 < IT < I∗
1 if and only if H3 < H1 < H2;

• IT > I∗
1 if and only if H3 < H2 < H1, H1 > I∗1

S∗
1

, H2 > I∗1
S∗

1
, IT

S∗
1

< H1, IT
S∗

1
< H2, IT

S∗
1

> I∗1
S∗

1
.

Proof Here we present the proof for IT < I∗
2 ⇔ H1 < I∗2

S∗
2

, the other results can be obtained
by applying the same method. There holds

H1 <
I∗

2
S∗

2

⇐⇒ IT ( r
K + c1

c2
β)

r + c1
c2

(μ + d) – βIT
<

β

μ + d + c2

1
β

(
r – c1 –

r(μ + d + c2)
Kβ

)

⇐⇒ IT

(
r
K

+
c1

c2
β

)
(μ + d + c2) <

(
r +

c1

c2
(μ + d) – βIT

)(
r – c1 –

r(μ + d + c2)
Kβ

)

⇐⇒ βIT

(
r +

c1

c2
(μ + d)

)
<

(
r +

c1

c2
(μ + d)

)(
r – c1 –

r(μ + d + c2)
Kβ

)

⇐⇒ IT <
1
β

(
r – c1 –

r(μ + d + c2)
Kβ

)
= I∗

2 .

Hence, the result is obtained. �

We present the relationships between the seven variables I∗i
S∗

i
, IT

S∗
i

, Hj, i = 1, 2, j = 1, 2, 3 re-
lated to I∗

1 , I∗
2 , and IT , which play a vital role throughout the following analysis.

Proposition 3.5 We have:
(i) If IT < I∗

2 < I∗
1 , then

H1 < H3 < H2 <
IT

S∗
1

<
I∗

1
S∗

1
, H3 <

IT

S∗
2

<
IT

S∗
1

,
IT

S∗
2

<
I∗

2
S∗

2
<

I∗
1

S∗
1

;

(ii) If I∗
2 < IT < I∗

1 , then

I∗
2

S∗
2

<
IT

S∗
2

< H3 < H1 < H2 <
IT

S∗
1

<
I∗

1
S∗

1
;
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(ii) If I∗
2 < I∗

1 < IT , then

I∗
2

S∗
2

<
IT

S∗
2

< H3 < H2 < H1,
IT

S∗
2

<
IT

S∗
1

< H2,
I∗

2
S∗

2
<

I∗
1

S∗
1

<
IT

S∗
1

.

Proof We just prove the case if I∗
2 < IT < I∗

1 . When IT < I∗
2 < I∗

1 or I∗
2 < I∗

1 < IT , the results
can be obtained similarly by applying Proposition 3.4. By Proposition 3.4, there holds

I∗
2 < IT < I∗

1 ⇐⇒ H3 < H1 < H2,

I∗
2 < IT ⇐⇒ H3 >

IT

S∗
2

>
I∗

2
S∗

2
,

IT < I∗
1 ⇐⇒ H2 <

IT

S∗
1

<
I∗

1
S∗

2
.

Hence, the result is obtained following the above inequalities. �

3.3 Global dynamics
3.3.1 Case A.1: IT < I∗

2 < I∗
1

In this situation, EV
1 is a virtual equilibrium, whereas ER

2 is a real equilibrium. In this and
the following analysis, we denote a possible real equilibrium by ER

i and a possible virtual
equilibrium by EV

i , i = 1, 2, respectively. Furthermore, Ep1 is never a pseudoequilibrium on
�1 ⊂ �1 by Proposition 3.1. For IT

S∗
2

< I∗2
S∗

2
< I∗1

S∗
1

, Ep2 is never a pseudoequilibrium on �2 ⊂ �2

by Proposition 3.3. We can obtain the globally asymptotical stability of ER
2 .

Theorem 3.3 ER
2 is globally asymptotically stable if S∗

1 < S∗
2 < IT

ξ
and IT < I∗

2 < I∗
1 .

• If H1 < H3 < IT
S∗

2
< H2 < IT

S∗
1

< I∗1
S∗

1
, then there does not exist a sliding-mode domain on �2

when ξ < H3; the sliding-mode domain on �2 is �2 = {(S, I) ∈ �2 : IT
ξ

< S < S+} when
ξ > H3; as can be seen in Fig. 3(a);

• If H1 < H3 < H2 < IT
S∗

2
< IT

S∗
1

< I∗1
S∗

1
, then there does not exist a sliding-mode domain on �2

when ξ < H3; the sliding-mode domain on �2 is �2 = {(S, I) ∈ �2 : IT
ξ

< S < S+} when
H3 < ξ < H2; and �2 = {(S, I) ∈ �2 : S– < S < S+} when ξ > H2; as can be seen in Fig. 3(b).

Proof The existence of limit cycles in regions G1 and G2 can be excluded by applying Dulac
function B = 1

SI . Note that the Dulac function cannot only be applicable to continuous
systems but to systems with discontinuous right-hand side where the vector field is neither
smooth nor continuous at the discontinuity surface, I = IT , S < IT

ξ
and I = ξS, S > IT

ξ
in

system (1)–(2). In the following, to exclude the existence of the limit cycle, we extend the
classic Dulac function to a modified one that avoids the sliding modes [22]. We redivide
G1 into two regions: G11 = {(S, I) ∈ G1 : I < IT } and G12 = {(S, I) ∈ G1 : IT < I < ξS}. By
contradiction, suppose there exists a limit cycle 	 (as can be seen in Fig. 2) passing through
the discontinuity surfaces �1 and �2 that surrounds the sliding mode �1 and the real
equilibrium ER

2 . Denote 	 = 	1 + 	2 + 	3, where 	1 = 	 ∩ G11,	2 = 	 ∩ G2,	3 = 	 ∩ G12.
Let D be the bounded region divided by 	 and D1 = D ∩ G11, D2 = D ∩ G2, D3 = D ∩ G12.

By doing the same in other subregions, we choose the Dulac function as B = 1
SI . For

better illustration and expression, denoting the dynamics in region G12 as governed by
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Figure 2 Case A.1: The nonexistence of a limit cycle in system (1)–(2) where ER2 is a real equilibrium

F3(S, I) = F1(S, I) (refer to Eq. (3)), we have

3∑
i=1

(
∂(BFi1)

∂S
+

∂(BFi2)
∂I

)
= –

3r
KI

< 0.

Thus

∫∫
D

(
∂(Bf1)

∂S
+

∂(Bf2)
∂I

)
dS dI =

3∑
i=1

∫∫
Di

(
∂(BFi1)

∂S
+

∂(BFi2)
∂I

)
dS dI < 0.

Let P̃i and Q̃j be in the vicinity of the discontinuity surfaces �1 and �2, and suppose P̃i

converges to I = IT and Q̃j converges to I = ξS as δ approaches 0, i = 1, 2, 3, j = 1, 2. The
corresponding bounded region Di and 	i are relabeled as D̃i and 	̃i, D̃i and 	̃i converge
to Di and 	i when δ → 0, i = 1, 2, 3, as can be seen in Fig. 2. Then we can obtain

∫∫
Di

(
∂(BFi1)

∂S
+

∂(BFi2)
∂I

)
dS dI = lim

δ→0

∫∫
D̃i

(
∂(BFi1)

∂S
+

∂(BFi2)
∂I

)
dS dI.

Since dS = F11 dt and dI = F12 dt along 	̃1 and dI = 0 along P̃1, then in region D̃1 we have
the following result by applying Green’s theorem:

∫∫
D̃1

(
∂(BF11)

∂S
+

∂(BF12)
∂I

)
dS dI =

∮
∂D̃1

BF11 dI – BF12 dS

=
∫

	̃1

BF11 dI – BF12 dS +
∫

P̃1

BF11 dI – BF12 dS

= –
∫

P̃1

BF12 dS.

Similarly, in region D̃2 where dS = F21 dt and dI = F22 dt along 	̃2 and dI = 0 along P̃2,
dI = ξ dS along Q̃2, we have

∫∫
D̃2

(
∂(BF21)

∂S
+

∂(BF22)
∂I

)
dS dI =

∮
∂D̃2

BF21 dI – BF22 dS
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=
∫

	̃2

BF21 dI – BF22 dS +
∫

P̃2

BF21 dI – BF22 dS

+
∫

Q̃2

BF21 dI – BF22 dS

= –
∫

P̃2

BF22 dS +
∫

Q̃2

(ξBF21 – BF22) dS.

In region D̃3 where dS = F11 dt and dI = F12 dt along 	̃3 and dI = 0 along P̃3, dI = ξ dS along
Q̃3, we have

∫∫
D̃3

(
∂(BF11)

∂S
+

∂(BF12)
∂I

)
dS dI = –

∫
P̃3

BF12 dS +
∫

Q̃3

(ξBF11 – BF12) dS.

The intersection points of the limit cycle 	 and the line I = IT are denoted by M1 =
(M11, IT ) and M2 = (M21, IT ), and the intersection point of 	 and the line I = ξS in region
G2 is denoted by N1 = (N11, N12).

Since c2 > c1, N11 > M11, and IT
ξ

> M11, from the above discussions, we have

0 >
3∑

i=1

∫∫
Di

(
∂(BFi1)

∂S
+

∂(BFi2)
∂I

)
dS dI

= lim
δ→0

3∑
i=1

∫∫
D̃i

(
∂(BFi1)

∂S
+

∂(BFi2)
∂I

)
dS dI

= lim
δ→0

(
–

∫
P̃1

BF12 dS –
∫

P̃2

BF22 dS +
∫

Q̃2

(ξBF21 – BF22) dS

–
∫

P̃3

BF12 dS +
∫

Q̃3

(ξBF11 – BF12) dS
)

= –
∫ M11

IT
ξ

(
β –

μ + d
S

)
dS –

∫ N11

M11

(
β –

μ + d + c2

S

)
dS

–
∫ IT

ξ

N11

(
β –

μ + d
S

)
dS –

∫ N11

IT
ξ

c1

S
dS

= –
(
βS – (μ + d) ln S

)|M11
IT
ξ

–
(
βS – (μ + d + c2) ln S

)|N11
M11

–
(
βS – (μ + d) ln S

)| IT
ξ

N11
– c1 ln S|N11

IT
ξ

= (c2 – c1) ln
N11

M11
+ c1 ln

IT
ξ

M11
> 0,

which is a contradiction. Hence, the existence of the limit cycle surrounding the sliding
mode and the real equilibrium ER

2 is ruled out. Consequently, ER
2 is globally asymptotically

stable. �

Throughout this paper, in order to better present the solution trajectory, the vertical
and horizontal nullclines of system (1)–(2) are shown by black dashed curves and black
dashed–dotted lines, respectively. It can be easily seen that the curves S = S∗

1 , S = S∗
2 are the
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Figure 3 ER2 is globally asymptotically stable in
Case A.1: (a) Data 1, ξ = 0.07, IT = 30, �2 does not
exist; (b) Data 2, ξ = 0.45, IT = 100, �2 = {(S, I) ∈ �2

: S– < S < S+}

Table 1 Description of parameters in system (1)–(2)

Parameter Definition Data 1 Data 2 Data 3

r (/day) Intrinsic growth rate of birds 0.0047 0.005 0.002
K (bird) Maximal carrying capacity of the birds 600 700 700
μ (/day) Natural death rate of birds 1.2× 10–3 1.2× 10–4 2.4× 10–3

d (/day) Disease induced death rate of birds 4× 10–4 4× 10–5 2.2× 10–4

β (/day/bird) Transmission rate from infected to susceptible birds 2× 10–5 1× 10–5 1× 10–4

c1 (/day) Culling rate of susceptible birds 0.001 0.001 0.001
c2 (/day) Culling rate of infected birds 0.006 0.002 0.002

horizontal nullclines of F1 and F2, denoted by gI
1 and gI

2, respectively. The curve {(S, I) ∈
G1 : I = r

β
(1 – S

K )} is the vertical nullcline of F1, denoted by gS
1 , while the curve {(S, I) ∈ G2 :

I = r
β

(1 – S
K ) – c1

β
} is the vertical nullcline of F2, denoted by gS

2 .
The phase portrait in Case A.1 is shown in Fig. 3. Here we present the cases when the

sliding-mode domain does not exist and when �2 = {(S, I) ∈ �2 : S– < S < S+}, the case
when �2 = {(S, I) ∈ �2 : IT

ξ
< S < S+} is omitted here since it is similar. The solutions of

system (1)–(2) will finally stabilize at ER
2 , which means the number of infected birds is

eventually larger than the given threshold level, people will confront with an influenza
pandemic which is intolerable and out of control. This departs from our target to control
the disease. Hence, the threshold value IT and ratio threshold value ξ are not a good choice.

In this and the following figures, we apply three different sets of parameter values for
high quality figure display. All the parameter values have been used in [9, 12] and refer-
ences therein, as can be seen in Table 1.
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Figure 4 Ep1 is globally asymptotically stable in
Case A.2. Data 1, ξ = 0.35, IT = 150

3.3.2 Case A.2: I∗
2 < IT < I∗

1

In this case, both EV
1 and EV

2 are virtual equilibria. Furthermore, Ep1 ∈ �1 ⊂ �1 is a pseu-
doequilibrium according to Proposition 3.1. According to Propositions 3.2 and 3.5 and
since ξ < IT

S∗
2

< H3, there does not exist a sliding-mode domain on �2.
Similarly, by excluding the existence of the limit cycle as that in Theorem 3.3, we can

derive the following result.

Theorem 3.4 Ep1 is globally asymptotically stable if S∗
1 < S∗

2 < IT
ξ

and I∗
2 < IT < I∗

1 .

The solutions of system (1)–(2) with different initial values will all converge to the pseu-
doequilibrium Ep1 eventually. In this case, the influenza is controlled to the given threshold
level IT , as shown in Fig. 4.

3.3.3 Case A.3: I∗
2 < I∗

1 < IT

In this case, ER
1 is a real equilibrium, whereas EV

2 is a virtual equilibrium. Moreover, Ep1

is not a pseudoequilibrium on �1 ⊂ �1 by Proposition 3.1. Meanwhile, for I∗2
S∗

2
< IT

S∗
2

< H3 <
H2 < H1, by Proposition 3.2 and due to ξ < IT

S∗
2

, there does not exist a sliding-mode domain
on �2. We can obtain the following result.

Theorem 3.5 ER
1 is globally asymptotically stable if S∗

1 < S∗
2 < IT

ξ
and I∗

2 < I∗
1 < IT .

All solutions of system (1)–(2) will stabilize at the level ER
1 below the threshold values,

as shown in Fig. 5. In this case, the disease can be controlled to below the tolerance level
in spite of a small endemic with size ER

1 .

4 Case B: global dynamics when S∗
1 < IT

ξ
< S∗

2 ( IT
S∗

2
< ξ < IT

S∗
1

)
4.1 Sliding mode on �1 and its dynamics
In this case, the sliding-mode domain on �1 is

�1 =
{

(S, I) ∈ �1 : S∗
1 < S <

IT

ξ

}
. (8)

The sliding-mode dynamics on �1 ⊂ �1 is represented by system (6). Furthermore, for
the existence of the pseudoequilibrium Ep1, we have the following result.
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Figure 5 ER1 is globally asymptotically stable in
Case A.3. Data 1, ξ = 0.5, IT = 230

Proposition 4.1 Ep1 is a pseudoequilibrium on �1 ⊂ �1 if S∗
1 < S∗

p1 < IT
ξ

, that is, I∗
2 < IT <

I∗
1 , and IT

S∗
2

< ξ < H1.

Proof Since S∗
1 < IT

ξ
< S∗

2 , Ep1 becomes a pseudoequilibrium on �1 ⊂ �1 if and only if

S∗
1 < S∗

p1 < IT
ξ

, that is, IT < I∗
1 and ξ <

IT ( r
K + c1

c2
β)

r+ c1
c2

(μ+d)–βIT
= H1. Proposition 3.5 indicates that IT >

I∗
2 ⇔ IT

S∗
2

< H1, IT < I∗
1 ⇔ H1 < IT

S∗
1

. Then the result follows along with IT
S∗

2
< ξ < IT

S∗
1

. �

4.2 Sliding mode on �2 and its dynamics
In this case, the sliding-mode domain on �2 and the conditions for Ep2 to be a pseudoe-
quilibrium on �2 ⊂ �2 are related to the values of ξ and IT , which can be referred to
Propositions 3.2 and 3.3. The sliding-mode dynamics on �2 ⊂ �2 can be represented by
system (7).

4.3 Global dynamics
4.3.1 Case B.1: IT < I∗

2 < I∗
1

In Case B.1, EV
1 is a virtual equilibrium, E2 is a real equilibrium if ξ < I∗2

S∗
2

, whilst E2 is a vir-

tual equilibrium if ξ > I∗2
S∗

2
. Furthermore, Ep1 is not a pseudoequilibrium on �1 by Proposi-

tion 4.1. According to Proposition 3.5, we have the following five different situations.

Theorem 4.1 Suppose S∗
1 < IT

ξ
< S∗

2 and IT < I∗
2 < I∗

1 , we have the following results:

• When H1 < H3 < IT
S∗

2
< I∗2

S∗
2

< H2 < IT
S∗

1
< I∗1

S∗
1

, we have:

(i) If IT
S∗

2
< ξ < I∗2

S∗
2

, then ER
2 is a real equilibrium and is globally asymptotically stable;

the sliding-mode domain on �2 is �2 = {(S, I) ∈ �2 : IT
ξ

< S < S+}, and
Ep2 /∈ �2 ⊂ �2;

(ii) If I∗2
S∗

2
< ξ < IT

S∗
1

, then EV
2 is a virtual equilibrium, the sliding-mode domain on �2 is

�2 = {(S, I) ∈ �2 : IT
ξ

< S < S+} when ξ < H2, and �2 = {(S, I) ∈ �2 : S– < S < S+}
when ξ > H2, meanwhile Ep2 ∈ �2 ⊂ �2 is globally asymptotically stable; as can
be seen in Fig. 6(c);

• When H1 < H3 < IT
S∗

2
< H2 < I∗2

S∗
2

< IT
S∗

1
< I∗1

S∗
1

, we have:

(i) If IT
S∗

2
< ξ < I∗2

S∗
2

, then ER
2 is a real equilibrium and is globally asymptotically stable;

the sliding-mode domain on �2 is �2 = {(S, I) ∈ �2 : IT
ξ

< S < S+} when ξ < H2,
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Figure 6 ER2 is globally asymptotically stable in Case B.1:

(a) Data 2, ξ = 0.87, IT = 175, �2 = {(S, I) ∈ �2 :
IT
ξ < S

< S+}; (b) Data 1, ξ = 0.05, IT = 7, �2 = {(S, I) ∈ �2 : S– < S
< S+}; Ep2 is globally asymptotically stable in Case B.1:
(c) Data 2, ξ = 1.17, IT = 210,
�2 = {(S, I) ∈ �2 :

IT
ξ < S < S+}; (d) Data 2,

ξ = 1.8, IT = 130, �2 = {(S, I) ∈ �2 : S– < S < S+}

and �2 = {(S, I) ∈ �2 : S– < S < S+} when ξ > H2, meanwhile Ep2 /∈ �2 ⊂ �2; as
can be seen in Fig. 6(a);

(ii) If I∗2
S∗

2
< ξ < IT

S∗
1

, then EV
2 is a virtual equilibrium, the sliding-mode domain on �2 is

�2 = {(S, I) ∈ �2 : S– < S < S+}, meanwhile Ep2 ∈ �2 ⊂ �2 is globally
asymptotically stable;
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• When H1 < H3 < IT
S∗

2
< H2 < IT

S∗
1

< I∗2
S∗

2
< I∗1

S∗
1

, we have that ER
2 is a real equilibrium and is

globally asymptotically stable; the sliding-mode domain on �2 is
�2 = {(S, I) ∈ �2 : IT

ξ
< S < S+} when ξ < H2, and �2 = {(S, I) ∈ �2 : S– < S < S+} when

ξ > H2, meanwhile Ep2 /∈ �2 ⊂ �2; as can be seen in Fig. 6(b);
• When H1 < H3 < H2 < IT

S∗
2

< IT
S∗

1
< I∗2

S∗
2

< I∗1
S∗

1
, we have that ER

2 is a real equilibrium and is
globally asymptotically stable; the sliding-mode domain on �2 is
�2 = {(S, I) ∈ �2 : S– < S < S+}, meanwhile Ep2 /∈ �2 ⊂ �2;

• When H1 < H3 < H2 < IT
S∗

2
< I∗2

S∗
2

< IT
S∗

1
< I∗1

S∗
1

, we have:

(i) If IT
S∗

2
< ξ < I∗2

S∗
2

, then ER
2 is a real equilibrium and is globally asymptotically stable;

the sliding-mode domain on �2 is �2 = {(S, I) ∈ �2 : S– < S < S+}, Ep2 /∈ �2 ⊂ �2;
(ii) If I∗2

S∗
2

< ξ < IT
S∗

1
, then EV

2 is a virtual equilibrium, the sliding-mode domain on �2 is
�2 = {(S, I) ∈ �2 : S– < S < S+}, meanwhile Ep2 ∈ �2 ⊂ �2 is globally
asymptotically stable; as can be seen in Fig. 6(d).

The solutions of system (1)–(2) in this case will finally stabilize either at ER
2 or Ep2 with

different sliding-mode domains �2 ⊂ �2, as can be seen in Fig. 6. The disease will persist
at an intolerable level or be controlled at the given level. Note that we do not show all the
figures, for others are similar with the given ones.

4.3.2 Case B.2: I∗
2 < IT < I∗

1

In this case, both EV
1 and EV

2 are virtual equilibria; Ep1 is a pseudoequilibrium if IT
S∗

2
< ξ <

H1. For I∗2
S∗

2
< IT

S∗
2

< H3 < H1 < H2 < IT
S∗

1
< I∗1

S∗
1

when I∗
2 < IT < I∗

1 , hence, we have the following
results.

Theorem 4.2 Suppose S∗
1 < IT

ξ
< S∗

2 and I∗
2 < IT < I∗

1 , we have:
(i) If IT

S∗
2

< ξ < H1, then Ep1 ∈ �1 ⊂ �1 is globally asymptotically stable; there is no sliding
mode on �2 when ξ < H3, the sliding-mode domain on �2 is
�2 = {(S, I) ∈ �2 : IT

ξ
< S < S+} when ξ > H3, meanwhile Ep2 /∈ �2 ⊂ �2; as can be

seen in Fig. 7(a)–(b);
(ii) If H1 < ξ < IT

S∗
1

, then Ep1 /∈ �1 ⊂ �1, the sliding-mode domain on �2 is
�2 = {(S, I) ∈ �2 : IT

ξ
< S < S+} when ξ < H2, and �2 = {(S, I) ∈ �2 : S– < S < S+} when

ξ > H2, meanwhile Ep2 ∈ �2 ⊂ �2 is globally asymptotically stable; as can be seen in
Fig. 7(c)–(d).

In this case, the number of infected birds will finally converge to a level equal to the
given threshold value, which indicates the disease is controlled from the biological point
of view.

4.3.3 Case B.3: I∗
2 < I∗

1 < IT

In this case, ER
1 is a real equilibrium, while EV

2 is a virtual equilibrium; Ep1 is not a pseu-
doequilibrium on �1 by Proposition 4.1. We have the following results by Proposition 3.5.

Theorem 4.3 Suppose S∗
1 < IT

ξ
< S∗

2 and I∗
2 < I∗

1 < IT . Then ER
1 is globally asymptotically

stable, and:
• When I∗2

S∗
2

< IT
S∗

2
< IT

S∗
1

< H3 < H2 < H1, there is no sliding mode on �2 as can be seen in
Fig. 8(a);
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Figure 7 Ep1 is globally asymptotically stable in
Case B.2: (a) Data 2, ξ = 1.8, IT = 360, �2 does not exist;
(b) Data 2, ξ = 2.75, IT = 360, �2 = {(S, I) ∈ �2 :

IT
ξ < S

< S+}; Ep2 is globally asymptotically stable in Case B.2:
(c) Data 2, ξ = 3.9, IT = 360,
�2 = {(S, I) ∈ �2 :

IT
ξ < S < S+}; (d) Data 2,

ξ = 5.5, IT = 360, �2 = {(S, I) ∈ �2 : S– < S < S+}
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Figure 8 ER1 is globally asymptotically stable in
Case B.3: (a) Data 3, ξ = 0.7, IT = 30, �2 does not exist;
(b) Data 2, ξ = 15, IT = 507, �2 = {(S, I) ∈ �2 :

IT
ξ < S

< S+}

• When I∗2
S∗

2
< IT

S∗
2

< H3 < IT
S∗

1
< H2 < H1, there is no sliding mode on �2 if ξ < H3 and

�2 = {(S, I) ∈ �2 : IT
ξ

< S < S+} if ξ > H3, meanwhile Ep2 /∈ �2 ⊂ �2; as can be seen in
Fig. 8(b).

As in Case A.3, all solutions will finally stabilize at a level below the infected threshold
level IT , as can be seen in Fig. 8, which shows the disease is controlled below a tolerance
level.

5 Case C: global dynamics when IT
ξ

< S∗
1 < S∗

2 (ξ > IT
S∗

1
)

5.1 Sliding mode on �1 and its dynamics
In this case since IT

ξ
< S∗

1 , there does not exist a sliding-mode domain on �1.

5.2 Sliding mode on �2 and its dynamics
As in Case B, the sliding-mode domain on �2 and the conditions for Ep2 to be a pseu-
doequilibrium on �2 ⊂ �2 are related to the values of ξ and IT , which can be referred to
Propositions 3.2 and 3.3. The sliding-mode dynamics on �2 ⊂ �2 can be represented by
system (7).
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5.3 Global dynamics
5.3.1 Case C.1: IT < I∗

2 < I∗
1

In this situation, E1 is a real equilibrium if ξ > I∗1
S∗

1
, whilst E1 is a virtual equilibrium if ξ < I∗1

S∗
1

;

E2 is a real equilibrium if ξ < I∗2
S∗

2
, whilst E2 is a virtual equilibrium if ξ > I∗2

S∗
2

. By Proposi-
tion 3.5, we have the following results.

Theorem 5.1 Suppose S∗
1 < S∗

2 < IT
ξ

and IT < I∗
2 < I∗

1 . Then the sliding-mode domain on �2

is �2 = {(S, I) ∈ �2 : S– < S < S+} for IT
S∗

1
> H2, and:

• When H1 < H3 < IT
S∗

2
< I∗2

S∗
2

< IT
S∗

1
< I∗1

S∗
1

, one has:

(i) If IT
S∗

1
< ξ < I∗1

S∗
1

, both EV
1 and EV

2 are virtual equilibria; Ep2 ∈ �2 ⊂ �2 is globally
asymptotically stable; the figure is similar to Fig. 9(b);

(ii) If ξ > I∗1
S∗

1
, ER

1 is a real equilibrium, while EV
2 is a virtual equilibrium; ER

1 is globally
asymptotically stable, meanwhile Ep2 /∈ �2 ⊂ �2; the figure is similar to Fig. 9(c);

• When H1 < H3 < IT
S∗

2
< IT

S∗
1

< I∗2
S∗

2
< I∗1

S∗
1

, one has

(i) If IT
S∗

1
< ξ < I∗2

S∗
2

, EV
1 is a virtual equilibrium, while ER

2 is a real equilibrium; ER
2 is

globally asymptotically stable, meanwhile Ep2 /∈ �2 ⊂ �2 as can be seen in
Fig. 9(a);

(ii) If I∗2
S∗

2
< ξ < I∗1

S∗
1

, both EV
1 and EV

2 are virtual equilibria; Ep2 ∈ �2 ⊂ �2 is globally
asymptotically stable as can be seen in Fig. 9(b);

(iii) If ξ > I∗1
S∗

1
, ER

1 is a real equilibrium, while EV
2 is a virtual equilibrium; ER

1 is
globally asymptotically stable, meanwhile Ep2 /∈ �2 ⊂ �2 as can be seen in
Fig. 9(c).

In this case, all solutions of system (1)–(2) rely greatly on the combinations of IT and ξ .
The solutions should converge to ER

2 , Ep2 or ER
1 as can be seen in Fig. 9, which then leads to

different control outcomes. Therefore an efficient threshold policy is essential by driving
the number of infected birds below a given level or at a tolerance level.

5.3.2 Case C.2: I∗
2 < IT < I∗

1

In this case, for I∗2
S∗

2
< IT

S∗
2

< H3 < H1 < H2 < IT
S∗

1
< I∗1

S∗
1

and ξ > IT
S∗

1
, then ξ > I∗2

S∗
2

and E2 is a vir-

tual equilibrium, denoted by EV
2 ; E1 is a real equilibrium if ξ > I∗1

S∗
1

, whilst E1 is a virtual

equilibrium if ξ < I∗1
S∗

1
.

Theorem 5.2 Suppose S∗
1 < S∗

2 < IT
ξ

and I∗
2 < IT < I∗

1 . Then the sliding-mode domain on �2

is �2 = {(S, I) ∈ �2 : S– < S < S+} for H2 < IT
S∗

1
, and:

(i) If IT
S∗

1
< ξ < I∗1

S∗
1

, EV
1 is a virtual equilibrium. Ep2 ∈ �2 ⊂ �2 is globally asymptotically

stable as can be seen in Fig. 10(a);
(ii) If ξ > I∗1

S∗
1

, ER
1 is a real equilibrium and is globally asymptotically stable, meanwhile

Ep2 /∈ �2 ⊂ �2 as can be seen in Fig. 10(b).

As can be seen in Fig. 10, all solutions of the system will finally stabilize at either Ep2 or
ER

1 , the level equal to or below the given threshold level, and then the influenza is controlled
below or at a tolerance level.
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Figure 9 Global dynamics in Case C.1: (a) ER2 is
globally asymptotically stable. Data 2, ξ = 1.01,
IT = 16; (b) Ep2 is globally asymptotically stable.
Data 2, ξ = 2, IT = 16; (c) ER1 is globally asymptotically
stable. Data 2, ξ = 41, IT = 16

5.3.3 Case C.3: I∗
2 < I∗

1 < IT

In this case, ER
1 is a real equilibrium, EV

2 is a virtual equilibrium. By Proposition 3.5, we
have the following result.

Theorem 5.3 Suppose S∗
1 < S∗

2 < IT
ξ

and I∗
2 < I∗

1 < IT , then ER
1 is globally asymptotically

stable, and for I∗1
S∗

1
< IT

S∗
1

we have:

• When I∗2
S∗

2
< IT

S∗
2

< IT
S∗

1
< H3 < H2 < H1, there does not exist a sliding-mode domain if

ξ < H3, the sliding-mode domain on �2 is �2 = {(S, I) ∈ �2 : IT
ξ

< S < S+} if H3 < ξ < H2,
and �2 = {(S, I) ∈ �2 : S– < S < S+} if ξ > H2, meanwhile Ep2 /∈ �2 ⊂ �2 as can be seen
in Fig. 11(a)–(b);
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Figure 10 Global dynamics in Case C.2: (a) Ep2 is
globally asymptotically stable. Data 2, ξ = 18.8,
IT = 300; (b) ER1 is globally asymptotically stable. Data 2,
ξ = 41, IT = 300

• When I∗2
S∗

2
< IT

S∗
2

< H3 < IT
S∗

1
< H2 < H1, the sliding-mode domain on �2 is

�2 = {(S, I) ∈ �2 : IT
ξ

< S < S+} if ξ < H2, and �2 = {(S, I) ∈ �2 : S– < S < S+} if ξ > H2,
meanwhile Ep2 /∈ �2 ⊂ �2; the figures are similar to Fig. 11(a)–(b).

The outcomes in this case achieve our objective as shown in Fig. 11, that is, to drive
the number of infected birds to a level below the tolerance level. We could choose the
corresponding threshold values in practice.

6 Conclusion and discussion
In this work, we proposed and analyzed an avian-only Filippov model, which is governed
by nonlinear ordinary differential equations with discontinuous right-hand sides and a
nonsmooth separation line. On the one hand, it is generally impossible to completely de-
populate the infected birds, nor it is economically or biologically feasible. So when carry-
ing out control strategies, the objective is to drive the number of infected birds to a tol-
erance or available level. On the other hand, when the interaction ratio of the numbers of
infected and susceptible birds is below a ratio threshold value ξ , in order to maximize the
economic profits, more effort can be saved by taking no control measures. In Sects. 3–5,
it is shown that the solutions of system (1)–(2) will finally stabilize at either one of the two
endemic equilibria in each subregion or the sliding equilibria on the two sliding modes.
The results indicate that we can choose a suitable tolerance threshold IT and/or a suitable
ratio threshold ξ such that system (1)–(2) finally approaches E1 in G1 or a sliding equi-
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Figure 11 ER1 is globally asymptotically stable in
Case C.3: (a) Data 3, ξ = 1.16, IT = 30. �2 does not
exist; (b) Data 3, ξ = 1.9, IT = 30, �2 = {(S, I) ∈ �2 :

IT
ξ

< S < S+}

Table 2 Global dynamics of system (1)–(2) summarized from Sects. 3, 4, and 5

Case Condition Equilibrium Main result

S∗
1 < S∗

2 <
IT
ξ IT < I∗2 < I∗1 EV1 , E

R
2 (II)

S∗
1 < S∗

2 <
IT
ξ I∗2 < IT < I∗1 EV1 , E

V
2 , Ep1 (III)

S∗
1 < S∗

2 <
IT
ξ I∗2 < I∗1 < IT ER1 , E

V
2 (I)

S∗
1 <

IT
ξ < S∗

2 IT < I∗2 < I∗1 ,ξ <
I∗2
S∗2

EV1 , E
R
2 (II)

S∗
1 <

IT
ξ < S∗

2 IT < I∗2 < I∗1 ,ξ >
I∗2
S∗2

EV1 , E
V
2 , Ep2 (III)

S∗
1 <

IT
ξ < S∗

2 I∗2 < IT < I∗1 ,ξ < H1 EV1 , E
V
2 , Ep1 (III)

S∗
1 <

IT
ξ < S∗

2 I∗2 < IT < I∗1 ,ξ > H1 EV1 , E
V
2 , Ep2 (III)

S∗
1 <

IT
ξ < S∗

2 I∗2 < I∗1 < IT ER1 , E
V
2 (I)

IT
ξ < S∗

1 < S∗
2 IT < I∗2 < I∗1 ,ξ <

I∗2
S∗2

EV1 , E
R
2 (II)

IT
ξ < S∗

1 < S∗
2 IT < I∗2 < I∗1 ,

I∗2
S∗2

< ξ <
I∗1
S∗1

EV1 , E
V
2 , Ep2 (III)

IT
ξ < S∗

1 < S∗
2 IT < I∗2 < I∗1 ,ξ >

I∗1
S∗1

ER1 , E
V
2 (I)

IT
ξ < S∗

1 < S∗
2 I∗2 < IT < I∗1 ,ξ <

I∗1
S∗1

EV1 , E
V
2 , Ep2 (III)

IT
ξ < S∗

1 < S∗
2 I∗2 < IT < I∗1 ,ξ >

I∗1
S∗1

ER1 , E
V
2 (I)

IT
ξ < S∗

1 < S∗
2 I∗2 < I∗1 < IT ER1 , E

V
2 (I)

librium Epi on �i ⊂ �i, i = 1, 2, and then our objective, that is, inhibiting the infection or
stabilizing the infection to a desirable level, is obtained. The main analytical results are
summarized in Table 2, with the following biological implications.
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(I) The system (1)–(2) has a unique globally asymptotically stable equilibrium ER
1 , as

illustrated in Figs. 5, 8, 9(c), 10(b), 11. The number of infected birds will finally
stabilize at a level below the given threshold. Hence, in this situation, the influenza
could be controlled below a given level in spite of a small endemic with size ER

1 . In
practice, these choices of threshold values are preferable.

(II) The system (1)–(2) has a unique globally asymptotically stable equilibrium ER
2 , as

can be seen in Figs. 3, 6(a)–(b), 9(a). For these choices of threshold levels, the
number of infected birds will converge to a high level above the threshold values,
and then the avian influenza may be out of control by persisting at an intolerable
level ER

2 .
(III) There is a globally asymptotically stable pseudoequilibrium Ep1 or Ep2. So the

number of infected birds will eventually approach the given threshold values, as
can be seen in Figs. 6(c)–(d), 7, 9(b), 10(a). The influenza is finally controlled at a
tolerance level.

Note that our objective is to maintain the number of infected birds not exceeding a desired
level. The analytical results show that the choice of the infected threshold value IT and
the ratio threshold ξ is of great significance to lead the number of the infected birds to
an acceptable level. For Cases (I) and (III), our control objective can be achieved since
the eventual number of the infected birds is equal to or below the given threshold levels.
However, the number of the infected birds will be above the separation line eventually in
Case (II), which is not our desire since tremendous economic damage will be caused. The
findings could be beneficial to decide whether and when to take control strategies based
on these two threshold values.

The threshold policy adopted by Chong et al. [25] treats the infected birds as an index.
However, when the number of infected birds is relatively small compared to the number
of susceptible birds, economic considerations may be more important than the disease
control. Hence, a threshold policy considering both the number of infected birds and the
interaction ratio of the numbers of infected and susceptible birds may be more realistic
from the economical point of view. On the other hand, compared with the model proposed
by Chong et al. [25] (ξ = 0 in system (1)–(2) with constant growth for the susceptible
birds), we find that if the values of IT and/or ξ are chosen to satisfy S∗

2 < IT
ξ

or IT > I∗
1 ,

then both models present the same results, that is, the disease persists at the level of E2

when IT < I∗
2 , the number of infected birds stays at the available level Ep1 when I∗

2 < IT < I∗
1 ,

and the influenza is totally in control by stabilizing at E1 when IT > I∗
1 . However, when the

number of susceptible and/or infected birds is large enough, system (1)–(2) shows more
complex dynamics. For example, in Case C.1 when IT

ξ
< S∗

1 < S∗
2 and IT < I∗

2 , the solutions
could converge to ER

2 , Ep2 or ER
1 , resulting in different control outcomes, which shows the

importance of the number of susceptible birds and the interaction ratio of the infected
and susceptible birds in disease control.

Also, in [38] and our previous work [9], the authors considered a two-threshold policy
in combating avian influenza. That is, culling of infected and/or susceptible birds depends
on whether the number of infected (susceptible) birds exceeds the infected (susceptible)
threshold level or not. The results show that if the susceptible threshold level is chosen to
be large enough while the infected threshold level is chosen to be small enough, then the
disease may persist at an intolerable level. While system (1)–(2) in this case indicates that
the disease could be controlled to below the tolerance level. Hence taking the interaction
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ratio of the infected and susceptible birds into consideration may be of some importance.
Therefore, the avian-only model with a nonsmooth separation line proposed in this work
may provide some new threshold policies in avian influenza control.

The theoretical results obtained in this work show that by choosing an appropriate
threshold policy with a suitable tolerance threshold IT and/or a suitable ratio threshold
ξ , we can finally drive the influenza below or to be equal to the given tolerance level. It is
worth noting that depopulation of susceptible and/or infected birds can still be triggered
to stop the infection from progressing to an intolerable pandemic. Therefore an effective
and efficient threshold policy is essential to control the influenza by driving the number
of infected birds below or to a chosen level.
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