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Abstract
A class of the boundary value problem is investigated in this research work to prove
the existence of solutions for the neutral fractional differential inclusions of
Katugampola fractional derivative which involves retarded and advanced arguments.
New results are obtained in this paper based on the Kuratowski measure of
noncompactness for the suggested inclusion neutral system for the first time. On the
one hand, this research concerns the set-valued analogue of Mönch fixed point
theorem combined with the measure of noncompactness technique in which the
right-hand side is convex valued. On the other hand, the nonconvex case is discussed
via Covitz and Nadler fixed point theorem. An illustrative example is provided to apply
and validate our obtained results.
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1 Introduction
The theory of fractional differential equations, particularly that of fractional boundary
value problems, has motivated several mathematicians, physicists, engineers, ecologists,
and biologists to study them due to the variety of their applications in multidisciplinary
sciences [1–14]. One of the main reasons for this particular interest in studying these equa-
tions is the fact that fractional formulations provide a powerful tool for modeling various
scientific phenomena that exhibit memory effects. For more information about this in-
teresting research study, some recent research studies have been conducted on fractional
differential equations (FrDEqs) in [15–29]. Various fractional definitions of derivatives and
integrals have been proposed by mathematicians, and some of the most common ones are
the fractional derivatives of Riemann–Liouville and Caputo. Along with these, many gen-
eralized formulations of fractional derivatives have been introduced by researchers such
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as the generalized Caputo fractional derivative [30, 31] which was proposed by Katugam-
pola and Almeida with a purpose to define a fractional derivative that satisfies the property
of semigroup, and it is capable of combining other fractional derivatives [32].

Neutral fractional equations have attracted the interests of many researchers due to the
important applications of these equations in physics and engineering, and these equations
share some physical characteristics of wave equation due to the physical explanation of
these equations as damped waves that have constant propagation velocities [33]. Agarwal
et al. [34] proved the fractional formulation’s existence of neutral differential equations
via Caputo fractional derivative. One of the most interesting applications of the fractional
formulation of neutral systems is the controllability problem [35] which is a very impor-
tant problem to study the theory of control systems. For other instances, see [36–41]. In
addition, many suggested problems of neutral fractional equations still are open and need
further research work. As a result, studying these equations is worthy and makes all of our
results new.

In [42], Boumaaza, Benchohra, and Tunc investigated the following fractional boundary
value problem (FBVP):

�
c Dξ

n+
(
k(t) – q

(
t, kt)) ∈ K

(
t, kt), t ∈ J := [n, m], 1 < ξ ≤ 2,

k(t) = χ (t), t ∈ [n – r, n], r > 0,

k(t) = ψ(t), t ∈ [m, m + γ ],γ > 0, (1)

where �
c Dξ

n+ is a modified Caputo formulation of the Erdélyi–Kober fractional derivative
of order 1 < ξ ≤ 2. In 2016, Agarwal et al. [43] extended their study to a set-valued version
of the functional FBVP subject to retarded-advanced arguments as

Dξ k(t) ∈ K
(
t, kt), t ∈ J := [1, e], 1 < ξ < 2,

k(t) = φ(t), t ∈ [1 – r, 1], r > 0,

k(t) = ψ(t), t ∈ [e, e + γ ],γ > 0, (2)

where K : J × C([–r,γ ],R] → P(R) is a multifunction. Regarding the existence of solu-
tions for this FBVP, they focused on some standard fixed point methods.

Stimulated by the aforesaid research, this research work investigates the existence of so-
lutions for the neutral fractional functional differential inclusions via Katugampola frac-
tional derivative (KaFrD) which involves retarded and advanced arguments as follows:

�Dξ

n+
(
w(t) – q

(
t, wt)) ∈ K

(
t, wt), t ∈ J := [n, m], 1 < ξ ≤ 2, (3)

w(t) = χ (t), t ∈ [n – s, n], s > 0, (4)

w(t) = ψ(t), t ∈ [m, m + γ ],γ > 0, (5)

where a given function K : J × C([–s,γ ],R] → P(R) exists so that χ ,ψ ∈ C([n – s, m +
γ ],R] via χ (n) = 0 and ψ(m) = 0, and a given mapping q : J × C([–s,γ ],R] → R exists
such that q(n,χn) = 0 and q(m,ψm) = 0. The element of C([–s,γ ],R], denoted by wt , is
defined as follows:

wt := w(t + �), t ∈ [–s,γ ].
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Unlike the previous research works, we here implement our theoretical techniques on
a generalized inclusion version of the neutral functional system via generalized deriva-
tive attributed to Katugampola for the first time. Due to the importance of such neutral
systems, we prefer to extract the existence of solutions with the help of a generalized op-
erator which covers some previous results by assuming special kernels. In addition, we
utilize a new technique relying on the Kuratowski measure of noncompactness (KMNC)
along with some standard methods. Indeed, the main difference and the novelty of this re-
search with respect to other works is that the KMNC technique is used for the generalized
version of a neutral functional FBVP (3)–(5).

This research paper is divided into the following sections: Some important definitions,
which are needed to obtain our results in the other sections, are discussed in Sect. 2. Two
interesting results are obtained in Sect. 3 in relation to the set-valued analogue of the
Mönch fixed point theorem (MFPThm) (Theorem 2.9) and the Covitz and Nadler fixed
point theorem (CNFPThm) (Theorem 2.10). In Sect. 4, an application example is provided
to validate and apply our obtained results. We conclude our research study in Sect. 5.

2 Preliminaries
This section introduces some important fundamental definitions that will be needed for
obtaining our results in the next sections.

2.1 Fundamental definitions
Assume that Xl

c(n, m) (c ∈ R, 1 ≤ l ≤ ∞) denotes the space of real-valued Lebesgue mea-
surable functions k on [n, m] via the norm

‖k‖Xl
c

:=
(∫ m

n

∣
∣vck(v)

∣
∣l dv

v

) 1
l

< ∞ (1 ≤ l < ∞)

and

‖k‖X∞
c := ess sup

n≤t≤m

(∣∣vck(v)
∣
∣).

Specifically, if c = 1
l , then the space Xl

c(n, m) coincides with the space Ll[n, m]. Suppose
that C[n, m] is a Banach space of continuous functions as u : [n, m] →R with the norm

‖u‖[n,m] := sup
{∣∣u(t)

∣∣ : t ∈ [n, m]
}

.

Let us define the following space:

AC1[n, m] :=
{

q : [n, m] →R, δ
(
q(x)

) ∈ AC[n, m]
}

,

where AC[n, m] is a set of absolutely continuous functions from [n, m] into R with δ := t d
dt .

Also, define the following space:

Q :=
{

w : [n – s, m + γ ] →R, w|[n–s,n] ∈ C[n – s, n], w|[n,m] ∈ AC1[n, m],

w|[m,m+γ ] ∈ C[m, m + γ ]
}

(6)
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with the norm

‖u‖Q := sup
{∣∣u(t)

∣∣ : t ∈ [n – s, m + γ ]
}

.

Definition 2.1 ([30]) Let ξ > 0, � > 0. The left-sided (Katugampola) generalized integral
of fractional integral order ξ for a function z ∈ Xp

c (a, b) is defined by

�Iξ

n+ z(t) :=
1


(ξ )

∫ t

n

(
t� – n�

�

)ξ–1

z(v)v�–1 dv,

where the Euler gamma function is represented by 
(.) which is expressed as follows:


(ξ ) :=
∫ ∞

0
tξ–1e–t dt, ξ > 0.

Definition 2.2 ([31]) Let ξ > 0, � > 0. The left-sided (Katugampola) generalized derivative
of order ξ for a given function z ∈ Xl

c(n, m) is defined by

�Dξ

n+ z(t) = δk
�

�Ik–ξ

n+ z(t)

=
1


(k – ξ )

(
t1–� d

dt

)k ∫ t

n

(
t� – n�

�

)k–ξ–1

z(v)v�–1 dv,

where k = [ξ ] + 1 and [ξ ] is the integer part of ξ and δk
� := (t1–� d

dt )k .

Let us discuss some essential properties of the fractional derivatives and integrals as
follows.

Lemma 2.3 ([44]) Assume that ξ > 0 and � > 0. Then we have

(
�Iξ

n+
�Dξ

n+ z
)
(t) = z(t) + c1

(
t� – n�

�

)ξ–1

+ c2

(
t� – n�

�

)ξ–2

+ · · · + ck

(
t� – n�

�

)ξ–o

, (7)

where cj ∈R, j = 1, 2, . . . , k, and k = [ξ ] + 1.

Lemma 2.4 ([44]) If x > n, then we have
• [�Iξ

n+ ( t�–n�

�
)γ –1](x) = 
(γ )


(γ +ξ ) ( x�–n�

�
)γ +ξ–1,

• [�Dξ

n+ ( t�–n�

�
)ξ–1](x) = 0.

Assume that X and Y are Banach spaces and P(X) = {G ⊂ X : G �= ∅}, Pcp(X) =
{G ∈ P(X) : G is closed}, Pbo(X) = {G ∈ P(X) : G is bounded}, Pcs(X) = {G ∈ P(X) :
G is convex}, Pcl(X) = {G ∈P(X) : G is compact}, and Pcl,c(X) = Pcl(X) ∩Pcs(X).

At x0 ∈ X, a multifunction F is upper semicontinuous if for every open set O that in-
cludes Fx0 a neighborhood S of x0 exists with F(S) ⊂ O [45].

For every x ∈ X, F : J →Pcp(X) is named measurable if the function, which is expressed
as

t �−→ d
(
x, F(t)

)
= inf

{‖x – h‖ : h ∈ F(t)
}

,

is measurable [45].
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Definition 2.5 ([45]) K : J × X →P(X) is L1-Carathéodory if
(CON1) ∀x ∈ X , t → K(t, x) is measurable;
(CON2) ∀t ∈ J (a.e.), x → K(t, x) is upper semicontinuous;
(CON3) for all g > 0, ϕg ∈L1(J ,R+) exists provided

∥∥K(t, x)
∥∥
P = sup

{‖k‖ : k ∈ K(t, x)
} ≤ ϕg(t), ‖x‖ ≤ g,∀t ∈ J (a.e.).

The multi-valued map K is Carathéodory whenever (CON1) and (CON2) are satisfied.

For every w ∈ C(J , X], let us define SK ,w as the following set of selections of K :

SK ,w =
{

k ∈L1(J , X) : k(t) ∈ K
(
t, w(t)

)
, t ∈ J (a.e.)

}
.

Regard a metric space, denoted by (X, d). By defining Hd : P(X) × P(X) → R+ ∪ {∞} as
follows:

Hd(N , M) = max
{

sup
n∈N

d(n, M), sup
m∈M

d(N , m)
}

,

where d(N , m) = infn∈N d(n, m) and d(n, M) = infm∈M d(n, m), we have (Pcp(X),Hd), which
is an extension of the metric space with the completeness property [46].

2.2 Measure of noncompactness
This subsection discusses some necessary background information about the measure of
noncompactness in Banach spaces.

Definition 2.6 ([47]) By assuming X as a Banach space, for every M ∈ Pbo(X), the Kura-
towski measure of noncompactness (KMNC) is a mapping ζ : Pm(X) → [0, +∞] which is
constructed as follows:

ζ (M) = inf

{

s > 0 : M ⊆
k⋃

j=1

Mj and diam(Mj) < s

}

.

The following properties are valid for the Kuratowski measure of noncompactness ζ .

Proposition 2.7 ([47–49]) For all bounded subsets N , M of X:
1. ζ (M) = 0 ⇐⇒ M is compact.
2. ζ (∅) = 0.
3. ζ (M) = ζ (M) = ζ (conv M), where conv M is a convex hull of M.
4. monotonicity: (N ⊂ M) �⇒ ζ (N) ≤ ζ (M).
5. algebraic semi-additivity: ζ (N + M) ≤ ζ (N) + ζ (M),
6. semi-additivity: ζ (N ∪ M) = max{ζ (N), ζ (M)}.
7. semi-homogeneity: ζ (λM) = |λ|ζ (M), λ ∈R,
8. invariance under translations: ζ (M + x0) = ζ (M) for any x0 ∈ X .

Let us state some necessary theorems.
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Theorem 2.8 ([50]) Regard the Banach space X and a countable set C ⊂L1[n, m] subject
to |u(t)| ≤ z(t) for any u ∈ C and almost all t ∈ J , where z ∈L1[n, m]. Then φ(t) := ζ (C(t))
is contained in L1([n, m],R+) and

ζ

({∫ m

n
u(v) dv : u ∈ C

})
≤ 2

∫ m

n
ζ
(
C(v)

)
dv

is satisfied.

Theorem 2.9 ([51]) Consider G as a closed set contained in the Banach space X which has
the convexity property; U ⊂ G as a relatively open set, and E : U −→ Pc(G). Suppose that
Graph(E) is closed and E corresponds compact sets to ones with the relative compactness,
and that for some w0 ∈ U , the following assertions occur:

(F1) If M ⊂ U with M ⊂ conv(E(M) ∪ {w0}) and M = C , where C ⊂ M is countable,
then M is compact.

(F2) For all w ∈ U \ U and σ ∈ (0, 1), x /∈ (1 – σ )w0 + σE(w).
Then there exists x ∈ U such that x ∈ E(x).

Theorem 2.10 (Nadler–Covitz, [45]) Let (X, d) be a complete metric space. For the con-
traction E : X →Pcl(X), we have Fix(E) �= φ.

3 Existence of solutions
This section investigates the existence of solutions for (3)–(5) by considering the normed
space (6).

Definition 3.1 A function w ∈ Q is named a solution of (3)–(5) if υ ∈L1([n, m], X) exists
subject to υ(t) ∈ K(t, wt) (a.e.) on [n, m] so that �Dξ

n+ (w(t)–q(t, wt)) = υ(t) onJ , w(t) = χ (t)
on [n – s, n], w(n) = 0 and w(t) = ψ(t) on [m, m + γ ], w(m) = 0.

In order to prove that solutions exist for FBVP (3)–(5), we need the following.

Lemma 3.2 Assume that z : J → R is an integrable function. A function w is a solution
for a fractional equation, expressed as follows:

w(t) =

⎧
⎪⎪⎨

⎪⎪⎩

χ (t), t ∈ [n – s, n], s > 0,

q(t, wt) +
∫ m

n F(t, v)z(v)v�–1 dv, t ∈ J ,

ψ(t), t ∈ [m, m + γ ],γ > 0,

(8)

iff w is a solution of the following FBVP:

ρDξ

n+
(
w(t) – q

(
t, wt)) = z(t), t ∈ J := [n, m], 1 < ξ ≤ 2, (9)

w(t) = χ (t), t ∈ [n – s, n], s > 0, (10)

w(t) = ψ(t), t ∈ [m, m + γ ],γ > 0, (11)

where

F(t, v) =
1


(ξ )

⎧
⎨

⎩
( t�–v�

�
)ξ–1 – ( t�–n�

m�–n� )ξ–1( m�–v�

�
)ξ–1, n ≤ t ≤ v ≤ m,

–( t�–n�

m�–n� )ξ–1( m�–v�

�
)ξ–1, n ≤ v ≤ t ≤ m.

(12)
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Proof From (7), we have

w(t) – q
(
t, wt) =

1

(ξ )

∫ t

n

(
t� – v�

�

)ξ–1

z(v)v�–1 dv

+ c1

(
t� – n�

�

)ξ–1

+ c2

(
t� – n�

�

)ξ–2

. (13)

Using w(n) = q(n,χn) = w(m) = q(m,χm) = 0, we find that c2 = 0 and

c1 = –
(

m� – n�

�

)1–ξ 1

(ξ )

∫ m

n

(
m� – v�

�

)ξ–1

z(v)v�–1 dv.

By substituting the value of c1 and c2 in (13), we obtain

w(t) = q
(
t, wt) +

1

(ξ )

∫ t

n

(
t� – v�

�

)ξ–1

z(v)v�–1 dv

–
(

t� – n�

�

)ξ–1(m� – n�

�

)1–ξ 1

(ξ )

∫ m

n

(
m� – v�

�

)ξ–1

z(v)v�–1 dv

= q
(
t, wt) +

1

(ξ )

∫ t

n

[(
t� – v�

�

)ξ–1

–
(

t� – n�

m� – n�

)ξ–1(m� – v�

�

)ξ–1]
z(v)v�–1 dv

× 1

(ξ )

∫ m

t

[
–
(

t� – n�

m� – n�

)ξ–1(m� – v�

�

)ξ–1]
z(v)v�–1 dv

= q
(
t, wt) +

∫ m

n
F(t, s)z(v)v�–1 dv,

where F(t, v) is given by (12). On the contrary, if w satisfies equation (8), then equations
(9)–(11) hold obviously and the argument is ended. �

Remark 3.3 The function K : t �→ ∫ m
n |F(t, v)|v�–1 dv is continuous on [n, m], and hence is

bounded. Thus, we assume

F̃ := sup

{∫ m

n

∣
∣F(t, v)

∣
∣v�–1 dv, t ∈ [n, m]

}
.

Let us assume the following:
(A1) K : J × C[–s,γ ] →P(R) is Carathéodory;
(A2) There exist l ∈L∞(J ,R+) and constants 0 < c1 and c2 ≥ 0 provided

∥∥K(t, u)
∥∥
P := sup

{|υ| : υ ∈ K(t, u)
} ≤ l(t)

(
c1‖u‖[–s,γ ] + c2

)

for any u ∈ C[–s,γ ] and a.e. t ∈ J ;
(A3) For each M⊂ C[n, m] and t ∈ J ,

ζ
(
K

(
t,Mt)) ≤ l(t)ζ

(
M(t)

)
,

where M is bounded and Mt := {wt : w ∈M};
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(A4) φ ≡ 0 is assumed to be a unique solution contained in C[n, m] satisfying

φ(t) ≤ 2l∗
∫ m

n
F(t, v)φ(v)v�–1 dv,

by setting l∗ := ess supt∈J l(t);
(A5) q is a map with the complete continuity, and for M⊂ Q with the boundedness

specification, {t �→ q(t, wt) : w ∈M} is equicontinuous in C[n, m];
(A6) There are 0 ≤ d1 < 1 and d2 ≥ 0 with

∣∣q(t, h)
∣∣ ≤ d1‖h‖[–s,γ ] + d2, t ∈ J , h ∈ C[–s,γ ];

(A7) �1 > 0 exists subject to

Hd
(
K(t, x), K(t, x)

) ≤ �1‖x – x‖[–s,γ ], ∀x, x ∈ C[–s,γ ];

(A8) L > 0 exists subject to

∣
∣q(t, h) – q(t, h)

∣
∣ ≤L‖h – h‖[–s,γ ]

for every h, h ∈ C[–s,γ ].

3.1 The convex case
Our first result is based on the set-valued analogue of MFPThm (Theorem 2.9) and the
notion of KMNC. Here K is assumed to have convex and compact values.

Theorem 3.4 Assume that our assumptions (A1)–(A6) are settled. If

d1 + l∗c1F̃ < 1, (14)

then the neutral functional FBVP (3)–(5) has at least one solution w ∈ Q.

Proof Let the constant R be such that

R ≥ max
{

l∗(c1R + c2)̃F ,‖χ‖[n–s,n],‖ψ‖[m,m+γ ]
}

(15)

and

G :=
{

w ∈ Q : ‖w‖Q ≤ R
}

.

Obviously, G is closed along with the convexity property and contained in the Banach
space Q introduced in (6). Consider the following multi-valued operator: E : Q −→ P(Q)
which is expressed as follows:

E(w) =

⎧
⎪⎨

⎪⎩
� ∈ Q : �(t) =

⎧
⎪⎨

⎪⎩

χ (t), t ∈ [n – s, n],
q
(
t, wt) +

∫ m
n F(t, v)υ(v)v�–1 dv, t ∈ J ,υ ∈ SK ,w

ψ(t), t ∈ [m, m + γ ]

⎫
⎪⎬

⎪⎭
. (16)
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It is obvious from Lemma 3.2 that possible solutions to the suggested neutral functional
FBVP (3)–(5) correspond to possible fixed points of E . We shall verify that E possesses
given assumptions of Theorem 2.9. The following is our step-by-step deductive proof.

STEP I: E(W ) is a set with the convexity property for all w ∈ Q.
By assuming �1, �2 belonging to E(w), in this case, υ1,υ2 ∈ SK ,w exist so that, for all t ∈ J ,

we obtain

�j(t) = q
(
t, wt) +

∫ m

n
F(t, v)υj(v)v�–1 dv, j = 1, 2.

Suppose that 0 ≤ d ≤ 1. Thus

(
d�1 + (1 – d)�2

)
(t) = q

(
t, wt) +

∫ m

n
F(t, v)

(
dυ1(v) + (1 – d)υ2(v)

)
v�–1 dv.

Since SK ,w is convex due to the convexity of K , we get

d�1 + (1 – d)�2 ∈ E(w),

and our first claim is verified.

STEP II: By assuming M ⊂ Q as a set with the compactness specification, E(M) is rel-
atively compact.

In order to show that, we assume that M ⊂ Q is compact and suppose that (�k) is a
sequence of points belonging to E(M). (�k) will be shown to be a convergent subsequence
via the Arzèla–Ascoli criterion of noncompactness in Q. If t ∈ [n – s, n], then

{
�k(t) : k ≥ 1

}
=

{
χ (t)

}
,

and thus it has the relative compactness for a.e. t ∈ [n – s, n]. If t ∈ [m, m + γ ], then

{
�k(t) : k ≥ 1

}
=

{
ψ(t)

}
,

and thus similarly it has the relative compactness for a.e. t ∈ [m, m + γ ]. Now, assume that
t ∈ J . Since �k ∈ E(M), there exist wk ∈M and υk ∈ SK ,wk such that

�k(t) = q
(
t, wt

k
)

+
∫ m

n
F(t, v)υk(v)v�–1 dv.

From Theorem 2.8 and with the help of the properties of the KMNC denoted by ζ (pre-
sented in 2.7), we get

ζ
({
�k(t) : k ≥ 1

})
= ζ

({
q
(
t, wt

k
)

+
∫ m

n
F(t, v)υk(v)v�–1 dv : k ≥ 1

})

≤ ζ
({

q
(
t, wt

k
)

: k ≥ 1
})

+ ζ

({∫ m

n
F(t, v)υk(v)v�–1 dv : k ≥ 1

})

≤ ζ
({

q
(
t, wt

k
)

: k ≥ 1
})

+ 2
∫ m

n
ζ
({

F(t, v)υk(v)v�–1 : k ≥ 1
})

dv. (17)
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On the contrary, since M is compact in Q and q is completely continuous, then Mt is
compact in C([–s,γ ]), and the set {q(t, wt) : w ∈ M} involves the relative compactness
specification in R; hence we have

ζ
({

q
(
t, wt

k
)

: k ≥ 1
}) ≤ ζ

({
q
(
t, wt) : w ∈M

})
= 0.

As a result, ζ ({q(t, wt
k) : k ≥ 1}) = 0 for a.e. t ∈ J . In addition, a set Mt is compact in

C([–s,γ ],R] and υk(v) ∈ K(v, wv
k) ⊂ K(v,Mv), and so K(v,Mv) is compact, then the set

{υk(v) : k ≥ 1} is relatively compact for a.e. v ∈ J . Hence, ζ ({υk(v) : k ≥ 1}) = 0 for a.e.
v ∈ J . Consequently,

ζ
({

F(t, v)υk(v)v�–1 : k ≥ 1
})

= F(t, v)v�–1ζ
({

υk(v) : k ≥ 1
})

= 0

for t, v ∈ J (a.e.). In consequence, (17) indicates that {�k(t) : k ≥ 1} is relatively compact
in R. At present, for arbitrary t∗, t∗ ∈ J , with t∗ < t∗, we have

∣
∣�k

(
t∗) – �k(t∗)

∣
∣

=
∣∣q

(
t∗, wt∗

k
)

– q
(
t∗, wt∗

k
)∣∣ +

∫ m

n

∣∣F
(
t∗, v

)
– F(t∗, v)

∣∣∣∣υk(v)
∣∣v�–1 dv

≤ ∣∣q
(
t∗, wt∗

k
)

– q
(
t∗, wt∗

k
)∣∣ + l∗(c1R + c2)

∫ m

n

∣∣F
(
t∗, v

)
– F(t∗, v)

∣∣v�–1 dv. (18)

By (A5), we have |q(t∗, wt∗
k ) – q(t∗, wt∗

k )| → 0, as t∗ → t∗. As a result, as t∗ → t∗, inequality
(18) goes to zero, which proves that {�k : k ≥ 1} is equicontinuous. Hence, {�k : k ≥ 1} pos-
sesses the relative compactness in Q. Thus (�k) has a convergent subsequence. Therefore,
E(M) is relatively compact.

STEP III: E has a closed graph.
Assume that wk → w∗, �k ∈ E(wk), and �k → �∗. We need to show that �∗ ∈ E(w∗). Now,

�k ∈ E(wk) implies that there exists υk ∈ SK ,wk such that, for all t ∈ J ,

�k(t) = q
(
t, wt

k
)

+
∫ m

n
F(t, v)υk(v)v�–1 dv.

Let us prove that some υ∗(t) ∈ SK ,w∗ can be chosen so that

�∗(t) = q
(
t, wt

∗
)

+
∫ m

n
F(t, v)υ∗(v)v�–1 dv

for all t ∈ J . Since K(t, ·) is upper semicontinuous, so for each ε > 0 there exists k0(ε) ≥ 0
such that, for all k ≥ k0, we get

υk(t) ∈ K
(
t, wt

k
) ⊂ K

(
t, wt

∗
)

+ εBALL(0, 1) (a.e.) t ∈ J .

On the other hand, due to the compactness of K , there is a subsequence υkr (·) such that

υkr (t) → υ∗(t) as r → ∞, a.e. t ∈ J ;
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and thus υ∗(t) ∈ K(t, wt∗) for almost all t ∈ J . Further, it is clear that

∣∣υkr (t)
∣∣ ≤ l(t)(c1R + c2).

According to the theorem of Lebesgue dominated convergence, it follows that υ∗ ∈L1(J ),
which yields υ∗ ∈ SK ,w∗ . In conclusion,

�∗(t) = q
(
t, wt

∗
)

+
∫ m

n
F(t, v)υ∗(v)v�–1 dv, t ∈ J .

So �∗ ∈ E(w∗).

STEP IV : Condition (F2) in Theorem 2.9 holds.
Assume that w ∈ Q such that w ∈ σE(w) with σ ∈ (0, 1). Then there is υ ∈ SK ,w such that,

for all t ∈ J , we have

w(t) = σq
(
t, wt) + σ

∫ m

n
F(t, v)υ(v)v�–1 dv. (19)

From (A2) and (A6), we get

∣∣w(t)
∣∣ ≤ ∣∣q

(
t, wt)∣∣ +

∫ m

n

∣∣F(t, v)
∣∣∣∣υ(v)

∣∣v�–1 dv

≤ d1
∥
∥wt∥∥

[–s,γ ] + d2 +
∫ m

n

∣
∣F(t, v)

∣
∣l(v)

(
c1

∥
∥wv∥∥

[–s,γ ] + c2
)
v�–1 dv

≤ d1‖w‖Q + d2 +
∫ n

n

∣∣F(t, v)
∣∣l(v)

(
c1‖w‖Q + c2

)
v�–1 dv

≤ d1‖w‖Q + d2 + l∗
(
c1‖w‖Q + c2

)∫ m

n

∣∣F(t, v)
∣∣v�–1 dv

≤ (
d1 + l∗c1F̃

)‖w‖Q + d2 + l∗F̃c2.

Then

‖w‖Q ≤ (
d1 + l∗c1F̃

)‖w‖Q + d2 + l∗F̃c2,

i.e.,

(
1 – d1 – l∗c1F̃

)‖w‖Q ≤ d2 + l∗F̃c2.

Thus, by (14), we have

‖w‖Q ≤ d2 + l∗F̃c2

1 – d1 – l∗c1F̃
:= μ.

Set

U :=
{

w ∈ Q : ‖w‖Q < μ + 1
}

.

By choosing our open set as U , condition (F2) is satisfied.
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STEP V : M is compact in Q.
Assume thatM⊂ U andM⊂ conv(E(M)∪{0}), and for some countable set C ⊂M, we

have M = C . In view of (18), we figure out that E(M) is equicontinuous. In that case, from
the inclusion M ⊂ conv(E(M) ∪ {0}), we arrive at the result that M is equicontinuous.
With the help of Ascoli–Arzela theorem, let us prove that M(t) possesses the relative
compactness in R for any t ∈ J . Since C ⊂ M ⊂ conv(E(M) ∪ {0}) and C is countable,
thus another countable set Z := {�k : k ≥ 1} ⊂ E(M) exists with C ⊂ conv(Z ∪ {0}). Then
there are two members wk ∈M and υk ∈ SK ,wk such that

�k(t) = q
(
t, wt

k
)

+
∫ m

n
F(t, v)υk(v)v�–1 dv.

From M⊂M = C ⊂ conv(Z ∪ {0}) and Theorem 2.8, the following is obtained:

ζ
(
M(t)

) ≤ ζ
(
C(t)

) ≤ ζ
(
Z(t)

) ≤ ζ
({
�k(t) : k ≥ 1

})
.

From (17), we get

ζ
(
M(t)

) ≤ ζ
({

q
(
t, wt

k
)

: k ≥ 1
})

+ 2
∫ m

n
ζ
({

F(t, v)υk(v)v�–1 : k ≥ 1
})

dv.

On the contrary, since M⊂ U ⊂ DR, t, v ∈ J , then M is bounded (Mt is bounded); since
q is completely continuous and {t} × Mt is bounded, consequently the set {q(t, wt) : w ∈
M} = q(t,Mt) is relatively compact in R. Hence

ζ
({

q
(
t, wt

k
)

: k ≥ 1
}) ≤ {

q
(
t, wt) : w ∈M

}
= 0.

Also, since υk ∈ SK ,wk and wv
k ∈Mv, then from (A3) we have

ζ
({

F(t, v)υk(v)v�–1 : k ≥ 1
})

= F(t, v)v�–1ζ
({

υk(v) : k ≥ 1
})

≤ F(t, v)v�–1ζ

(⋃

k≥1

K
(
v, wv

k
)
)

≤ F(t, v)v�–1ζ
(
K

(
v,Mv))

≤ F(t, v)v�–1l(s)ζ
(
M(s)

)
,

which implies that

ζ
(
M(t)

) ≤ 2l∗
∫ m

n
F(t, v)v�–1ζ

(
M(v)

)
dv.

As a result, by (A4), a function: ϕ(t) := ζ (M(t)) satisfies ϕ ≡ 0 provided that ζ (M(t)) = 0
for any t ∈ J . Hence M(t) involves the relative compactness specification in R for each
t ∈ J . In consequence, the theorem of Ascoli–Arzela gives the relative compactness of M
in Q. At last, from the above steps and Theorem 2.9, E includes a fixed point w ∈ U which
displays a solution of the suggested neutral functional FBVP (3)–(5), and the argument is
ended. �
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3.2 The nonconvex case
The existence of solutions for the suggested neutral functional FBVP (3)–(5) with noncon-
vex values in the right-hand side is investigated in this subsection via the standard method
based on the fixed point result proposed by Nadler and Covitz in [45]. Let us suppose that
K has compact values.

Theorem 3.5 Assume that our assumptions, i.e., (A1)–(A2) and (A5)–(A8), are satisfied.
If we have

(L + �1F̃) < 1, (20)

then the neutral functional FBVP (3)–(5) has at least one solution w ∈ Q.

Proof For each w ∈ Q, the set SK ,w is nonempty since by (A1) and by this fact that R is
separable, K has a measurable selection (refer to [52] and Theorem III.6). We shall prove
that E given by (16) satisfies the assumptions of Theorem 2.10. The following steps will
provide our proof.

STEP I: E(w) ∈Pcl(Q) for all w ∈ Q.
Assume that (�k)k≥0 ⊂ E(w) is such that �k → �∗ on Q. Then there exists υk ∈ SK ,w so

that, for any t ∈ J ,

�k(t) = q
(
t, wt) +

∫ m

n
F(t, v)υk(v)v�–1 dv.

From (A3) and by the fact that K has compact values, we need to move to a subsequence
in order to deduce that υk → υ∗ weakly in L1

y(J , X), which is a space furnished with the
weak topology. As a result, by a simple approach, it is verified that υk converges strongly
to υ∗, and so υ∗ ∈ SK ,w. Hence, for any t ∈ J ,

�k(t) → �∗(t) = q
(
t, wt) +

∫ m

n
F(t, v)υ∗(v)v�–1 dv.

Thus �∗ ∈ E(w) and E(w) ∈Pcl(Q) for all w ∈ Q.

STEP II: There exists β < 1 such that Hd(E(w),E(w)) ≤ β‖w – w‖Q for all w, w ∈ Q.
To verify this step, let t ∈ J , wt , wt ∈ C[–s,γ ] and �1 ∈ E(w). Then υ1(t) ∈ K(t, wt) exists

so that, for any t ∈ J ,

�1(t) = q
(
t, wt) +

∫ m

n
F(t, v)υ1(v)v�–1 dv.

From (A7), we obtain the following:

Hd
(
K

(
t, wt), K

(
t, wt)) ≤ �1

∥∥wt – wt∥∥
[–s,γ ].

Thus, there exists θ ∈ K(t, wt) such that

∣∣υ1(t) – θ
∣∣ ≤ �1

∥∥wt – wt∥∥
[–s,γ ], t ∈ J .
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At this moment, consider H : J →Pcp(R) which is expressed as

H(t) =
{
θ ∈ R :

∣
∣υ1(t) – θ

∣
∣ ≤ �1

∥
∥wt – wt∥∥

[–s,γ ]

}
.

Since U (t) = H(t) ∩ K(t, wt) is measurable (see [52]), thus υ2 exists, which is a selection for
U via the measurability property. Hence, we have υ2(t) ∈ K(t, wt) and

∣∣υ1(t) – υ2(t)
∣∣ ≤ �1

∥∥wt – wt∥∥
[–s,γ ] ∀t ∈ J .

Now, introduce

�2(t) = q
(
t, wt) +

∫ m

n
F(t, v)υ2(v)v�–1 dv.

In that case, for t ∈ J ,

∣∣�1(t) – �2(t)
∣∣ ≤ ∣∣q

(
t, wt) – q

(
t, wt)∣∣ +

∫ m

n

∣∣F(t, v)
∣∣∣∣υ1(v) – υ2(v)

∣∣v�–1 dv

≤ L
∥
∥wt – wt∥∥

[–s,γ ] + �1
∥
∥wt – wt∥∥

[–s,γ ]

∫ m

n

∣
∣F(t, v)

∣
∣v�–1 dv

≤ L
∥∥wt – wt∥∥

[–s,γ ] + �1F̃
∥∥wt – wt∥∥

[–s,γ ]

≤ L‖w – w‖Q + �1F̃‖w – w‖Q

≤ (L + �1F̃)‖w – w‖Q.

Therefore, we have

‖�1 – �2‖Q ≤ (L + �1F̃)‖w – w‖Q.

According to the analogous relation and interchanging the roles of w and w, we arrive at

Hd
(
E(w),E(w)

) ≤ (L + �1F̃)‖w – w‖Q.

Therefore, by (20), E is a contraction, and according to Theorem 2.10, E possesses a fixed
point w that is a solution to given neutral functional FBVP (3)–(5). Thus, the argument is
fully completed. �

4 Application: neutral functional FBVP
This section provides an illustrative example based on the neutral fractional functional
BVP in order to validate and apply our results in Theorem 3.4.

Example 4.1 This example deals with the neutral fractional functional BVP illustrated as
follows:

⎧
⎪⎪⎨

⎪⎪⎩

1
2 D

3
2
n+ (w(t) – q(t, wt)) ∈ K(t, wt), t ∈ J := [1, 2],

w(t) = χ (t), t ∈ [0, 1],

w(t) = ψ(t), t ∈ [2, 3].

(21)
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Set K(t, wt) = [k1(t, wt), f2(t, wt)], where

k1 : J × C
(
[–1, 1],R

] →R

is defined by k1(t, u) = 0 and

k2 : J × C
(
[–1, 1],R

] →R

is defined by k2(t, u) = 1
2(t+2) (‖u‖[–s,γ ] + 1). Let

q(t, u) =
‖u‖[–1,1]

2(1 + ‖u‖[–1,1])
.

It is obvious that K has compact and convex values. Also, K(·, u) : J → Pcl(R) is mea-
surable for any u ∈ C([–s,γ ],R]. For each t ∈ [1, 2], k1(t, ·) is lower semi-continuous and
k2(t, ·) is upper semi-continuous, and also we get

∥
∥K(t, u)

∥
∥
P := sup

{|υ| : υ ∈ K(t, u)
} ≤ 1

2(t + 2)
(‖u‖[–s,γ ] + 1

)

for t ∈ J (a.e.) and u ∈ C[–s,γ ], with l(t) = 1
2(t+2) and c1 = c2 = 1. This expresses that u →

K(t, u) is upper semicontinuous for almost all t ∈ J . Thus, conditions (A1)–(A4) and (A2)
hold via l∗ = 1

6 . On the other hand, it is obvious that q satisfies (A5) and (A6), and

∥∥q
(
t, wt)∥∥ =

‖u‖[–1,1]

2(1 + ‖u‖[–1,1])
≤ 1

2
.

Hence, we obtain d1 = 0 and d2 = 1
2 . Moreover, for any t ∈ J , we obtain

∫ m

n

∣
∣F(t, v)

∣
∣v�–1 dv ≤ 1


(ξ )

∫ t

n

(
t� – v�

�

)ξ–1

v�–1 dv

+
(

t� – n�

m� – n�

)ξ–1 1

(ξ )

∫ m

n

(
m� – v�

�

)ξ–1

v�–1 dv

≤ 1

(ξ )

∫ t

n

(
t� – v�

�

)ξ–1

v�–1 dv

+
1


(ξ )

∫ m

n

(
m� – v�

�

)ξ–1

v�–1 dv

≤ 1

(ξ + 1)

(
t� – n�

�

)ξ

+
1


(ξ + 1)

(
m� – n�

�

)ξ

≤ 2

(ξ + 1)

(
m� – n�

�

)ξ

.

Therefore, we get

F̃ ≤ 2

(ξ + 1)

(
m� – n�

�

)ξ

.
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All of the hypotheses of Theorem 3.4 hold. So, when we have the following condition

d1 + l∗c1F̃ ≤ 0 +
1
6

× 1 × 2

( 5

2 )

(
2 1

2 – 1
1
2

) 3
2

≤ 1
3
( 5

2 )

(
2 1

2 – 1
1
2

) 3
2 � 0.189070603 < 1,

we have used Theorem 3.4, and it implies that the simulative neutral functional inclusion
FBVP (21) has at least one solution w ∈ Q.

Example 4.2 This example deals with the neutral fractional functional BVP illustrated as
follows:

⎧
⎪⎪⎨

⎪⎪⎩

1
2 D

3
2
n+ (w(t) – q(t, wt)) ∈ K(t, wt), t ∈ J := [1, 2],

w(t) = χ (t), t ∈ [0, 1],

w(t) = ψ(t), t ∈ [2, 3].

(22)

Set K(t, wt) = K1(t, wt) ∪ K2(t, wt), where K1(t, wt) = [k1(t, wt), k2(t, wt)] and K2(t, wt) =
[k3(t, wt), k4(t, wt)], so that

k1 : J × C
(
[–1, 1],R

] →R

is defined by k1(t, u) = 0 and

k2 : J × C
(
[–1, 1],R

] →R

is defined by k2(t, u) = 1
2(t+4) (‖u‖[–s,γ ] + 1).

k3 : J × C
(
[–1, 1],R

] →R

is defined by k3(t, u) = 1
2(t+3) (‖u‖[–s,γ ] + 1).

k4 : J × C
(
[–1, 1],R

] →R

is defined by k4(t, u) = 1
2(t+2) (‖u‖[–s,γ ] + 1). Let

q(t, u) =
‖u‖[–1,1]

2(1 + ‖u‖[–1,1])
.

It is obvious that K has compact and nonconvex values. Also, K(·, u) : J →Pcl(R) is mea-
surable for any u ∈ C([–s,γ ],R]. We get

∥
∥K(t, u)

∥
∥
P := sup

{|υ| : υ ∈ K(t, u)
} ≤ 1

2(t + 2)
(‖u‖[–s,γ ] + 1

)

for t ∈ J (a.e.) and u ∈ C[–s,γ ], with l(t) = 1
2(t+2) and c1 = c2 = 1. This expresses that u →

K(t, u) is upper semi-continuous for almost all t ∈ J . Thus, conditions (A1)–(A2) hold via
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l∗ = 1
6 . On the other hand, it is obvious that q satisfies (A5) and (A6), and

∥
∥q

(
t, wt)∥∥ =

‖u‖[–1,1]

2(1 + ‖u‖[–1,1])
≤ 1

2
.

Hence, we arrive at d1 = 0 and d2 = 1
2 . Along with these, for any t ∈ J , we obtain

Hd
(
K(t, x), K(t, x)

) ≤ 1
2(t + 2)

‖x – x‖[–s,γ ], ∀x, x ∈ C[–s,γ ];

Hd
(
K(t, x), K(t, x)

) ≤ 1
4
‖x – x‖[–s,γ ], ∀x, x ∈ C[–s,γ ];

Hd
(
K(t, x), K(t, x)

) ≤ �1‖x – x‖[–s,γ ], ∀x, x ∈ C[–s,γ ].

Therefore, (A7) holds. We have

∥
∥q

(
t, wt) – q

(
t, wt

1
)∥∥ ≤ 1

2
(∥∥wt∥∥

[–s,γ ] –
∥
∥wt

1
∥
∥

[–s,γ ]

)

≤ 1
2
∥
∥wt – wt

1
∥
∥

[–s,γ ]

and

F̃ ≤ 2

(ξ + 1)

(
m� – n�

�

)ξ

(see Example 4.1).

All of the hypotheses of Theorem 3.5 are verified. So, when we have the following condi-
tion:

(L + �1F̃) ≤ 1
2

+
1
4

× 1 × 2

( 5

2 )

(
2 1

2 – 1
1
2

) 3
2 � 0.5354507382 < 1,

we have used Theorem 3.5, and it implies that the simulative neutral functional inclusion
FBVP (22) has at least one solution w ∈ Q.

5 Conclusion
The existence of solutions for our proposed fractional boundary value problem has been
successfully investigated for the neutral fractional differential inclusions of Katugampola
fractional derivative which involves retarded and advanced arguments. Two cases have
been discussed throughout our investigation via fixed point theorems for convex and non-
convex multifunctions. The notion of the KMNC is utilized for the convex case, and the
Nadler–Covitz result is implemented for the nonconvex case. An application in the for-
mat of a simulative example of the neutral functional FBVP has been provided to validate
all our obtained results. This research work sheds the light on the importance of studying
neutral fractional problem with its application in science and engineering. Indeed, one can
extend this work to complicated structures involving generalized fractional operators via
nonsingular kernels which cover mathematical models of real phenomena appropriately.
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