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Abstract
A swarming model is a model that describes the behavior of the social aggregation of
a large group of animals or the community of humans. In this work, the swarming
model that includes the short-range repulsion and long-range attraction with the
presence of time delay is investigated. Moreover, the convergence to a consensus
representing dispersion and cohesion properties is proved by using the Lyapunov
functional approach. Finally, numerical results are provided to demonstrate the effect
of time delay on the motion of the group of agents.
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1 Introduction
The study of the behavior of interacting agents in groups of animals has gained increasing
interest in various fields such as biology, engineering, mathematics (see [2, 8, 12, 15, 20]).
One fascinating feature of such systems is the collective behavior described as formation
patterns and can be found in many natural systems such as flocks of birds, schools of fish,
chemical compounds, crowd dynamics. From the biological point of view, pattern motion
is the consequence of two natural behaviors. On the one hand, agents desire to commu-
nicate and stay close to the group. On the other hand, when they stay too close, they try
to keep a distance to avoid collision with other agents. Hence, for understanding these
behaviors, it is indispensable to take biological phenomena into account. The research on
mathematical modeling and simulation of these systems is of increasing interest, starting
with the works of Reynolds [19]. Reynolds’s model, called the three-zone model, is the
first principle model of swarming consisting of three fundamental characteristics of col-
lective motion: cohesion, separation, and alignment rules. Further, this model has been
extensively improved by adding many different effects and analyzed for different types of
animals. For more details, see, e.g., [1, 3, 4, 10, 11, 14, 16]. In connection with these swarm-
ing models, it is essential to mention that the continuous models are developed through
partial differential equations (PDEs) that describes the evolution of the particles’ density
in the systems composed of a large number of interacting agents such as cell, molecular
organism, or chemo-taxis with high drift effect; see [13, 21].
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In the present day, despite a large number of works devoted to studying the stability of
the swarm, it is still of paramount interest how agents form the pattern configuration when
they are faced with situations where a converging stable state cannot be ensured, especially
in the presence of communication with time delay which is a result of traffic congestion
or finite speeds of transmission and spread. The stability of swarming concerning time
delays is investigated in various models. Firstly, a well-known model is the Cucker–Smale
flocking model, which describes agent’s motion based on its neighbor agents’ positions
and velocities. The emergence of the flocking model described by the Cucker–Smale (CS)
model with time delay was primarily investigated in [5, 6, 9, 17, 18]. In this model, time
delays are included in the dynamic of velocities of agents. Besides, the model has been
continuously extended by numerous researchers; for example, in [22] the authors consider
the CS model by including a time delay in the communication function and velocities of
agents, and the authors of [6] study the emergence of flocking where the interaction of
agents is based on the CS communication function with a time delay and an attraction–
repulsion force.

The contribution to this research effort is investigating the swarming model in which
the interaction mechanism consists of attraction and repulsion functions which contain
time delays. In particular, the first- and second-order models are studied. In the first-order
model, time-delays are included in the agents’ position, while in the second-order model,
agents adapt their velocity relative to other agents’ velocities with communication delay.
Furthermore, based on these two models, the emergence of the swarm into the pattern for-
mation is theoretically and numerically investigated. The stability of the swarm is related
to parameters of the attraction and repulsion functions.

This work is organized as follows. In the next section, the first- and second-order swarm
models with time-delay in the communication function are discussed. Additionally, in the
first-order model, the stability of the swarm is analyzed and supplemented with two nu-
merical test cases. In the second-order model, the dispersion and disagreement of the
swarms that describe converging to pattern configuration are theoretically and numeri-
cally investigated. A conclusion in the last section completes the exposition of this work.

2 Swarm model and stability of swarm aggregation
In this section, we discuss the swarm model based on an agent-based model in an n-
dimensional Euclidean space proposed in [7] where the attraction–repulsion function in-
cludes a time delay. The evolution of swarming for the first- and second-order models is
discussed, and then for both models, its stability properties are theoretically and numeri-
cally investigated.

2.1 The first-order model
We consider the motion of N interacting individuals where their motion depends only on
the position of an individual itself and its observation of other individuals’ positions. The
equation of motion of the ith agent is given by

ẋi(t) = –
1
N

N∑

j �=i

∇xi U
(∥∥xi(t) – xj(t)

∥∥)
, i = 1, . . . , N , (1)

where xi(t) ∈R
d represents the position of the ith agent and ∇xi U(‖xi(t) – xj(t)‖) denotes

the gradient of U with respect to xi. Here ‖xi(t) – xj(t)‖ is the Euclidean distance between
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the ith and jth agents. The function U : (Rd)N → R represents the Morse potential func-
tion, which contains attractive and repulsive parts. The Morse potential has the following
form:

U(r) = Cre– r
lr – Cae– r

la , (2)

where Cre– r
lr and Cae– r

la model short-range repulsion and long-range attraction, re-
spectively. Parameters Cr , Ca represent repulsive and attractive strengths, respectively,
whereas lr , la are repulsive and attractive length scales. The derivative of the Morse po-
tential is expressed as follows:

∂

∂xi
U

(∥∥xi(t) – xj(t)
∥∥)

=
xi(t) – xj(t)

‖xi(t) – xj(t)‖
(

Ca

la
e–

‖xi(t)–xj(t)‖
la –

Cr

lr
e–

‖xi(t)–xj(t)‖
lr

)
.

Next, we discuss the swarming system described in (1) with the effect of time-delays
on repulsion and attraction. In this system, the time delay is a positive constant and is
denoted as τ . Time delays model the situation that agents receive information from other
members in the group after a certain time delay. As a consequence, each agent needs time
to elaborate its reaction to other agents in the group. The swarming system (1) including
the effect of time delay is presented as follows:

ẋi(t) = –
1
N

N∑

j �=i

∇xi U
(∥∥xi(t) – xj(t – τ )

∥∥)
, i = 1, . . . , N . (3)

For simplicity, we define

rij(t, τ ) =
∥∥xi(t) – xj(t – τ )

∥∥, (4)

and rewrite the derivative with respect to rij as

U ′(rij) =
Ca

la
e–

rij
la –

Cr

lr
e–

rij
lr . (5)

Therefore, the swarming system with time delay becomes

ẋi(t) = –
1
N

N∑

j �=i

∇xi U(rij)

= –
1
N

N∑

j �=i

(
xi(t) – xj(t – τ )

rij

)
U ′(rij), (6)

for i = 1, . . . , N , with given initial data

xi(s) = x0
i (s), for s ∈ [–τ , 0].

In the following, we consider numerical simulations with the swarming system in the one-
dimensional case, d = 1, in two test cases: a system without time delay (τ = 0) and a system
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Figure 1 Simulation of the swarming model with three agents. Panel (a) presents the position of agents
where the communication function has no time-delay effect, while panel (b) shows agents’ position where
the interaction between agents exhibits the time-delay effect

with time delay τ = 3. In both experiments, we consider three agents where the initial
positions of agents are distributed randomly in [–1, 1] and the parameters related to the
model are Ca = 5, Cr = 3, la = 4, and lr = 1. The results of numerical experiments are shown
in Fig. 1. It can be seen in Figs. 1(a) and 1(b) that, due to the effect of the time delay,
agents’ motion fluctuates during the early time; however, after a certain time, they start
self-organizing and then become stationary.

2.2 Stability analysis for the first-order model
In this subsection, theoretical results concerning the formation pattern of the swarm are
investigated. We begin by introducing a free agent, a swarm member who does not have
any neighbors in its repulsive range.

Definition 1 An agent i is called a “free agent” with respect to time delay if rij(t, τ ) > δ,
∀j = 1, . . . , N , j �= i, and δ is a repulsive range such that U ′(rij) > 0.

Theorem 1 Let R(s) = supi{‖xi(s)‖}, for i = 1, . . . , N and s ∈ [t – τ , t], be the swarming ra-
dius. If all members of the swarm are free agents with respect to some time delay, then their
motion is towards the center.

Proof Without loss of generality, we choose R = ‖x1‖. Consider

d
dt

(
1
2
∥∥x1(t)

∥∥2
)

=
〈
x1(t), ẋ1(t)

〉

=

〈
x1(t), –

1
N

N∑

j �=1

(
x1(t) – xj(t – τ )

r1j

)
U ′(r1j)

〉

=
1
N

N∑

j �=1

( 〈x1(t), xj(t – τ )〉 – ‖x1(t)‖2

r1j

)
U ′(r1j),
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where ‖·‖ and 〈·, ·〉 denote the Euclidean norm and inner product, respectively. Since the
first agent is free,

∥∥x1(t) – xj(t – τ )
∥∥ > δ, ∀j = 2, . . . , N , and U ′(∥∥x1(t) – xj(t – τ )

∥∥)
= U ′(r1j) > 0.

As a consequence, 〈x1(t), xj(t – τ )〉 – ‖x1(t)‖2 ≤ 0. It follows that d
dt ( 1

2‖x1(t)‖2) ≤ 0.
Therefore R is a decreasing function, that is, all agents move towards the center. �

In the following theorem, the stability of swarming corresponding to dispersion and co-
hesion properties are investigated. These properties are related to attraction and repulsion
parameters (Ca, Cr , la, lr) in Morse potential function. We denote C = Cr/Ca and l = lr/la.

Theorem 2 (Dispersion and cohesion under Morse potential)
1. For C ≥ l > 0, the swarming radius becomes unbounded as t → ∞.
2. For l ≤ min{1, C}, the swarming radius is bounded.

Proof Without loss of generality, we choose the swarming radius R = ‖x1‖. We consider

d
dt

(
1
2
∥∥x1(t)

∥∥2
)

=

〈
x1(t), –

1
N

N∑

j �=1

(
x1(t) – xj(t – τ )

r1j

)
U ′(r1j)

〉

= –
1
N

N∑

j �=1

(‖x1(t)‖2 – 〈x1(t), xj(t – τ )〉
r1j

)(
Ca

la
e–

r1j
la –

Cr

lr
e–

r1j
lr

)

=
1
N

N∑

j �=1

(‖x1(t)‖2 – 〈x1(t), xj(t – τ )〉
r1j

)(
Cr

lr
e–

r1j
lr –

Ca

la
e–

r1j
la

)

=
1
N

N∑

j �=1

(‖x1(t)‖2 – 〈x1(t), xj(t – τ )〉
r1j

)[
e–

r1j
la

(
Cr

lr
er1j( 1

la – 1
lr ) –

Ca

la

)]

=
1
N

N∑

j �=1

(‖x1(t)‖2 – 〈x1(t), xj(t – τ )〉
r1j

)[
Ca

la
e–

r1j
la

(
C
l

er1j( l–1
lr ) – 1

)]
.

Since R = ‖x1‖, it follows that ‖x1(t)‖2 – 〈x1(t), xj(t – τ )〉 ≥ 0. For C ≥ l > 1,

C
l

er1j( l–1
lr ) – 1 > 0.

This yields that d
dt ( 1

2‖x1(t)‖2) ≥ 0. Therefore, the swarming radius becomes unbounded
as t → ∞.

Further, we prove the second statement when l ≤ min{1, C}. From

d
dt

(
1
2
∥∥x1(t)

∥∥2
)

=
1
N

N∑

j �=1

(‖x1(t)‖2 – 〈x1(t), xj(t – τ )〉
r1j

)[
Ca

la
e–

r1j
la

(
C
l

er1j( l–1
lr ) – 1

)]
,

we know that ‖x1(t)‖2–〈x1(t),xj(t–τ )〉
r1j

≥ 0. Let us consider three cases.
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Case I: If r1j = lr
1–l ln( C

l ), then

Ca

la
e–

r1j
la

(
C
l

er1j( l–1
lr ) – 1

)
=

Ca

la
e–

r1j
la

(
C
l

e( lr
1–l )( l–1

lr ) ln( C
l ) – 1

)

=
Ca

la
e–

r1j
la

(
C
l

e(–1) ln( C
l ) – 1

)

=
Ca

la
e–

r1j
la

(
C
l

(
C
l

)–1

– 1
)

= 0.

We get that d
dt ( 1

2‖x1(t)‖2) = 0. Therefore, the swarming radius is norm-preserving.
Case II: If r1j = lr

1–l ln( 2C
l ) > lr

1–l ln( C
l ), then

Ca

la
e–

r1j
la

(
C
l

er1j( l–1
lr ) – 1

)
=

Ca

la
e–

r1j
la

(
C
l

e( lr
1–l )( l–1

lr ) ln( 2C
l ) – 1

)

=
Ca

la
e–

r1j
la

(
C
l

e(–1) ln( 2C
l ) – 1

)

=
Ca

la
e–

r1j
la

(
C
l

(
2C
l

)–1

– 1
)

=
Ca

la
e–

r1j
la

(
–

1
2

)
< 0.

It follows that d
dt ( 1

2‖x1(t)‖2) < 0. Therefore, the swarming radius is decreased.
Case III: If r1j = lr

1–l ln( C
2l ) < lr

1–l ln( C
l ), then

Ca

la
e–

r1j
la

(
C
l

er1j( l–1
lr ) – 1

)
=

Ca

la
e–

r1j
la

(
C
l

e( lr
1–l )( l–1

lr ) ln( C
2l ) – 1

)

=
Ca

la
e–

r1j
la > 0,

that is, d
dt ( 1

2‖x1(t)‖2) > 0. Hence, the swarming radius is increased. �

From the three cases discussed above, it can be concluded that if the distance be-
tween the first agent who has maximum swarming radius and the jth agent is equal to
r1j = lr

1–l ln( C
l ), then the swarming radius is bounded. On the other hand, if r1j is greater

than lr
1–l ln( C

l ), then the swarming radius is decreased to zero. While, if the distance be-
tween the first and jth agent is less than lr

1–l ln( C
l ), then swarming radius is increased. It

shows that agents get far away from the center.
We present results of experiments to numerically verify Theorem 2.
It can be seen from Fig. 2 that for C ≥ l > 1, when t → ∞, each agent moves far away

from the origin, whereas Fig. 3 illustrates that for l ≤ min{1, C} the swarming radius is
bounded.



Himakalasa and Wongkaew Advances in Difference Equations        (2021) 2021:217 Page 7 of 15

Figure 2 Trajectories of solutions to swarming
system with time delay (τ = 5) in time t ∈ [0, 50] for
N = 5 where parameters are Ca = 1, la = 2, Cr = 4,
and lr = 3

Figure 3 Simulation of the swarming system with
time delay (τ = 5) for N = 5 in time t ∈ [0, 50] where
parameters are given as Ca = 1, la = 2, Cr = 4, and
lr = 1

2.3 The second-order model
In this section, we focus on the swarming model which includes rules for orientation. In
particular, this model contains a mechanism of self-propulsion in which each agent moves
with constant speed and adopts the average direction among its neighbors. The second-
order model is given by the following equations:

ẋi(t) = vi(t), (7)

v̇i(t) =
(
α – β

∥∥vi(t)
∥∥2)vi(t) –

1
N

N∑

j �=i

∇xi U
(∥∥xi(t) – xj(t – τ )

∥∥)
, i = 1, . . . , N ,

where xi, vi ∈ R
d are position and velocity of the ith agent, respectively. The term (α –

β‖vi(t)‖2)vi(t) models self-propulsion and friction forces where parameters α > 0 and
β > 0 represent self-propulsion and friction, respectively. The second term is the Morse
potential function including interaction with a time delay.

In the following, we theoretically and numerically study the stability of the swarm de-
scribed as converging to the pattern configuration. For investigation of pattern properties,
we calculate dispersion X(t) and disagreement V (t) proposed in [17].

Definition 2 Let x(t) = (x1(t), . . . , xN (t)) and v(t) = (v1(t), . . . , vN (t)) be the solution of the
swarming model (7). We define dispersion and disagreement as

X(t) := max
i,j

∥∥xi(t) – xj(t)
∥∥ and V (t) := max

i,j

∥∥vi(t) – vj(t)
∥∥, (8)



Himakalasa and Wongkaew Advances in Difference Equations        (2021) 2021:217 Page 8 of 15

for i, j = 1, . . . , N . We say that the solution (x(t), v(t)) tends to consensus if

sup
t>0

X(t) < +∞ and lim
t→+∞ V (t) = 0. (9)

Proposition 1 Let (x(t), v(t)) be the solution of system (7). If the solution (x(t), v(t)) con-
verges to consensus, then

lim
t→∞

1
N

∥∥xi(t) – xj(t – τ )
∥∥ =

łr

1 – l
ln

(
C
l

)
and lim

t→∞
1
N

∥∥vi(t)
∥∥ =

√
α

β
. (10)

Proof From the dynamical system (7), we consider v̇i(t) = 0, for i = 1, . . . , N , that is,

(
α – β

∥∥vi(t)
∥∥2)vi(t) = 0 and

1
N

N∑

j �=i

∇xi U
(∥∥xi(t) – xj(t – τ )

∥∥)
= 0.

We consider (α – β‖vi(t)‖2)vi(t) = 0 and assume that vi(t) �= 0. Then it yields

α – β
∥∥vi(t)

∥∥2 = 0,

∥∥vi(t)
∥∥ =

√
α

β
.

Next, consider 1
N

∑N
j �=i ∇xi U(‖xi(t) – xj(t – τ )‖) = 0, which can be written as

–
1
N

N∑

j �=i

(
xi(t) – xj(t – τ )

rij

)(
Ca

la
e–

rij
la –

Cr

lr
e–

rij
lr

)
= 0.

Since ( xi(t)–xj(t–τ )
rij

) �= 0, we have ( Ca
la e–

rij
la – Cr

lr e–
rij
lr ) = 0.

Consequently, rij = ‖xi(t) – xj(t – τ )‖ = lr
1–l ln( C

l ). It can be concluded that when the sys-
tem (7) tends to consensus, the velocity of each agent converges to value

√
α
β

and

lim
t→∞

1
N

∥∥xi(t) – xj(t – τ )
∥∥ =

łr

1 – l
ln

(
C
l

)
. �

In the sequel, we present results of numerical experiments to validate some aspects of
theoretical findings and demonstrate the stability of swarms in two dimensions. For this
purpose, we consider the following four test-cases:

Case I: Ca > Cr and la > lr (see Figs. 4–6).
In Case I, attraction parameters are stronger than those of repulsion. Hence, agents get

closer to each other. As a consequence, the swarm is formed as a tight cluster, as showed in
Fig. 4. In addition, it can be seen from Fig. 5 that X(t) and V (t) are periodical in amplitude
and bounded by some value.

Case II: Ca > Cr and la < lr (see Figs. 7–9).
Case III: Ca < Cr and la < lr (see Figs. 10–12).
In Cases II and III, the repulsive length has a greater magnitude than the attractive one.

It means that agents are repelled from others. It follows that the pattern configuration
would not be formed, as shown in Figs. 8 and 11.
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Figure 4 Simulation of the second-order swarming model with time delay (τ = 5) for five agents, N = 10 in
time t ∈ [0, 1000]. The corresponding parameters are given as α = 0.7, β = 0.5, Ca = 5, la = 100, Cr = 1, and
lr = 1. The position of each agent is depicted by a circle and the velocity is represented by a vector at agent’s
position

Figure 5 Dispersion and disagreement of Case I for t ∈ [0, 1000]
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Figure 6 The average distance between agents and the velocity of agents for Case I and t ∈ [0, 1000]. Panel
(a) shows the comparison of the average distance between agents with the value lr

1–l ln(
C
l ). Panel (b) shows

the average velocity of agents compared with the value
√

α
β

Figure 7 Simulation of the second-order swarming model with time delay (τ = 5) for five agents, N = 10, and
time t ∈ [0, 100]. The corresponding parameters are given as α = 0.7, β = 0.5, Ca = 5, la = 1, Cr = 1, and
lr = 100. The position of each agent is depicted by a circle and the velocity is represented by a vector at
agent’s position
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Figure 8 Dispersion and disagreement of Case II for t ∈ [0, 100]

Figure 9 The average distance between agents and the average velocity of agents of Case II for t ∈ [0, 100]

Case IV : Ca < Cr and la > lr (see Figs. 13–15).
It can be seen from Figs. 14 and 15 that, when t → ∞, X(t) becomes constant and V (t)

tends to zero. This means that the swarm converges to an asymptotic state. Pattern con-
figuration is formed and each agent moves with the same velocity.

3 Conclusion
This work presented the emergence of swarm with delayed communication. First, the first-
and second-order models of the swarm were described, where in the interaction func-
tion the time delay was taken into account. Further, the stability of the swarm was ana-
lyzed. For both models, agents’ movement to a stable state depended on the attraction–
repulsion strengths and length scale in the Morse potential function. Finally, numerical
results demonstrated the emergence of the swarm and referred that the swarm converges
to an asymptotic state. Pattern configuration was formed, and each agent moved with the
same velocity.
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Figure 10 Simulation of the second-order swarming model with time delay (τ = 5) for five agents, N = 10,
and time t ∈ [0, 100]. The corresponding parameters are given as α = 0.7, β = 0.5, Ca = 1, la = 1, Cr = 5, and
lr = 100. The position of each agent is depicted by a circle and the velocity is represented by a vector at
agent’s position

Figure 11 Dispersion and disagreement of Case III for t ∈ [0, 100]
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Figure 12 The average distance between agents and average velocity of agents of Case II for t ∈ [0, 100]

Figure 13 Simulation of the second-order swarming model with time delay (τ = 5) for five agents, N = 10,
and time t ∈ [0, 1000]. The corresponding parameters are given as α = 0.7, β = 0.5, Ca = 1, la = 100, Cr = 2, and
lr = 1. The position of each agent is depicted by a circle and the velocity is represented by a vector at agent’s
position
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Figure 14 Dispersion and disagreement of Case IV for t ∈ [0, 1000]

Figure 15 The average distance between agents and average velocity of agents of Case I for t ∈ [0, 1000].
Panel (a) shows the comparison of the average distance between agents with the value lr

1–l ln(
C
l ). Panel (b)

shows the average velocity of agents compared with the value
√

α
β
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