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1 Introduction and preliminaries

The fractal sets in science have introduced some fascinating, complex graphs and pic-
ture compressions to computer graphics. Fractal is a Latin word, derived from the word
“Fractus” which signifies “Broken” The expression “fractal” was first utilized by a young
mathematician, Julia [1] when he was considering Cayley’s problem identified with the

conduct of Newton’s method in a complex plane. A fractal is frequently utilized in real-
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world involving: fractal antennas, fractal transistors, and fractal heat ex-changers. It has
an application in the music industry, creation of photography, soil mechanics, small-angle
scattering theory and much more. It is to be emphasized that fractal theory assumes an
essential job in the improvement of picturesque of fractal sets. The utilization of fractal
sets is in cryptography and other useful areas of research has increased the interest of re-
searchers to broaden the utilization in mathematical inequalities. Fractals are the elite, ar-
bitrary examples abandoned by the erratic developments of the disorderly world at work.
The most significant utilization of fractals in software engineering is fractal picture com-
pression. This sort of compression utilizes the way that this present reality is very much
portrayed by fractal geometry [2—4]. Interestingly, authors [5] investigated the local frac-
tional functions on the fractal space deliberately, which comprises local fractional calculus
and the monotonicity of functions. Numerous analysts contemplated the characteristics
of functions on fractal space and built numerous sorts of fractional calculus by utilizing
various strategies, [6-8].

Therefore, it is essential to create mathematical inequalities that inspect the fractal sets
and their significance in different fields of mathematics and engineering problems [9-13].
On the other hand, the development of new concepts in convexity has enabled us to pre-
serve more information on the evolutionary history of integral inequality to use it in pre-
dicting new outcomes. The word “convexity” is the most significant, natural, and funda-
mental notation in literature. Convex functions were introduced by Jensen over 100 years
ago. Over the past few years, various speculations and expansions have been made for con-
vexity. These expansions and speculations on the theory of inequalities have made valuable
contributions to numerous branches of mathematics. The many novel ideas in this view-
point concern exponentially convex, harmonically convex, Jensen convex, arithmetically-
geometrically convex, ii-convex, Schur convex and strongly convex functions and many
others. In the current situation, we intend to determine some novel generalized inequali-
ties for differentiable functions in the frame of GEH s-convex functions via local fractional
integrals.

The most distinguished inequality is the Hermite—Hadamard’s type inequality [14, 15],
which is stated as follows:

H(m1+m2)< 1 /mzH(x)deM. (1.1)

2 T omy—mp m 2

In [16], Fejér derived an important generalization which is the weighted generalization of
the Hermite—Hadamard inequality.
Let 2 C R and a function H : 2 — R be a convex function. Then the inequalities

H(w) " Wwde < — 2 [ He W) dx

2 mi my — niy my

< wﬁzwmdx (1.2)

hold, where VW : Q — R is nonnegative, integrable and symmetric with respect to “372.

Inequalities (1.1) and (1.2) and their generalizations, refinements, extensions, and con-
verses, etc. have many applications in different fields of science, for example electrical en-
gineering, mathematical statistics, financial economics, information theory, guessing and

coding [17-19].
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In 1937, Ostrowski [20] established an interesting integral inequality associated with
differentiable mappings in one dimension stipulates a bound between a function evaluated

at an interior point x and the average of the function over an interval. That is,

my

_ mitmp 2
‘”H(x) - H(x)dx| < E - u](?ﬂz = m)|[H oo (1.3)

my — mj

my —nn mi

holds for all x € [my, m;], where x € L (my, my) and H : [my,m;] — R is a differentiable
function on (m1;, m5,). The constant Alf is sharp in the sense that it cannot be replaced by a
smaller one. Ostrowski inequalities have great importance while studying the error bounds
of different numerical quadrature rules, for example, the midpoint rule, Simpson’s rule, the
trapezoidal rule; see [21-28].

In [29, 30], the author presented the concept of a harmonically convex function and

harmonically s-convex function independently, as follows.

Definition 1.1 ([29]) Let 2 C R\ {0} be a real interval and a function H : Q — R is said

to be harmonically convex, if the inequality

xy

holds for all v,y € Q and [ € [0, 1].

Definition 1.2 ([30]) Let 2 C R\ {0} be a real interval and a function H : Q — R is said

to be harmonically s-convex, if the inequality

xy S s
H(m) <PH@Y)+ (A -1)*Hx) (1.5)

holds for all x,y € ©, [ € [0, 1] and for some fixed s € (0, 1].

In [29], Iscan derived the celebrated Hermite—Hadamard inequality for harmonically
s-convex functions as follows:
Let H: Q2 C R\ {0} — R be a harmonically convex function, if and only if it satisfies the

inequalities

(1.6)

H(2m1m2>< mym; /’“2 H(x) dx<H(m1)+H(Mz)'

mi+my) T my—my )y, X2 - 2

Chen and Wu [31] presented another weighted generalization by employing harmonically
convex functions. Let H : Q2 € R\ {0} = R be a harmonically convex function, if and only

if it satisfies the inequality:

H( 27}1114’12 ) /mz W(x) dx < mjimy /mz ’H(x)W(x) dx

mi+my) Sy, X T my—m S, x2

(1.7)

X,
2

_ Hlm) + Him,) /”’2 W(x)d
- 2
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where W : [m;, m;] — R is nonnegative, integrable and satisfies

() )

x my+my —x

For a generalization related to (1.6) and (1.7), and modification and refinements, we refer
the reader to [29-33].

Now, we mention the preliminaries of the theory of local fractional calculus. These ideas
and important consequences associated with the local fractional derivative and local frac-
tional integral are mainly due to Yang [5].

Let af, a5 and af belong to the set R* (0 < o < 1), then

1) af + a3 and a$a3 belongs to the set R%;
2) af +al =a$ +af = (a1 +az)* = (ax + a1)%;
3) af + (a5 +a3) = (af + a$) + as;

5) af(a5z®) = (afa)z*;

(
(
(
(4) afa; = a3a] = (a1a2)" = (a2a1)";
(
(6) a$(as +a3) = afal + afas;

(

o o _ N o _ o o1o _ 1o 0 _ 0
7) af +0% =0% + af = af and a{1* = 1%a{ = af.

Definition 1.3 A non-differentiable mapping H : R — R%, 6 — () is said to be local
fractional continuous at w., if for any € > 0, there exists [ > 0, satisfying

<e”

() = H (o)

for | — wol| < k. If H(w) is local continuous on (7, m,), then we denote it by H(u) €
Co(my, my).

Definition 1.4 The local fractional derivative of H () of order « at p = 1, is defined by
the expression

a*H(w)
du®

H (o) = 1, DEH (1) =

w=ito

i AT - ()
= 1um
poe (- o)

where A*(H () — Hiwo)) = T(e + 1)(H () — Hwo)). Let HO () = Dy H(w). If there ex-
(k im
+1) times
ists H Do (1) = Dj, - Dy H(p) for any 1 € 2 C R, then it is denoted by H € Dr1)o(Z),
where k=0,1,2,....

Definition 1.5 Let H(u) € C,[m1,m;], and let A = {&y,&1,...,En}, (N € N) be a partition
of [my, my] which satisfies m; = & < & < -+ <y = my. Then the local fractional integral
of H on [my, m;] of order « is defined as follows:

I(a)H(/.L) _

mi1~my

my " 1 ' N-1
“Tw ), HE)dE)” = Tisa) 51;3);7-[(5;)(A§j),

where 8& := max{A&;, A&,..., Aéy_1} and Agj =&, —§;,j=0,...,N- 1.
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Here, it follows that mlI,(,,az)H(u) =0 if m; = m, and mlI,%)H(M) = —mZI,(;fl)H(u) if
my < my. For any u € [my, my], if there exists MJI%)H(M), then it is denoted by H(u) €
Iz [ml, m2]'

Lemma 1.6 ([5])
(1) Suppose that H(x) = G (x) € Cy[my, my), then

m ZOH(x) = Gmy) - Glmy).
(2) Suppose that H(x),G(x) € Dymy, my), and H (x), G (x) € Cy[m1, m,], then
m LS H®)G W (6) = H@)G )72 =y T8H (%)G ().
Lemma 1.7 ([5])

daallwt F(l + kOl) (k=1)a

da® T+ k-Da)t

! " gl ¢ = P + ka) (k+1)at (k+1)at
F(l+a) /ml ' (dx) ‘F(1+(/<+1)Ol)(m2 —my ), k>0

Lemma 1.8 ([34] Generalized Hélder inequality) For s,q > 1 with st + g = 1, and let
H; g € (Ca[mlx mZ]r

1 .
T / G| ()

m1

1 " s o % 1 " q o %
= (v [, o) (s [, owresr)

In [7], Mo et al. derived the generalized Hermite—Hadamard’s inequality for generalized
convex functions as follows:

H(MI+M2>< TUAS) gigy(y < L) 2] (18)

2 - (m2 _ml)a my 2¢

In 1994, Hudzik and Maligranda [35] provided several generalizations linked with s-
convex functions and some intriguing outcomes about Hermite—Hadamard’s inequality
for s-convex functions were elaborated. In 1915, Bernstein and Doetsch [36] established
a variety of Hermite—Hadamard’s inequality for s-convex functions in the second sense.
Moreover, the investigation of some well-known integral inequalities for the local frac-
tional integral has been studied by several researchers, for instance, Kilicman and Saleh
[37, 38] derived generalized Hermite—Hadamard inequalities for generalized s-convex
functions. In [39], Du et al. contemplated the certain inequalities for generalized m-convex
functions on fractal sets with utilities. Also, Vivas et al. [40] explored generalized Jensen
and Hermite—Hadamard inequalities for /-convex functions. For more results related to
the local fractional inequalities, we refer the interested reader to [7, 41-43] and the refer-
ences therein.

Adopting the above tendency, the key aim of this paper is to introduce a novel concept of
GEH convex and GEH s-convex functions, then to discuss important properties for such
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functions. Additionally, we established some novel variants that interact between GHE s-
convex functions and local fractional integrals. In fractal sets, a novel generalized identity
has been carried out to investigate the local differentiability of GEH s-convex functions,
GEH convex functions, and generalized harmonically convex functions. Generalized new
special cases show the impressive performance of the local fractional integration. Some
special cases are correlated with existing results in classical harmonically convexity, ex-
ponentially harmonically convexity and exponentially harmonically s-convexity and har-

monically s-convexity.

2 Generalized exponentially harmonically convex functions
We now recall the concept of generalized exponentially harmonically convex functions on

the fractal space as follows.

Definition 2.1 Let Q2 C R\ {0} be a real interval and a function H : 2 — R is said to be

generalized exponentially harmonically convex functions if the inequality

xy o« 1) o« 1)
H<Ix+(1—l)y)§l T 2.1)

holds forall v,y € 2,0 e Rand [ € [0, 1].
The generalized harmonically s-convex functions can be stated as follows.

Definition 2.2 Let Q2 C R\ {0} be a real interval and a function H : 2 — R is said to be

generalized harmonically s-convex functions if the inequality

xy sat sa
H(m) <F*H@y)+ (1 -D*H(x) (2.2)

holds for all x,y € 2,0 € R, [ € [0,1] and s € (0, 1].

Next, we present the idea of generalized exponentially harmonically s-convex function

by connecting the Definitions 2.1 and 2.2 as follows.

Definition 2.3 Let Q2 C R\ {0} be a real interval and a function H : 2 — R is said to be

GEH s-convex functions if the inequality

’H( u’d )ng“H(Y)Ml—l)S“H(x) (2.3)

Ix+ (1 -1y ey ef*

holds for all x,y € 2, 8 € R, [ € [0, 1] and for some fixed s € (0, 1].

Remark 2.4 In view of Definition 2.3:
1. If we take s = 1, then we get Definition 2.1.
2. If we take 6 = 0, then we get Definition 2.2.
3. If we take 0 = 0, along with « = 1, then we get Definition 3 in [30].
4. If we take 6 =0, and s = 1, then we get Definition 3.1 in [43].
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Moreover, if we take [ = % in (2.3), then the GEH s-convex functions become Jensen-type
generalized exponentially harmonically s-convex functions as follows:

7-[( 2my 1y ) - 1 |:?-{(m1) N H(WIZ):| (2.4)

my + my 25 | efm edm

holding for m;,m; € Q and s € (0, 1].

It is worth mentioning that GEH s-convex functions collapse to generalized harmoni-
cally convex, generalized harmonically s-convex functions and generalized exponentially
harmonically convex functions as special cases. This shows that outcomes derived in the
present paper continue to hold for these classes of convex functions and their variant

forms.

Theorem 2.5 For 0 € R, s € (0,1] and if H,G : 2 C R\ {0} - R* is a GEH s-convex
functions, then

(1) H + G is GEH s-convex function;

(2) A*H is GEH s-convex function.

Proof (1) Since H and G are GEH s-convex functions on €2, and [ € [0, 1], we have

Y _ Xy xy
o g)(Tl)y) ) H<lx+ (l—l)y> +g(lx+ (1 —l)y)

S lSD( 7-:()/) (1 _ Z)Sa x lSOl g(y (1 _ Z)S(I ( )
s (L + Q)(y s (”H + g)( )

So, H + G is a GEH s-convex function on .
(2) Since H and G are GEH s-convex functions on €,/ € [0,1], and A € R,, we have

o xy L xy
(A H(m(l—z)y)) = %(zm(l—l)y)

<2 [ZS“HT@) +(Q -z)saH(’“)}
e’y

e@x
A (a“
_ po M@ (A H) (%) e l)S“ H)(y)
ef*
hence A“H is a GEH s-convex function on 2. O

Theorem 2.6 Forn € Nand let there is a sequence of GEH s-convex functions H,, : 2 — R*
converges pointwise to a function H : Q — R%, then H is GEH s-convex function on Q.

Proof Letx,y € Q,1€[0,1], and lim,,_, oo H,(x) = H(x), then

N (o
H(lm(l—l)y) - )E‘;ﬂn(m(l_,)y)

|: o Y7 H (y) (1 l)sa (JC) :|

VI%OO

Page 7 of 33
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=5 qim 720 (g e gy P
n—00 69 n—oo el¥
H H(x
— lsoz (y) (1 l)sot ( )’
that is, H is a GEH s-convex function on 2. O

3 Generalized Hermite-Hadamard type inequalities
In this section, we present the generalized Hermite—Hadamard inequality for GEH s-

convex functions via local fractional integrals.

Theorem 3.1 For 6 € R, s € (0,1] and letting H : @ C R\ {0} - R be a GEH s-convex
function on fractal space, my, my € Q with my > m, if’H("‘) € Cy[my, my), then the following
inequalities hold:

2(5_1)0‘ 25 2mimy < mimy ¢ I(a) H(x)
Fl+a) \mi+my) =~ \my-m /), " (x?e)

(1 +sa) H(my)  H(my)
< + . (3.1)
Fl+(s+1)a)| efm efm
Proof Taking into account the inequality (2.4), for all x,y € 2, we have
2 1
(=L)< He A0 (32)
x+y (2)5 \ et %y
Substituting x = ;S y = T, we have

2 2mymy - 1 2 iy e(ﬂ”%)
my+my ) T (2) Imy + (1 =Dy

—Omym
H(’”li””)ewmflﬁnz)], (3.3)

ll’l’ll + (1 - l)le

Integrating the above inequality corresponding to / from 0 to 1, we have
1 2W11W12
H
r'l+a) <m1 + mz)
1 1 1 mymsy (1’9&
my+(1-lymy dl
_2S“|:F(1+a ,/ H(ZM2+(1—Z)m1>e ( A
/ ity (zm_ﬁra ) (dl)”
F 1+a) Imy + (1 -Dm;y
1 (s-1) mlmZ o
- 2 my — my

e+ o [ ]

al® extx Fl+a)ty,, y*e®

X
|:I‘ 1+a) m

1

_ 1 (Sl m1m2 o I(a) H(x)
2 My — m3 (xZeex)a ’

Page 8 of 33
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using the fact that

1 1 2mymy 1 2mymy
S dl)* = .
F(1+oz)/0 H(m1+mz)( ) F(1+a)H<m1+m2)

For the proof of the second inequality in (3.8), we note that /{ is a GEH s-convex function,

for [ € [0, 1], we have

7'[( mymy ) <2 7‘[(”"11) (10" H(m,)

Imy + (1 =Dy efm

and

’H( mimy )5(1 l)s"‘ (Wll) + ()™ (le)‘
l)le

Imy + (1 - efm

Adding the above two inequalities, we get

mymsy mymy
H(lm2 (1 —l)ml) +H<lm1 i —l)mg)

<[ +q- )sa][ (m 1)+H(’”2)}. (3.4)

efmi eOmg

Integrating the above inequality corresponding to / from 0 to 1, we have

(mlrnz )a L@ H(x) - I'(1+sa) |:"H(m1) H(mz)]

my—mi /), "2 (x2ef*) T T(L+ (s+1Da)| e¥m efm

where we have used the fact that

1 ! @ e _ o DQ+a)
T /0 (1 1y (dl) / “(dl)

+1) F(1+(s+1) )

This completes the proof. 0

Some remarkable cases of Theorem 3.1 are presented in the form of corollaries and
remarks.
I. If one takes o = 1, then we have a new result for exponentially harmonically s-convex

functions.

Corollary 3.2 For 6 € R, s € (0,1] and letting H : 2 C R\ {0} — R be an exponentially
harmonically s-convex function such that Li[my, my) with my,my € Q and my > my, then

the following inequalities hold:

2(5—1)7_[( 2mymmy ) < ( mymy )fm2 H(x) < 1 [H(ml) . H(mz)]' (3.5)

my + miy my—mi) S, x%€5% T s+1] efm efma

II. If one takes s = o = 1, then we have a new result for exponentially harmonically

convex functions.

Page 9 of 33
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Corollary 3.3 Let H : Q2 C R\ {0} — R be an exponentially harmonically convex function
such that Ly [my, my] with my, my € Q and my > my. Then the following inequalities hold:

H( iy ) 3 ( myn, >/mz Hx) _ E[H(ml) .\ ’H(mz)]‘ (3.6)

my + my my x2e0* T 2| efm efm:

IIL. If one takes s = 1, then we have a new result for generalized exponentially

harmonically convex functions.

Corollary 3.4 For 0 € R and letting H : Q@ C R\ {0} — R* be a GEH convex function on
fractal space, my, my € Q with my > my, if H® € Cy[my, my), then the following inequali-
ties hold:

1 2myimy miniy ¢ (@) H(x)
1+ oz)H<m1 + mz) = <m2 - ml)mlIm2 (x2et%)
- ' +oa) [H(ml) ’H(mz)i|
~I'(1+2a) ’

e@ml e@mz (37)

IV. If one takes 6 = 0, then we have a new result for generalized exponentially
harmonically convex functions.

Corollary 3.5 For s € (0,1] and letting H : 2 C R\ {0} — R* be a generalized expo-
nentially harmonically s-convex function on fractal space, my,my € Q with my > my, if
H e Cy[my,ms), then the following inequalities hold:

(s=1)a o
2 2y 2mymy < myniy Ir(:) H(x)
Fl+a) \m +my my—my ), " x>
(1 +sa)
TTA+(s+1a)

[H(ml) + H(mz)].

Remark 3.6 In Theorem 3.1:
(1) If we take 8 = 0 and o = 1, then we get Theorem 3 in [30].
(2) Ifwetake 8 =0 and a =s =1, then we get Theorem 2.4 in [29].
(3) If we take 8 =0 and s = 1, then we get Theorem 4.1 in [43].

The key aim of this section is to obtain novel bounds that refine generalized Hermite—
Hadamard inequality for functions whose first derivative in absolute value, raised to a
certain power which is greater than one, respectively at least one, is a generalized expo-
nentially harmonically s-convex function. Sun [43] used the following lemma.

Lemma 3.7 ([43]) Let H :Z° C R\ {0} — R* (Z° is the interior of T) such that H € Dy(Z°)
and H'® e C, [m1, my] for my, my € Q° with my > my. Then the following equality holds:

7l %)

m1=ms 20

H(m1) + H(my) _ ( mymy )aF(l +a)

29 mwy — my

B (m1m2(m2_ml))a 1
B 2 I'1+a)

1 o
(1-20) H("‘)( ki )(dl)“. (3.8)

o (mal+ (1 —10myp)> mol + (1 = Dy

Page 10 of 33
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Theorem 3.8 For 0 € R, s € (0,1] with p™' + q ' = 1 and letting H : 7° C R\ {0} — R*
be a differentiable function on Q° (I° is the interior of T) such that H'Y e Cy[my, ms) for
my, my € Q° with my > my, if|7-£(°‘)|q is GEH s-convex on Q2 for q > 1, then the following

inequality holds:
H(m) + H(mz) — ( mymy al"(l . a)mlff,‘f)H(x)
2 my — 1 2 x2o

o o o 1
< <m1m2(ﬂ’l2 - Wll)) [ng)]‘%l |:B(a) |7'l( )(m1)|q + B(a) |H( )(m2)|qi| ”’

2 1 eq9m1 2 ed9m3 (39)
where
1 o
@ 1 1-2) g
B r(1+a) /0 (mal + (1 = Dmy) % rdl)
B 1
 (my — )2
y (my + m)*T(1 + a(s—2)) ga (7L 12 ol _ 6D _ s
I'l+a(s—1)) 2 ! 2
()™ (5 — m) (my — my)*
(m1my)*T (a + 1)
2°T(1 + (s — 1)) oM tm\Y
+— -2 +my +
(1 +as) 2
+ (2m51)a (2"‘ Ing <m1 ;mz) —1Ing (m17)* — lna(mz)m):|, (3.10)
1
@) 1 (1 -2 s e
= 1-0)%(dl
B, ra +a),/0 (mal + (1 = Dy )2 ( yedh
_ 1
 (my — my)*+2)
O m) T rals=2) (o (e e
'l+a(s-1)) 2 ! 2
(my)** (mG — m{)(my — my)
(mymy)°T (a + 1)
2°T(L+ (s—Da) [, (m1+m2\*
+ 2 — ) — iy
I'(1+as) 2
+ (2m3)" <—2°‘ lno[(m1 ;WIZ) +1ny, (7)™ + lnw(mz)s"‘)], (3.11)
1 ! (1-20~
BY = f dly”
3 FA+a)Jo |(myl+ (1 =Dmy)2e @
_ (mf — mS)
(my — my)* (mymz)*T'(1 + &)
g as
+ m (—2"‘ In, <m1 ; m2> + Ing (7717)* + 1na(m2)so‘), (3.12)
2=

and In, (x*) symbolizes the inverse of the Mittag-Leffler function defined on fractal sets
Eu(6*) = Y20 vy see [5].

Page 11 of 33
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Proof Let us estimate for g =1 and g > 1.
Casel q=1.
Using Lemma 3.7, GEH s-convexity of |H®| and the modulus property, we have

T@ H(x)

mi=ms K20

H(my) + H(my) _( mimy )ar(1+ )

24 my — g

- <m1m2(m2—m1)>a 1
= 2 T(+a)

1
(1_21)0[ ( )< miniy
o - s dl o
Xll(mﬂ+ﬂ—bmﬁh N\ ot =y )|
_ mymy(my —my) \® 1
- 2 'i+aw)
1
(1-20" |H ) (my)| |H ) ()]
lSC( 1 _ l so e Vet dl o
* /o (mal + (1= Dy [ TR
mll’l’lz(l’}’lz — Wll) « 1 1 2l)a
- lSO( dl o
( 2 ) rid+a) |: efm (2l + ( m )2 @)
1-2n s o
2 v ]
mymy(my — Wll) (o) |7'l ¢ (m1)| () |H(“)(m2)|
:( ’ >[Bl ol g (3.13)
Applying the change of variable technique /m; + (1 — [)m; = x, we have
(Dl) (1 2l 0( o
B — Dmy)> P
(1 =20 p> 1 1 (21 = 1)
dh” dl”
F(1+a) mzl+ (1= Dmy)? "‘( ) rl+a) 1 (mzl+(l—l)m1)2“( )

1 1 e (my +my)* 2¢
= - So d o
(my — my)**2 T (1 + &) |:_/m1 ( 2 T )(x my)** (dx)

my o o
+/ (2_ - 7(?;'11 +2m2) )(x - ml)m(dx)“].
myemy \ My mi®

Again, applying the change of variable, z = i if possible, and x%(dx)"‘ = —(dz)¥, from

Lemma 1.7, we get

(@ _ 1
1 - (mz_ml)a(s+2)
O ma) T als=2) (o, (mrm\ oy e
I(1+als—1)) 2 ! 2

()™ ((m3 — mY)(my — mm1)*
(mym)*T (a + 1)
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(1 + as) 2 ! 2

+ (2msl)a <2"‘ In, <m1 ; " )O‘S —Ing (m17)** — lna(mz)s"‘)]. (3.14)

Analogously, we have

1
(my — my)26+2)
(m1 + my)*T (1 + a(s—2))
[ 'd+a(s-1))

o1+ \ Y als=1)  als-1)
x (=2 — +m;, + My

(ma)**(m3 — m{)(my — my)
(mimy)*T(a + 1)

+2"‘1“(1+(s—1)oz) o my + mip as_msa_msa
I'(1+as) 2 ! ?

+ (2m)" <_2°f Ing (”“ ;”12) +1Ing ()™ + lna(mz)”):|. (3.15)

By =

A combination of (3.13), (3.14) and (3.15), gives the desired inequality.
Casell g > 1.
Using Lemma 3.7, GEH s-convexity of |H®| and the generalized Holder inequality, we

have

|H(W11) + H(my) _ ( mym; )aF(l +a)m11r(g)@
24 my — my 2 x2°‘
- <m1mz(m2 - m1)>a (1-2)"
- 2 — D)%
@) mymy «
" <m21+(1—l)m1> )
s (s — 1) \© (1-20° J9
5( 2 ) [ @ hmpe| Y }
1 1 (1—21)a (@) mimiy 1 « q
- [mm)/o Gl + (L~ Dy || <m21+(1—1)m1> @ ]
mlmz(mz—ml) « (@) qT 1 2[
= () 18 = D
fH(a) q ’H(Dl) q %
o |:ls°‘| eqe(r}:lll” i a —l)s"‘l eq@(:zz” ](dl)"‘:|
- (m1m2("212 —%))“ng)]%l
H O (my)|? 1 ! (1-2)" (e
% |: et T'(1 +oz)/0 (myl + (1 = Dmp)2 b
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| (ng 1 21 sa a a
e e (L= ]
1
mymy(my — my) @1 Z [ o) 17 )(m1)| (@ |H@ (my)|1 77
- (—2 ) (8] 7 | B + B = [ (316)
where applying the change of variable technique /m, + (1 — [)m; = x, and Lemma 1.7, we
have
(1-21)"~
By = dl)”
° — Dmy)> @
1
1 2 (1-20 1 1 (2[-1)*
= di)” dl)”
rl+a) /0 (mal + (1 —l)ml)zf"( ) Fl+a) i (mal+(1- l)ml)z‘*( )
— 1 1 w (Wl1 + m2)a 27 (d )0(
S (my—m)2 T(L+a) ), m3e ms
my X
+/ ( (}’}’11 + my)* )(d )a] (3.17)
g \ 1y my
(m§ —m§) 2¢

(13 — 1) (o) T (1 + ) (1 — r1y)®

as
“ (-2“ Ing (”“ ; ’”2) +Ing (1) + 1na(m2)8°‘).

After substituting (3.14), (3.15) and (3.17) in (3.16), we find the required inequality (3.9).
This completes the proof. d

Some special cases of Theorem 3.8 are presented as follows.
L. If we take o = 1, then we get a new result for exponentially harmonically s-convex
functions.

Corollary 3.9 For 6 € R, s € (0,1] with p™* + q! = 1 and letting H : I° C R\ {0} > R
be a differentiable function on Q° (Z° is the interior of I) such that H' € Li[m1, my] for
my,my € Q° with my > my, if |H'|? is GEH s-convex on Q for q > 1, then the following
inequality holds:

’H(m1)+’H(mz) _( My ) "2

2 my — niy my X ’

2 eq9m1 2 eqoma

- <m1m2(mz —m1)>[83]‘1q‘ |:Bl |H ()| ‘B |’H/(m2)|q:|‘1’,

where B, By and Bs can be gotten easily by replacing o = 1 in (3.10), (3.11) and (3.12),
respectively.

Remark 3.10 In Theorem 3.8:
(1) If we take @ =s=1and 0 =0, then we get Theorem 2.6 in [29].
(2) If we take s = 1 and 6 = 0, then we get Theorem 4.5 in [43].
(3) If we take g = 1, then we get inequality (3.13).
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Theorem 3.11 For 6 € R, s € (0,1] with p! + ¢! = 1 and letting H : T° C R\ {0} — R*
be a differentiable function on Q° (I° is the interior of T) such that H® e Cy[my, ms) for
my, My € Q° with my > my, Lf|’H("‘)|q is GEH s-convex on Q2 for q > 1, then the following
inequality holds:

« H(x
) T(L+0)m I x:fa)

’H(Wll) + H(my) _ ( mjymy
20{

my —nn

=

(Vﬂlmz(mz - Vl’l1)>a|: I'(1+pa) i|;
2 1+ @p+1ao)

1
@ HOm)|1 oy |H® (my)| 14
X |:C1 o Cy g , (3.18)
where
1 1 PR
Y .= / di)®
1 rd+a)l (m21+(1—l)m1)2‘1“( )
_ 1
 (my = my)*IT (a + 1)
(m;+l—2q _ msl+1—2q)a B I’}’I?S(Wl;_zq _ m}—Zq)a (319)
(s+1-2g)" (1-2g)~
and
C(a) — 1 /1 (1 — l)Sa ( )a
2 Fl+a) )y (myl+ (1 -10m)2
B 1
~ (my = my)*e I (@ + 1)
mgs(mé—Zq _ m}—2q)a B (m52+1—2q _ msl+l—2q)a (320)
(1-2g)~ (s+1-2g)®

Proof Using Lemma 3.7, GEH s-convexity of |1 | and the generalized Holder inequality,
we have

’H(ml) + H(my) _ ( mjimy
20(

y (mlmz(mz—ml))a 1
2 ' +a)
1

(@) mymiy «
X./o " <m21+(1—1)m1)‘(6ﬂ)

mimy(my —mi) [ 1 ! v e ,

= () L ) 12

1 1 1 (@) mymy

X|:F(1+ot)/0 (ol + (L= Dy | (mzl+(1—l)m1>

- mimy(my —m)\*[  T'(1+pa) » 1 1 1
_< 2 ) [F(1+(p+1)a)} [F(1+a)/o (mal + (1 = Dmy )24

)am +o¢)mlz<°f>M

my x201

my — My

(1-20)~
(mal + (1= Dmy)*>

9 q
(dl)“]
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(@) (@) :
8 [lsaIH (ml)lq+(1_l)m|?l (Mz)l‘f](dl)a}

eq9m1 eq9m>

:(mlmg(mg—m1)>“[ I'(1+ pa) ]%

2 I'l+(p+1a)
1 [ e HO ),
) |:F(1 +a) /0 (mal + (1 = Dymy)2e et?m ()
1 ! (1-1y~ IH@(m)1] ;
+ F(l N Ot) o (I’VI2Z + (1 _ l)ml)an edom3 :|(dl) ]

_(Wllmz(le—ml)>a[ I'(1 + pa) ]’l’
- 2 Frdl+@E+1a)

y |:C§a) |H ) (1) |

edfm1

@ |H<“><m2>|qr

+Cy s (3.21)

By making the change of variable technique /m; + (1 — [)m; = x, and Lemma 1.7, we have

1 1 lsa
c = / di)*
! FrA+a)y (mal+ (1 -1)mp)2a (@)

1 1 2 (x —mp)® "
= G+1) e (dx)
(my —m)*SV T (1 +a) Jy 1
1

" (my — )G 0T (@ + 1)

1-2 1-2 1-2 1-2,
I:(m32+ q _ m51+ Q)a mz{zs(mz q _ m, 61)0(:|

(s+1—2q) (1-2g) (822)

and

C(a) :: 1 1 (1 _ l)sa
2 FrA+a)y (mal+ (1 -1)mp)2a

~ 1 1 /’”2 (my — x)* (dx)°
iy —m) DTt a) Sy 1
B 1
 (my— my)*6IT (o + 1)
I:mgs(mé—Zq _ m}—Zq)a B (m52+1—2q _ msl+l—2q)a :|

(1-2g)> (s+1-2q)

(@h*

(3.23)

A combination of (3.21), (3.22) and (3.23) gives the desired inequality (3.18). O

I. If we take a = 1, then we get a new result for exponentially harmonically s-convex

functions.

Corollary 3.12 For 0 € R, s € (0,1] with p™* + q' = 1 and letting H : I° C R\ {0} — R
be a differentiable function on Q° (Z° is the interior of I) such that H' € Li[my, m;] for

my, my € Q° with my > my, if |H'|? is exponentially harmonically s-convex on Q for g > 1,
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then the following inequality holds:

I’H(m1)+’H(M2) _( mymy )f’”z He) ‘
2

my —nn m

_ (et =)\ (1 %Clm'<m1)|q+cz|w(m2)|q %,
2 p+1 edfm eom

where Cy and Cy can be obtained by replacing o = 1 in (3.19) and (3.20), respectively.

Remark 3.13 In Theorem 3.11:
(1) If we take @ =s=1and 8 =0, then we get Theorem 2.7 of [29].
(2) If wetakes=1and 6 =0, then we get Theorem 4.7 of [43].

4 Generalized Fejér type inequality
The generalized Fejér-type inequality for generalized exponentially harmonically s-convex

functions can be presented in local fractional integral forms as follows.

Theorem 4.1 For 6 € R, s € (0,1] and letting H : Q C R\ {0} — R be a GEH s-convex
function on fractal space, my,my € Q with my > my, if H® € C,[m1, my], and letting

W i [my,my] — R* be positive, local fractional integrable and symmetric corresponding

2mymy
mi+niy

to , then the following inequality holds:

Za(s_l)H 21’]’11}7’[2 z_(a) W(x)
i + Wiy e 2
< (@) Hx)WV(x)

— M1~my (xeex)a

F1+sa) [H(m) Hmy) 7 W(x). 4.1)
FA+(s+1a)[ efm efm | T x2
Proof Since VWV is nonnegative, integrable and symmetric with respect to (fn’;’i::’é )
mymy mimy
W ———— =W ——F"F7F"F ). 4.2
(lmz+(1—l)m1) (lm1+(1—l)m2) (42)

Multiplying on both sides of (3.3) by W(;,-“5;,-), then we have

2+(1-0)my
miymiy 21’1/117}’12
w
(lmz +(1- l)ml)H(ml + mz)
1 mymy myniy (myrm
< W Imy+(1-l)m
= 2~ [ (lm2 (1 —l)ml)H<lm2 (1 —l)ml)e B

mymy mny (a2 43
+W<lm2+(1—l)m1)H(lm1+(1—l)m2>e B (4:3)
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Integrating the above inequality corresponding to / from 0 to 1, we have

2mymy mymiy o
H(m1+m2)l"(1+a)/ (lm2+(1—l) >(dl)

1 1 mymy miny (14’%)
my+(1-)m dl o
Sgw[ru+m om(mh+u—mm>H<mu+u-nmJe Him il

1 1 150 14%)
" ri+a) /0 W(lmz +(1 —l)m1>

my iy (lm76+m1 rlnm dl o 4 4
XH(mh+u—mm)el " dh (44)

Using the fact that

21’}1114’12 1 1 mymiy o
H(ml + mz> r'+a) fo W(lrm +(1 —l)m1>(dl)

BV TR N L VLT

my+my ) \my—-my) T(l+a) /S, x*

2 W
) e
my + my my—=my ) ., X

Also

1 1 1 UP) mjimy (_91”"17’”2)
my +(1=Dmy’ (J])
= [r(ﬂ ) Jy W(lmz g —l)m1>H<lmz g —l>ml>e e

mymy miniy (- 9%
1+Ot)/ <lm2+ 1—l)m1>H<lm1+(1_l)m2>e ( (dn* }
_ 1 mymy " HERWEK), " UEOWE)
S F(1+Ol) (mz—ml> |;/m1 W(dx) +/m1 W(dx) ]

_ (l)a(s_l)<—mlm2 )a I}gz)—%(x)w(x). (4.6)

2 my — 1y (x2efx)

From (4.5) and (4.6), then we conclude

20{(51)7_[( 2mymy ) I(l!)W(x) < I(W)M‘ (47)

=m
my + My "y 2 1 ~my (xZer)a

Since WV is nonnegative, integrable and symmetric with respect to ( fn’"i Zz ), and multiply-
ing on both sides of (3.4) by W(lmml—"'z) we have

o +(1-0)my

( My )a I(a)H(x)W(x)

my — m; ) my (x2€<9x)ol

1 m MMy mymy (=0mmy_y
= wf——— ||\Hl ———— Tmy+(1-Dm
'l +a) /ml (lm2+(1—l)m1>[ <lm2+(1—l)m1)e ’ '

+H< mymiy )e(m ](dl)ot

lm1 + (1 - l)l’l’lz
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(1 + sa) [H(ml) H(mz)i|/1 1 ( myny ) N
+ 2% (dl)
o I(

<
“T(1+(s+1a)| e'm efm 1+a) Imy + (1 = Dmy

I'(1 + sar) < My )al:H(rm) ”H(mz)] 1 /mz Wz(:)(dx)o’

- M1+ (s+ Do) \my — efm efm |T(1+a)

my

_ (1 +sa) mymy \“[H(my) H(my) 7@ Wi(x) 48)
I+ (s+ Do)\ my —nm efm efm . "y '
From (4.7) and (4.8), we get the desired inequality (4.1). O

I. If we take o = 1, then we get a new result for exponentially harmonically s-convex
function.

Corollary4.2 For0 e R,s € (0,1] andlet H : 2 C R\ {0} — R bea GEH s-convex function
with my > my and my,my € Q. If H' € Li[my, my], and let W : [my, my] — R be positive,
2mimy

integrable and symmetric corresponding to prawe then the following inequality holds:

2“(3‘1)7—[( 2m My >/mz W) i < /mz HE)W(x)

my+my) Sy o X2 m (x%e)

1 [H(ml) H(Mz)}/"” Wix)

T s+1| efm efm: x2

dx.

mi

II. If we take s = @ = 1, then we get a new result for exponentially harmonically convex

functions.

Corollary 4.3 For 0 € R, and letting H : 2 C R\ {0} — R be a GEH s-convex function

with my > my and my,my € Q,if H' € Li[my, my)], and letting VWV : [my, my] — R be positive,
2mmy
my+my’

H( 2mymy ) f’m Wi(x) dx < /”’2 H(x)W(x)

mi+my) Sy, X m (x2ef%)

- E[H(ml) ) H(Wtz)] /'”2 Ww

-2 x2

integrable and symmetric corresponding to then the following inequality holds:

e@ml e@mZ

Remark 4.4 In Theorem 4.1:
(1) If we take W(x) = 1, then we get Theorem 3.1.
(2) If we take @ =5 =1, and 8 = 0, then we get Theorem 8 of [31].

5 Generalized Pachpatte type inequalities
Theorem 5.1 For 0 € R, s € (0,1] and letting H,U : @ C R\ {0} - R be GEH s-convex
functions on fractal space, my, my € Q with my > my, if H,U € C,[m1, my), then the follow-

ing inequalities hold:

( mimiy )a a)u(x)H(x)

It
my —nn "

2 20
m x

I'(1+ 2sc) [U(ml)’H(ml) u(mz)“rt(mz)]

<
"I+ @2s+1a) e20m e20m
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(1 + sa) I'(1+2sa)
[ru +(s+Da) TQ+2s+ l)a)]
H U H U
[ KO 6.
and
1 2m My 2mymy
1+ a)u(ml + mz)H(Wzl + m2>
<:<1>“[< mymy )“:ﬂwéﬂxﬂi@)
—\2 my—my ), I
I'(1+sa) (1 + 2sa)
[I‘(l +(s+Da) T(A+(2s+ l)a)]
[U(MI)H(ml) U(mz)H(mz)]
x eZ@ml 8297’72
N (1 +2sa) I:U(ml)H(mz) . U(mz)H(ml)]] (5.2)
T(1+@2s+1)a)| efllmrm) flmi+ma) ' '

Proof Sincel and H are GEH s-convex on €2, then, for / € [0, 1], it follows from Definition
2.3 that

mimiy mymiy
u(Mu+u—mm)H<mh+u—nm)

U(my)H(m,) U(ma)H(my)

6207}11 329"’12

< (l)2sot + (1 _ l)ZSa

ef(mi+m3) ef(mi+m3)

+Wuw%wmwm>wmwmq

and

mimiy mymiy
U(Mn+u—mm)H(mﬁ+u—mm)

U(my)H (my) U(my)H(m,)

2s0r
= (l) 6297}12 329m1

(11>

+Wuw%wmwm>wmwmq

ef(mi+m3) ef(mi+m3)

Adding the above inequalities, we have

mimiy mimiy
u(lmz + (1 =Dy >H<lm2 +(1- l)ml)

mimy myniy
+u(lm1 +(1 —l)mz)H<lm1 +(1- l)m2>

< [(Z)Zas " (1 _ l)2as] |:Z/{(W11)H(Wl1) Z/{(mz)?‘[(mz)]

629 my 629 my

4205 (1 _ Iy [H(ml)u(mz) H(””Z)u(ml)]

ef(m1+m3) ef(m1+m3)
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Integrating the above inequality corresponding to / from 0 to 1, we have

1 1 mymy mymy @
rid+a) /(; u(lmz +(1- l)m1>H<lmz +(1- l)ml)(dl)

1 ! mymy mym; o
I'l+a) /0 u(lnﬁ +(1 —l)m2>H<lm1 +(1- l)mz)(dl)

) H (m;) U(mz)H(mz):|

1 ! s oS o u(
SF(1+a)/0 [ + (1 - 1) ](dl)[ St i

2 ! Sot s o H(Wll)u(WIz) H(MZ)M(MI)
" F(1+O[)/0 ! (l_l) (dl) |: et (m1+m3) + ef(my+m3) i|

Also, we have

(mlmg) 1 [/mzmx)mx)(d 4 /’”Zu(yyﬂ(y (d)a]

my—my) T(1+a) -
- 29T (1 + 2sc) |:I/I(m1)7-[(m1) U(mz)H(mz):|
T I+ 2s+1a) e20m e20m

2a|: I'(1+sa) I'(1+ 2sa) ] |:7-[(m1)U(m2) H(WIZ)U(WII)}
Fl+(s+1)a) [1+02s+ e g0 lm+m) eflmrm) |’

Therefore, we obtain

( mimsy )a I;jz)u(x)H(x)

my—my ), x20

- (1 + 2sa) |:U(m1)7{(m1) L{(mz)’H(mz)}
“TI'(1+@2s+1a) e20m e20m

[ (1 + sa) (1 + 2sa) i|[7—£(m1)u(m2) H(mz)l/{(ml)]

F(1+(s+1a) TA+@2s+a efmi+my) eflmirmy) |’

Next, we establish the inequality (5.2). Again using the GEH s-convexity of U/ and H on

Q, we have
U( 2m miy )H( 2mi iy )
my + miy my + miy
(1( mimiy mimiy )
=U| = +
2\Imy+ (1 =Dmy  Imy + (1 =Dmy
< U l mymiy + nmymiy
2\Imy+ (1 =Dmy  Imy+ (1 =Dmy
1 mimiy iy
5(1 [u<zm2+(1-z)m1)+u<zm1+(1-1)m2)]
miymiy iy
x |:H(II’I’I2 +(1-1 m1> +H(lm1 +(1 —l)mz>]
1\* mymy myn;
<E) |:u<lm2+(1—l)m1)H(lm2+(1—l)m1):|
+ (l “ mymiy Y iy
4 Imy + (1 = Dmy Imy + (1= Dmy
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+

V)i [U(Wll)H(ml) U(mz)H(mz)]

20 e20m1 e20my
P+ (L= TUm)H(ma)  Ulma)H(m)
.\ (5.3)
4 e0(m1+m3) ef(my+m3)

Integrating the above inequality corresponding to / from 0 to 1, we have
eI R ek e
= (%)a ﬁ ./: [u<lm2 :n(llm—zl)ml )H < lmy f1(11}41—21)”’11 )i| ("
' ﬁ /01 <%>a [H(lml T(llnizl)mz) . (lm1 :n(llnizl)mz)] @

1 /1 B (1 — f)se [U(ml)H(ml) U(ma)H(my)
+
F(l +Ol) 0 2¢

629 my 629 my

] (dn®

1 /1 25 4 (1 = )2 [u(ml)H(le) U(””Z)H(ml):|(dl)“, (5.4)
0

i F(l + C() 4 ef(m1+my) ef(m1+mz)
It follows that
1 U 2mymy 2mymy
Fl+oa) \m+my My + My

1\“ mimiy “ 1 "2 U (x)H (x) o "2 U(y)H(y) a
: <1) ( ) M1 +a) [/m FE /m ) }
( >“|: I'(1+sa) (1 +2sa) :| |:U(m1)7-1(m1) U(mz)H(mz)]
i T(1+(s+Da) 1+ (2s+Da) e20m " e20m

1

2

N (1)“ (1 + 2s0) [U(ml)H(mz) U(le)H(Wll)]
2/ T'A+2s+1)a)

(5.5)

ef(m1+my) ef(m1+my)

Consequently, we have
1 2 2
U iy H iy
Frl+a) \m+m; my + my

() s

—\2 my—my /), " x%

<1>o’|: I'(1 + sa) (1 + 2sa) } [U(ml)'}-l(ml) . Z/l(mz)'}-l(mz)]
I'(

2 1+(+1Da) 1+ ((2s+ 1) e20m e20m

N 1\*  (1+2s0) U(m)H(my)  U(mo)H(m) (5.6)
2) T(1+2s+Da)| eflm+m) efimm) |’ )
This completes the proof. d

I. If we take a = 1, then we get a new result for exponentially harmonically s-convex

functions.

Corollary 5.2 For 6 € R, s € (0,1] and letting H,U : 2 C R \ {0} — R be exponentially
harmonically s-convex functions on 2, my,my € Q with my > my, if H,U € Li[my, my],
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then the following inequalities hold:

(mlmz )f”” UX)H (x) o1 [U(th)?{(ml) U(le)H(le):|

dx
my—mi ) S, x2 1+2s e20m e20m

. 2I(s+1) [H(ml)u(m2) H(le)u(nh)}
I'(2s+2)

el (my+m3) ef(my+m3)

and

22s—lu< 2m1m2 )H( 2m1m2 ) < < mymy )/mZ u(x)z-l(x) dx
mi + my mi + my my — mj my X

2I'(s+1) [U(ml)H(rm) U(mz)H(le)}

* I'(2s+2) e20m e20m
1 U(m ) H(my)  U(my)H(my)
" (2s+1) ef(m1+m3) g0 (my+my)

6 Generalized Ostrowski type inequalities
Lemma 6.1 Let H:Z° C R\ {0} —> R* (Z° is the interior of L) such that H € D,(Z°) and
HD e Cy[my, my] for my, my € Q° with my > my. Then the following equality holds:

Hiw) - ( ke ) D1+ ) 20 2 61)
my — my X
_ (s \*[ (- my)® 1 I 2@ myx ()
my — 1y Frd+a) Jo (my+ 1 -=Dx) Imy +(1-Dx
(my —x)* ! - @ Max N
" T+ fo Wy + (L= D (lm2 T —l)x>(dl) ] 6.2)
Proof Using local fractional integration by parts and changing variables yield
( mimy )a (x_ml)Zot 1 & H(O‘)( mx >(dl)a
my — my Fl+a) Jo (Im+(1=Dx)> Imi+ (1 -1Dx
(my —x)% 1 @ @ Mo o
CT(1+a) o (Umy+(1- l)x)z"‘H <lm2 +(1- l)x>(dl) ]
o mmmy o\ ” mx !
- (m—m) [(x ™) [(mlx)“(x—ml)“H<lml+(1—l)x) 0
'l +a) * H(u) N
B (1 +a)(x —myp)2e /rm u2 (dw) ]
+ 1y — ) ~ 2 X !
? (mox)*(my —x)*  \Imy+(1-Dx /|,
M 1+a) "2 H(u) N
B I'(1+ a)(my —x)2@ /x u (du) :|:|
_ (max —m) + (my - x)m) Hw) _< mymy ) ra +a)m11$)7'l(u)
a$(my — my)* my — 2 20
) - () R g gy, 0 T, (6.3)
My — My 2y

the required result. d
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Remark 6.2 1f we take a = 1, then we get Lemma 1 of [30].

Theorem 6.3 For 6 € R, s € (0,1] with p™* + g ! = 1 and letting H : Z° C R \ {0} - R*
be a differentiable function on Q° (I° is the interior of T) such that H) e C,[my, m,) for
my, my € Q° with my > my, if [H®|? is GEH s-convex on Q2 for q > 1, then the following
equality holds:

"H(x)—( my iy )“F( )mlz(a)H(x)

my — my 20‘

1
mme (x — Wl1)2a () (o o a1 (@) |H(a)(x)|q () |H(a)(m1)|q !
=< <#>(Sl (mf,x%)) 7 (| S edtx +55 eafm

(my —my)®

o 0 _ a)2a -
(P (0 )

(1my — my)*

1
W HOWN o -1 1
x ([Si) T ) : (6:4)

eq0ma

T +a)/0 (my + (1 = Dx)™ @b
1 1

= Gy e (alm)” = Ine )~ e

S(Ot) 1 1 loz(s+1) e
2 T F(1+a)/0 (lm1+(1—l)x)2"‘( )

B [raw(s—l))(mas_mw)_ﬂ(i_lﬂ ©6)
= 1 1 , '

(o — mm; )¥(6+2) I'(1+as) Frl+a)\m «x
(1 - l)as .
S F(l+a)/ (Imy + (1 = D)x)2 @
_ (1-%)* T(Q+a(s+1) m‘f(ﬁl) mgs 67)
Cm -x)2  T(1+as) (m; —x)%6 D) (my — x)eG+D’ )
SO ) = s [ s o @
V)T T v a) Jo (g + (1= D
1 1
= 1 o * -1 o *) - ’ .
rra e (D (m2)" —Ine(@)°) mST (1 + ) (s — %) 68)
1 o (s+1)
S .= ! ! (i

Frd+a)y (my+1-10x)>

~ 1 FA+als—1), .0 o @V /1 1\°
= (x — 12)06+2) [ (1 +as) (”’11 —my )— m(ﬂ’l—z - a_c) i|, (6.9)

@ 1 1 la(l _ l)ozs "
S5 = Il +a) /0 (Img + (1 = D)2 @

(1-%) T(+a(s+1) D mes
© (my—x)  T(L+as) (my — %)) (1 — x)bs+D)

(6.10)
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Proof Using Lemma 6.1, the generalized power mean inequality and the GEH s-convexity
of |[H®|7 on Q, yield

’H(,J—( mw:ﬂ) r+ )mI(‘”H(x)

my — x2a

mymy \“[ (x—myp)% [} @ @ mx N
= <n12—m1> [ r1+a) /0 (Imy + (1 = )x)2 " <1m1+(1—l)x> (@)
20 1 Jd MoX

() 2
7 (lmz+(1—l)x>

mims (x — ) 1 L 5 NG
S( (g — my)* )(F(1+“)/() (lm1+(1-l)x)2a(‘”)>

X

(my —x)
Fl+a) Jo (my+ (1 =1Dx)2

(dl)“]

(F(l +a) / (I + (1 —)x)%

H ‘ i
x [zas DO g P ](dl)"’)

m ms (my — x)* 1 1 o . ol
( (3 — 1) )(F(1+a)/0 (lm2+(1—l)x)2“(dl) )

(F(l +a) / (Imy + (1 —)x)%

X
1
s (x)l s | H @ (m2) |1 «\?
X[l e D W](d’))
1
C(mmE = m)* N\ @ a o B (@ VIHEO@NT oy [H® (m1)]9\ @
(T )(SI (o) S e+ S
mem (my — x)>* @ -1
(OGN o O Gm) 5 61D
4 1% tos e19m2 : :

Applying the change of variable technique /m; + (1 — [)x = z, and Lemma 1.7, we have

S (mf,x%) = (@h”

'l +ow) /0 (Imy + (1 = Dx)2

I S b R P
_(ml_x)Zoz/; <Za ZZa)(dZ)

1 o o 1
= m(lna(ml) —Ing (x) ) - BT+ @) =) (6.12)
@ 1 1 loz(s+1) o
Sy = Il +a) /0 (Imy + (1 = D)2 @

1 x a(x(s+1)
_ (s-1) _ "1 o
= G /ym (z“ g >(du)

a(s+1) o
1 [F(1+a(s—1))(m(fs_mi,s)_L(i_i) } (6.13)

T e—m)ee | T(1+as)
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and

S(a) . 1 ! (1 -0 (
3 Frl+a) o (m+Q1-10Dx)%

1 * m? 1 as o
C w—m)ee? /ml (ZT B Za)‘ml ~2)%du)

 (1-%)* TQ+a(s+1) me e mes
© (my—x)2 T(L+as) (m1 —x)*6*D (g — x)*+D

di)®

(6.14)

Again, applying the change of variable technique /m; + (1 — [)x = z, and Lemma 1.7, we
have

Sia) (m5,x

(@n®

o 1 1 lcx
)= Il +a) /0 (Imy + (1 = D)2

1 molomeN,
e | (55

1 1

(lna (m7)* —Ing (x)* (6.15)

T (my —x)

S( ) 1 1 loz(s+1)
= dl)“
4 rid+a) /0 (Imy + (1 = Dx)2 @

a(s+1)
= 71 " a(s-1) _ m, (d )oz
a(s+2) z 20 u
(x —my) - z

a(s+1) o
) 1 [r(1+a(s—1))(m?s_mgs)_L(L_i) } (6.16)

(x — m15)2(s+2) I'(1+as)

@ 1 1 la(l _ l)as
> T r+a) )y (my+(1-Dx)>

1 Yim§ 1
- - i — 2% (du)®
(% — 11y)26+2) [n2<22“ Za)(mz 2)" (du)

(dn®

1-x)* TA+a(s+1)) m‘;(”l) mss 6.17)
T my—x)2  T(1+as) (mg —x)26+D) (i — x)s+D) ’
A combination of (6.11)—(6.16) and (6.17) gives the inequality (6.4). O

Some special cases of Theorem 6.3 are presented as follows.
I. If we take o = 1, then we get a new result for exponentially harmonically s-convex

functions.

Corollary 6.4 For 0 € R, s € (0,1] with p™' + q' = 1 and letting H : 7° C R\ {0} - R
be a differentiable function on Q° (Z° is the interior of I) such that H' € Li[my, m;] for
my, my € Q° with my > my, if |H'|1 is exponentially harmonically s-convex on Q for q > 1,
then the following equality holds:

‘H(x)— mn; /m2 H(x) dx

my — M, x2o

m1

< <7m1m2(’“ - mi)z)(sl(ml,x))"ql ([s LIS lH’(ml)wD :

(my —my) e’ et
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+ (_mlmg(;m — x)z) (S1(m3, %)) =

(my — my)
1
|H' (x)] [H' (m2) |77\ «
) ([84 qux +85 eq0m2 }) ,

where S1(my,x), Sa, S3, S1(my,x), Sy and Ss can be obtained by replacing a = 1 in (6.5)—
(6.10), respectively.

Remark 6.5 1f we take « = 1 and 6 = 0 in Theorem 6.3, then we get Theorem 6 of [30].

Theorem 6.6 For 0 € R, s € (0,1] with p™! + q ! = 1 and letting H : 7° C R\ {0} — R*
be a differentiable function on Q° (I° is the interior of T) such that H'® e Cy[my, ms) for
my, My € Q° with my > my, LfIH(‘")Iq is GEH s-convex on Q2 for q > 1, then the following
equality holds:

xZD(

mem (e —m)2 N\ [ T+ ) \'T ([ o) HO@N o [H@(my) 2T\ @
< S +S;
(mg — my)® '(1+2a) edtx edom

(m‘fm‘;(mz — x)% )( Il +a) )qql
+
(my — )2 ' +2a)

|’H(x)—( i )ar(ua)mlzjggwx)
my — My

@ ()| @ ()4 4
@ [HY )] @ [H Y (m2)]1]\ 4
X ([88 P Sy o , (6.18)
where
1 1 loz(s+1)
S .= / diy” 6.19
6 Frl+a), (m+Q1- l)x)z‘I“( ) ( )
_ 1 Fra+1+s- 261)05) (m(2+s—2q)ot _ x(2+s_2q)a)
(mp —x)*62 [ T(1+ (2 +5-2g)a)
~ mtil(lﬂ)(m}—mi _xl—Zq)ot
1-2¢9)*T(1+ )
and
@ 1 1 (1 _ l)a(s+l)

(dl)*

7 T T ra) )y Umy+ (1= Dx)2

~ 1 |:m‘{‘F(1 +(1-2q)a) ( a(2-29) a(2_2q)) B C(1+(1-2q+s)a)
T —x)6D | TA+Q2-29a) ! I(1+(2-2g+s))

_ 2T+ (s—2q)x _ _
« (ma(Z 2q+s) _xa(2_2q+s)) 1 ( ( q) )( a(l+s-2q) a(l+s Zq))

! L(1+(s—2q)a) * ! -t

(o) (my 27 - xlz")] (6.20)

(1-2¢)*T(1+ )
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Proof Using Lemma 6.1, the generalized power mean inequality and the GEH s-convexity
of |H®|7 on Q, yield

’H(x)—( mymy >al"(1 )MII(Q)”H( x)
my — my x

5 — 20
mymy \“[ (x—myp)* [} @ @ X N
= <Wl2—m1> [ Fl+a) Jo (m+(1-Dx)> " (lm1+(1—l)x)‘(dl)
(my —x)* [* - 2@ mox
Fl+a) Jo (my+ (1 -1Dx)2 (lmz +(1- l)x)
m ms (x — mp)** 1 LI =
5( 1z — 1) )(F(lw)/o ”‘ﬂ)>
lot
x (F(l va) Jo (my+ (1= D)x)aa

(@) :
y [1‘” (x)l l)‘“m (rm)lq](dl)a)

(dl)“]

edox edfmi

mS ms (my — x)* 1 v ol
( (my — my)® )(Fl+a)/ l(dl))
lot
. (F(1+0[) (ln’I2+(1_l)x)2qa

(@) :
y [1‘” (x)lq l)‘“m (m2)|q](dl)a)

eqox edtma

_ (m?m‘%(x—ml)z“)( ra+oe) )qql ([S@ HOWN | o m@f)(ml)wDé
- (mg — mp)* ' +2a) 6 e9% 7 a0
(m‘{‘mg(mz — x> )( r(1+a) )21
+
(g — 7)™ ' +2c)

(@) (@) :
y ([sé“)m (x)|q+8<a)l7i (Mz)lq]) ' 621)

eq0% 9 edoma

By applying the change of variable technique /m; + (1 — [)x = z, and Lemma 1.7, we have

/ (D) = rl+w)

F(l +) I +2a)
1 (s+1)
(a) 1 l o
= dl 6.22
So rid+a) /0 (Imy + (1 = D)x)2a (@) ( )
B 1 Frl+1+s-29«) (2+s-2q) (2+5-2q)
T (my — x)2ls+2) |:F(1 +(2+s5-2g9)a) (x e )
) miz(Hs) (xl_zq _ mi—ZfI)a
(1-2¢)*T(1+ )
1 1 1-1 a(s+1)
S .= -5 (1 (6.23)

FrA+a) o (Imy+ 1 -=1Dx)2a

1 a2 M
- - a(l-2q) "1 s o
(1, — x)26+2) /m1 <Z ZZaq)(ml z)*(dz)
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~ 1 [m‘f[‘(l +(1- Zq)a)( «(2-29) _xa(2—2q)) ~ 1+ (1-2g+s)x)
T m x| TA+2-29)a) © ! I(1+(2-2g+s)a)

% (xa(2—2q+s) _ m(it(ZquH)) (1 + (s —2g)a) ( a(l+s-2q) xa(l+s—2q))

L1+ (s—2q)a) *

(oo, )* (2 — x”q)}

(1-29)°T(1 +a)

S and 8 can be found by replacing 1, by 1, in (6.22) and (6.23).

Therefore, by combination of (6.21), (6.22) and (6.23), one concludes to the inequality
(6.18).

This completes the proof. d

I. If we take o = 1, then we get a new result for exponentially harmonically s-convex

functions.

Corollary 6.7 For 6 € R, s € (0,1] with p! + ¢! = 1 and letting H : I° C R\ {0} — R*
be a differentiable function on Q° (I° is the interior of T) such that H'® e Cy[my, ms) for
my, my € Q° with my > my, if [H®|? is GEH s-convex on Q for q > 1, then the following
equality holds:

’H(x)— iy /m2 H(x) dx

my — m; x2o

m1

-1
- mymy(x — my)? 1 T S@ |H (%) L 5@ |H (m71)|1 i
- (3 — 1) 2 6 eatx 7 ettm
mymy(x — my)* (1 T @ H' @I o [H (m)]? 7
|l —)( = Sq + 8y ——— ,
(my — n17) 2 eq9% eqom

where Sg, S7, Sg and So can be obtained by replacing o = 1in (6.22) and (6.23), respectively.

Remark 6.8 1f we take @ = 1 and 6 = 0 in Theorem 6.6, then we get Theorem 5 of [30].

7 Example
In this section, we present an example to illustrate our main contribution.

Example 7.1 Let H(x) = x*Inx, for x € (0,00). Then H is a GEH s-convex function with
a € (0,1]. If we take a = 1, m; = 1, my = 2, then all assumptions in Theorem 3.8 are satis-
fied.

The left hand side term of (3.9) is

"H(Wll) + H(my) _ ( myniy )aI‘(l +a) I("‘)H(x)

2% my — "2 x2

1In1+22In2 1.2 m¥*Inx
= — 1.2
2 2-1),72 2

=|2In2-41n2 + 2|~ 0.6137.
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The right hand side term of (3.9) is

1
(Wllmz(mz - Wll))a[B(a)]zl |:B(a) |H@ (my)|* L B |H) ()| qi| a
—_— 3 1 2

2 eq9m1 ed9m3

_(1202-1)
_ (T

1

)(0.0794)% [-0.0457(0) + 0.1454(21n2)"%] 75
~ 7.6474.
It is clear that 0.6137 < 7.6474, which demonstrates the result described in Theorem 3.8.

8 Application to special means
In this section, we recall the following «-type special means for two positive real numbers
m§, m where m; < my:

(1) The arithmetic mean

m§ + ms
Aa(ml,mz) = %.
(2) The geometric mean

Gy, my) = \/m§ms.

(3) The harmonic mean

(2mymy)”
H, (7721, m3) = T o
my + mj

(4) The r-logarithmic mean

F(L+ra) my™ —m ™)

) ) reR\ {~1,0).

Lora (11, m2) = (F(l +(r+Da)  (my—my)®

These means have a lot of applications in areas and different types of numerical approxi-
mations. However, the following simple relationships are known in the literature:

Hy (m1, my) < Gy (my, my) < Ay (my, my).

Assume the mapping V' : (0,00) > R%, V(z) = %z(‘”l)“, 2>0,q>1andr > 1.Then
[V@(2)|" = 27 is GEH s-convex on (0, 00). Therefore, we can obtain the following results
for ®(z) = sl

Proposition 8.1 For 0 < my <my, u,q > 1 and o € (0, 1], we have the following inequality:

| Ay (M, mit) —T (1 + a)Gﬁ(ml,mz)Lﬁ:}Da(ml,m2)|

1
- FA+w+Da) (my—m)® (a)] a1 5@ mi"mi
FA+ux) G2(2,mi,my) 3 L gatm 2 oqfmy | 7

where BY"), Bg“) and Béa) are given in (3.10)—(3.12), respectively.
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Proof Taking H(z) = %Z(”l)", u > 1 for z > 0 in Theorem 3.8, then we get the im-

mediate consequence. O

Proposition 8.2 For 0 < m; < my, p,q > 1 and a € (0, 1], we have the following inequality:

|Ag (™, my ) = T (1 + )G (my, my) L, (11, m5) |

’

- A+ u+Da) (my—m)® I'(1+ pa) ’ @M ymy 0
F(1+ua) G2(2,my,my) [ T(1+(p+1)a) L oeaom 72 oq0my

where Cia) and Cé“) are given in (3.19) and (3.20), respectively.

Proof Taking H(z) = %z(’“l)“, u > 1 for z > 0 in Theorem 3.11, then we get the

immediate consequence. g

9 Conclusions

In this study, we have investigated two new classes of convex functions known as GEH
convex functions and GEH s-convex functions on the fractal domain and presented new
properties for the more general class GEH s-convex functions. The new concept takes
into account the several generalizations that have been derived in the framework of lo-
cal fractional integrals for generalized differentiable functions. We have derived a new
version of the generalized Hermite—Hadamard inequality and Hermite—Hadamard—Fejér
type inequalities. We have established an integral identity involving first order differentia-
bility, and we obtained more refinements of trapezium type inequality, generalized Pach-
patte type, and generalized Ostrowski type inequalities for GEH s-convex functions. We
discussed some new special cases of the obtained results which showed that the results
obtained are quite unifying and capture the results for classical harmonically convex and
exponentially harmonically convex functions at the same moment by changing the pa-
rameter values of 6 and s. The outcomes acquired by the future plan are all the more
invigorating as contrasted with results accessible in the literature given by [29, 30, 32] and
[43]. Finally, our consequences have a potential connection in fractal theory and machine
learning [2, 3]. This new concept will be opening new doors of investigation toward frac-
tal differentiations and integrations in convexity, preinvexity, fractal image processing and
camouflage in the garment industry. It is hoped that the main results of this paper will
inspire interested readers and will stimulate further research in this field.
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