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Abstract
In this paper, we first recall some well-known results on the solvability of the
generalized Lyapunov equation and rewrite this equation into the generalized Stein
equation by using Cayley transformation. Then we introduce the matrix versions of
biconjugate residual (BICR), biconjugate gradients stabilized (Bi-CGSTAB), and
conjugate residual squared (CRS) algorithms. This study’s primary motivation is to
avoid the increase of computational complexity by using the Kronecker product and
vectorization operation. Finally, we offer several numerical examples to show the
effectiveness of the derived algorithms.
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1 Introduction
In this paper, we consider the generalized Lyapunov equation as follows:

AX + XAT +
m∑

j=1

NjXNT
j + C = 0, (1)

where A, Nj ∈ R
n×n (j = 1, 2, . . . , m), m � n and C ∈ R

n×n is symmetric, X ∈ R
n×n is the

symmetric solution of (1).
The generalized Lyapunov equation (1) is related to several linear matrix equations dis-

played in Table 1. A large and growing amount of literature has considered the solution
for these equations; see [1, 2] and the references therein for an overview of developments
and methods.

The generalized Lyapunov equation (1) often appears in the context of bilinear systems
[3, 4], stability analysis of linear stochastic systems [5, 6], special linear stochastic differen-

Table 1 Several linear matrix equations

AX + XAT + C = 0 continuous-time Lyapunov matrix equation
AXDT + DXAT + C = 0 generalized continuous-time Lyapunov matrix equation
ATXA – DTXD + C = 0 generalized discrete-time Lyapunov matrix equation
AX – XD + C = 0 continuous-time Sylvester matrix equation
AXDT – X + C = 0 discrete-time Sylvester matrix equation
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tial equations [7] and other areas. For example, we discuss the origin of Eq. (1) in bilinear
systems. The bilinear system is an interesting subclass of nonlinear control systems that
naturally occurs in some boundary control dynamics [6]. The bilinear control system has
been studied by scholars for many years and has the following state space representation:

� :

⎧
⎨

⎩
ẋ(t) = Ax(t) +

∑m
j=1 Njx(t)uj(t) + Bu(t),

y(t) = Cx(t), x(0) = x0,
(2)

where t is the time variable, x(t) ∈R
n, u(t) ∈ R

m, y(t) ∈R
n are the stable, input and output

vectors, respectively, uj(t) is the jth component of u(t). B ∈R
n×m, and A, Nj, C are defined

in (1).
For the bilinear control system (2), define

P1 = eAt1 B,

Pi(t1, . . . , ti) = eAti [N1Pi–1, . . . , NmPi–1], i = 2, 3, . . . .

Using the concept of reachability in [3, 8], the reachability corresponding to (2) is

P =
∞∑

i=1

∫ ∞

0
· · ·

∫ ∞

0
PiPT

i dt1 · · ·dti,

where P is the solution of (1).
Moreover, the generalized Lyapunov equation (1) has wide applications in PDEs. Con-

sider the heat equation subjected to mixed boundary conditions [9]

xt = �x in �,

n · ∇x = u(x – 1) on �1,

x = 0 on �2,�3,�4,

(3)

where �1, �2, �3 and �4 are the boundaries of �. For example, for a simple 2 × 2 mesh,
the state vector x = [x11, x21, x12, x22]T contains the temperatures at the inner points and
the Laplacian is approximated via

�xij ≈ –
1
h2 (4xij – xi+1,j – xi,j+1 – xi–1,j – xi,j–1),

with meshsize h = 1/3. If the Robin condition is imposed on the whole boundary, then we
have

x10 ≈ x11 – hu(x11 – 1), x20 ≈ x21 – hu(x21 – 1),

x01 ≈ x11 – hu(x11 – 1), . . .
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Altogether this leads to the bilinear system

ẋ =
1
h2

⎛

⎜⎜⎜⎝

–2 1 1 0
1 –2 0 1
1 0 –2 1
0 1 1 –2

⎞

⎟⎟⎟⎠x

+
1
h

⎛

⎜⎜⎜⎝

⎛

⎜⎜⎜⎝

x11 – 1
x21 – 1

0
0

⎞

⎟⎟⎟⎠u1 +

⎛

⎜⎜⎜⎝

x11 – 1
0

x12 – 1
0

⎞

⎟⎟⎟⎠u2 +

⎛

⎜⎜⎜⎝

0
0

x21 – 1
x22 – 1

⎞

⎟⎟⎟⎠u3 +

⎛

⎜⎜⎜⎝

0
x21 – 1

0
x22 – 1

⎞

⎟⎟⎟⎠u4

⎞

⎟⎟⎟⎠

=
1
h2 Ax +

1
h
(
(A1x + b1)u1 + (A2x + b2)u2 + (A3x + b3)u3 + (A4x + b4)u4

)
, (4)

where Ej = ejeT
j with canonical unit vector ej ∈R

2, and

A =

⎛

⎜⎜⎜⎝

–2 1 1 0
1 –2 0 1
1 0 –2 1
0 1 1 –2

⎞

⎟⎟⎟⎠ , A1 = (E1 ⊗ I),

A2 = (I ⊗ E1), A3 = (E2 ⊗ I), A4 = (I ⊗ E2),

b1 = E1 ⊗ e, b1 = E1 ⊗ e, b1 = E1 ⊗ e, b1 = E1 ⊗ e, e = [1, 1].

Thus, the optimal control problem of (4) reduces to the bilinear control system (2) and we
ultimately need solve the generalized Lyapunov equation:

AX + XA +
4∑

j=1

AjXAj = –BBT .

Therefore, considering the important applications of the generalized Lyapunov equation
(1), many researchers pay much attention to study the solution for this equation in recent
years. Damm showed the direct method to solve the generalized Lyapunov equation [9].
Fan et al. transformed this equation into the generalized Stein equation by generalized
Cayley transformation and solved it using GSM [10]. Dai et al. proposed the HSS algorithm
to solve the generalized Lyapunov equation. Li et al. proposed the PHSS iterative method
for solving this equation when A is asymmetric positive definite [11]. Based on the recent
results, we mainly discuss the matrix iteration algorithms for the generalized Lyapunov
equation (1).

The rest of the paper is organized as follows. In Sect. 2, we recall some known results
on the generalized Lyapunov equation’s solvability and rewrite this equation into the gen-
eralized Stein equation by using Cayley transformation. In Sect. 3, we present the matrix
versions and variant forms of the BICR, Bi-CGSTAB, and CRS algorithms. In Sect. 4, we
offer several numerical examples to test the effectiveness of the derived algorithms. In
Sect. 5, we draw some concluding remarks.

Throughout this paper, we shall adopt the following notations. Rm×n and Z
+ stand for

the set of all m × n real matrices and positive integers. For A = (aij) = (a1, a2, . . . , an) ∈
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R
m×n, the symbol vec(A) is a vector defined by vec(A) = (aT

1 , aT
2 , . . . , aT

n )T . AT and ‖A‖
represent the transpose and 2-norm of matrix A, respectively. The symbol A ≥ 0 means
that A is symmetric positive semi-definite. For B ∈ R

m×n, the Kronecker product and inner
product of A and B are defined by A ⊗ B = (aijB) and 〈A, B〉 = tr(BT A). The open right-half
and left-half planes are denoted by C+ and C–, respectively.

2 Solvability and Cayley transformation
2.1 Solvability of the generalized Lyapunov equation
This section introduces the solvability for the generalized Lyapunov equation (1).

Denote σ (T) ∈ C by the spectrum of a linear operator T and ρ(T) = max{|λ||λ ∈ σ (T)}
by the spectral radius. Define the linear matrix operators LA and 	 : Rn×n →R

n×n by

LA = AT X + XA, 	(X) �→
m∑

j=1

NjXNT
j . (5)

Obviously, 	(X) ≥ 0 when X ≥ 0.
Therefore, using Theorem 3.9 in [6], we immediately get the generalized Lyapunov equa-

tion’s stability result.

Theorem 2.1 Let A ∈R
n×n and 	 be positive. The following conclusions are equivalent:

(a) For all Y > 0, ∃X > 0 such that LA(X) + 	(X) = –Y ;
(b) ∃Y , X > 0 such that LA(X) + 	(X) = –Y ;
(c) ∃Y ≥ 0 with (A, Y ) controllable, ∃X > 0 such that L(X) + 	(X) = –Y ;
(d) σ (LA(X) + 	(X)) ⊂C–;
(e) σ (LA(X)) ⊂C– and ρ(L–1

A (X)	(X)) < 1,
where the linear matrix operators LA and 	 are defined by (5).

Remark 2.1 For the generalized Lyapunov equation (1), we often choose C = BBT , i.e.,
C is symmetric positive semi-definite. Using Theorem 2.1, Eq. (1) has a positive definite
solution X if A is stable, (A, B) is controllable, and the norm of the Nj is sufficiently small.

2.2 Cayley transformation for (1)
In this section, we introduce Cayley transformation for the generalized Lyapunov equa-
tion.

It is well known that Cayley transformation is a link between the classical Lyapunov and
Stein equations. Fan et al. have shown that the stability of the Lyapunov and Stein equa-
tions is different. Naturally, we wonder if the stability is different and the counterparty
method has other effects. It is verified in Sect. 4 that our iteration methods are more effi-
cient after applying Cayley transformation to the generalized Lyapunov equation. We first
recall the definition of Cayley transformation.

Definition 2.1 (Cayley transformation) Let M ∈R
n×n be a skew-symmetric matrix. Then

N = (I + M)–1(I – M) is called Cayley transformation of M.

Next, we show that the generalized Lyapunov equation can be changed to the general-
ized Setin equation after Cayley transformation.
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Theorem 2.2 For the generalized Lyapunov equation (1), take the positive parameter γ

such that the matrices (γ I + A) and (γ I + AT ) are both nonsingular. Then (1) is equivalent
to the generalized Stein equation

X – ÂXÂT + 2γ

m∑

j=1

N̂jXN̂T
j + 2γ Ĉ = 0, (6)

where

Â = (γ I + A)–1(γ I – A),

N̂j = (γ I + A)–1Nj,

Ĉ = (γ I + A)–1C(γ I + A)–T .

Proof Introducing the positive parameter γ to (1), we get

(γ I + A)X
(
γ I + AT) – (γ I – A)X

(
γ I – AT) + 2γ

( m∑

j=1

NjXNT
j

)
+ 2γ C = 0. (7)

Since (γ I + A) and (γ I + AT ) are both nonsingular, premultiplying (γ I + A)–1 and postmul-
tiplying (γ I + AT )–1 on both sides to (7) yield (6). Thus we complete the proof of Theo-
rem 2.2. �

Remark 2.2 Viewing Theorem 2.2, it involves a positive parameter γ . We offer a practical
way to choose γ . Set

γ = max
1≤i≤n

aii,

then (γ I + A) and (γ I + AT ) are both nonsingular. Thus the condition of Theorem 2.2 is
satisfied. Appropriate adjustments can be made according to different situations.

Remark 2.3 Next, we show the relationship between the generalized Lyapunov equation
(1) and the generalized Stein equation (6) by using the preconditioner method of linear
systems.

By utilizing the operator vec, the generalized Lyapunov equation can be rewritten as

A1X =

(
I ⊗ A + A ⊗ I +

m∑

j=1

Nj ⊗ Nj

)
vec(X) = –vec(C).

The generalized Stein equation can be rewritten as

A2X =

(
I ⊗ I + Â ⊗ Â +

m∑

j=1

N̂j ⊗ N̂j

)
vec(X) = –2γ vec(Ĉ).

Hence, it is not difficult to derive the following relation between A1 and A2:

A2 = 2γ
[
(γ I + A) ⊗ (γ I + A)

]–1A1,
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where

Ppre =
1

2γ

[
(γ I + A) ⊗ (γ I + A)

]

is the preconditioning matrix and the corresponding generalized Stein equation is the
preconditioning system.

By Remark 2.2, the operator P can be defined as

P(X) = X – ÂXÂT + 2γ

m∑

j=1

N̂jXN̂T
j .

In Sect. 3, we apply this operator to derive the variant forms of the BICR, Bi-CGSTAB,
and CRS algorithms, respectively. The iteration methods are efficient. Numerical exam-
ples address this point in Sect. 4.

3 Iteration algorithms
This section presents the matrix versions and variant forms of the BICR, Bi-CGSTAB, and
CRS algorithms in three subsections, respectively.

3.1 BICR algorithm
The BiCR method [12] has been proposed as a generalization of the conjugate resid-
ual (CR) [13] method for nonsymmetric matrices. Recently, Abe et al. designed BiCR
for symmetric complex matrices (SCBiCR) and analyzed the factor in the loss of con-
vergence speed [14]. It is easy to see that the BICR algorithm cannot be directly used to
solve the generalized Lyapunov equation. Naturally, one can convert this matrix equation
into the linear system through Kronecker product and vectorization operators. However,
this makes the computational cost especially expensive. When the matrix order becomes
larger, as the computer memory is limited, it is hard to implement in practice.

Therefore, we need to modify the BICR algorithm and ensure that the calculation cost is
relatively cheap. In this subsection, we propose the matrix version of the BICR algorithm
(Algorithm 1). Then we show the variant version of the BICR algorithm (Algorithm 2).

Using the iteration schemes of Algorithm 1 and Algorithm 2, we can directly solve the
generalized Lyapunov equation. Further, we show the bi-orthogonal properties and con-
vergent analysis of Algorithm 1 by Theorem 3.1 and Theorem 3.2.

Theorem 3.1 For Algorithm 1, we assume that there exists a positive integer number such
that W (k) �= 0 and R(k) �= 0 for all k = 1, 2, . . . , r. Then we get

tr
(
R(v)T W (u)

)
= 0, for u, v = 1, 2, . . . , r, u < v, (8)

tr
(
S(v)T Z(u)

)
= 0, for u, v = 1, 2, . . . , r, u < v, (9)

tr
(
Z(v)T Z(u)

)
= 0, for u, v = 1, 2, . . . , r, u �= v, (10)

tr
(
W (v)T W (u)

)
= 0, for u, v = 1, 2, . . . , ru �= v. (11)

For the proof of Theorem 3.1, refer to the Appendix.
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Algorithm 1: Matrix form of the BICR algorithm
step 1: Choose initial matrices X(1) ∈R

n×n, S(1) ∈ R
n×n;

step 2: X with ‖R(k)‖ ≤ tol;
step 3: Compute R(1) = AX(1) + X(1)AT +

∑m
j=1 NjX(1)NT

j + C, U(1) = S(1),
V (1) = R(1), W (1) = AU(1) + U(1)AT +

∑m
j=1 NjU(1)NT

j ,
Z(1) = AT V (1) + V (1)A +

∑m
j=1 NT

j V (1)Nj, k = 1;
step 4: While ‖R(k)‖ > tol do:

α(k) =
tr(W (k)T R(k))
tr(W (k)T W (k))

, X(k + 1) = X(k) – α(k)U(k),

R(k + 1) = R(k) – α(k)W (k),

β(k) =
tr(Z(k)T S(k))
tr(Z(k)T Z(k))

, S(k + 1) = S(k) – β(k)Z(k),

γ (k) =
tr(W (k)T (AS(k + 1) + S(k + 1)AT +

∑m
j=1 NjS(k + 1)NT

j ))
tr(W (k)T W (k))

,

η(k) =
tr(Z(k)T (AT R(k + 1) + R(k + 1)A +

∑m
j=1 NT

j R(k + 1)Nj))
tr(Z(k)T Z(k))

,

U(k + 1) = S(k + 1) – γ (k)U(k), V (k + 1) = R(k + 1) – η(k)V (k),

W (k + 1) = AS(k + 1) + S(k + 1)AT +
m∑

j=1

NjS(k + 1)NT
j – γ (k)W (k),

Z(k + 1) = AT R(k + 1) + R(k + 1)A +
m∑

j=1

NT
j R(k + 1)Nj – η(k)Z(k).

Theorem 3.2 For Algorithm 1, the relative residual error has the following property:

∥∥R(k + 1)
∥∥2 ≤ ∥∥R(k)

∥∥2.

Proof Using Theorem 3.1, we have

∥∥R(k + 1)
∥∥2 = tr

(
R(k + 1)T R(k + 1)

)

= tr
((

R(k) – α(k)W (k)
)T(R(k) – α(k)W (k)

))

=
∥∥R(k)

∥∥2 + α(k)2∥∥W (k)
∥∥2 – 2α(k) tr

(
W (k)T R(k)

)

=
∥∥R(k)

∥∥2 – α(k) tr
(
W (k)T R(k)

)

=
∥∥R(k)

∥∥2 –
tr(W (k)T R(k))2

tr(W (k)T W (k))

≤ ∥∥R(k)
∥∥2.

Hence, the proof of Theorem 3.2 is completed. �
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Algorithm 2: The variant form of the BICR algorithm
Input: Choose initial matrices X(1) ∈R

n×n, S(1) ∈R
n×n;

Output: X with ‖R(k)‖ ≤ tol;
step 1: Compute R(1) = P(X(1)) – 2γ Ĉ, U(1) = S(1), V (1) = R(1),
W (1) = AU(1) + U(1)AT +

∑m
j=1 NjU(1)NT

j , Z(1) = PT (V (1)), k = 1;
step 2: While ‖R(k)‖ > tol do:

α(k) =
tr(W (k)T R(k))
tr(W (k)T W (k))

, X(k + 1) = X(k) – α(k)U(k),

R(k + 1) = R(k) – α(k)W (k),

β(k) =
tr(Z(k)T S(k))
tr(Z(k)T Z(k))

, S(k + 1) = S(k) – β(k)Z(k),

γ (k) =
tr(W (k)T (P(S(k + 1))))

tr(W (k)T W (k))
, U(k + 1) = S(k + 1) – γ (k)U(k),

η(k) =
tr(Z(k)T (P�(R(k + 1))))

tr(Z(k)T Z(k))
, V (k + 1) = R(k + 1) – η(k)V (k),

W (k + 1) = P
(
S(k + 1)

)
– γ (k)W (k), Z(k + 1) = P�(R(k + 1)

)
– η(k)Z(k).

Remark 3.1 In terms of Theorem 3.2, the property ‖R(k + 1)‖ ≤ ‖R(k)‖ ensures that Al-
gorithm 1 possesses fast and smooth convergence.

3.2 Bi-CGSTAB algorithm
Sonneveld [15] has shown a variant of BiCG, referred to the conjugate gradient squared
(CGS). Van der Vorst [16] has derived one of the most successful variants of BiCG, known
as the Bi-CGSTAB method. The Bi-CGSTAB algorithm is an effective algorithm for solv-
ing large sparse linear systems [16, 17]. Chen et al. [18] proposed a flexible version of the
BiCGStab algorithm for solving the linear system. It is easy to see that the Bi-CGSTAB
algorithm cannot be directly used to solve the generalized Lyapunov equation. Similarly,
we need to modify the Bi-CGSTAB algorithm to the matrix version. The matrix version of
the Bi-CGSTAB algorithm is summarized in Algorithm 3. The variant form of the BICR
algorithm is shown in Algorithm 4.

Viewing the iteration schemes, we can be seen that Algorithm 3 is a simple matrix
form of the Bi-CGSTAB algorithm. Hence, Algorithm 3 has the same properties as the
Bi-CGSTAB algorithm. Algorithm 4 is an improved version of the Bi-CGSTAB algorithm,
which has high computing efficiency. This point has been addressed by numerical exam-
ples in Sect. 4.

3.3 CRS algorithm
Zhang et al. proposed the conjugate residual squared (CRS) method in [19, 20] to solve
the linear system. The CRS algorithm is mainly aimed to avoid using the transpose of A
in the BiCR algorithm and get faster convergence for the same computational cost [19].
Recently, Ma et al. [21] used the matrix CRS iteration method to solve a class of coupled
Sylvester-transpose matrix equations. Later, they extended two mathematical equivalent
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Algorithm 3: Matrix form of the Bi-CGSTAB algorithm
step 1: Choose initial matrix X(1);
step 2: Compute R(1) = –C – AX(1) – X(1)AT –

∑m
j=1 NjX(1)NT

j , pick arbitrary matrix
R̃(1) (e.g. R̃(1) = R(1));
step 3: Compute V (1) = P(1) = 0, ρ(1) = α(1) = ω(1) = 1;
step 4: While ‖R(k)‖ > tol do:

ρ(k + 1) =
〈
R(k), R̃(1)

〉
, β(k + 1) =

(
ρ(k + 1)

ρ(k)

)(
α(k)
ω(k)

)
,

P(k + 1) = R(k) + β(k + 1)
(
P(k) – ω(k)V (k)

)
,

V (k + 1) = AP(k + 1) + P(k + 1)AT +
m∑

j=1

NjP(k + 1)NT
j ,

σ (k + 1) =
〈
V (k + 1), R̃(1)

〉
,

α(k + 1) =
ρ(k + 1)
σ (k + 1)

, S(k + 1) = R(k) – α(k + 1)V (k + 1),

T(k + 1) = AS(k + 1) + S(k + 1)AT +
m∑

j=1

NjS(k + 1)NT
j ,

ω(k + 1) =
〈S(k + 1), T(k + 1)〉
〈T(k + 1), T(k + 1)〉 , R(k + 1) = S(k + 1) – ω(k + 1)T(k + 1),

X(k + 1) = X(k) + α(k + 1)P(k + 1) + ω(k + 1)S(k + 1).

Algorithm 4: The variant form of the Bi-CGSTAB algorithm
step 1: Choose initial matrix X(1);
step 2: Compute R(1) = P(X(1)) – 2γ Ĉ, pick arbitrary matrix R̃(1) (for example
R̃(1) = R(1));
step 3: Set V (1) = P(1) = 0, ρ(1) = α(1) = ω(1) = 1;
step 4: While ‖R(k)‖ > tol do:

ρ(k + 1) =
〈
R(k), R̃(1)

〉
, β(k + 1) =

(
ρ(k + 1)

ρ(k)

)(
α(k)
ω(k)

)
,

P(k + 1) = R(k) + β(k + 1)
(
P(k) – ω(k)V (k)

)
, V (k + 1) = P

(
P(k + 1)

)
,

σ (k + 1) =
〈
V (k + 1), R̃(1)

〉
, α(k + 1) =

ρ(k + 1)
σ (k + 1)

,

S(k + 1) = R(k) – α(k + 1)V (k + 1), T(k + 1) = P
(
S(k + 1)

)
,

ω(k + 1) =
〈S(k + 1), T(k + 1)〉
〈T(k + 1), T(k + 1)〉 , R(k + 1) = S(k + 1) – ω(k + 1)T(k + 1),

X(k + 1) = X(k) + α(k + 1)P(k + 1) + ω(k + 1)S(k + 1).
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forms of the CRS algorithm to solve the periodic Sylvester matrix equation by applying
Kronecker product and vectorization operator [21]. In fact, in many cases, the CRS algo-
rithm converges twice as fast as the BiCR algorithm [22, 23]. The BiCR method can be
derived from the preconditioned conjugate residual (CR) algorithm [24]. In exact arith-
metic, they terminate after a limited number of iterations. In short, we can expect that the
CRS algorithm will work well in many cases. The numerical examples in Sect. 4 are shown
to address this point.

It is easy to see that the CRS algorithm cannot be directly used to solve the generalized
Lyapunov equation. Similarly, we need to modify the CRS algorithm to the matrix ver-
sion. The matrix version of the CRS algorithm is summarized in Algorithm 5. The variant
version of the CRS algorithm is shown in Algorithm 6.

Viewing the iteration schemes, it can be seen that Algorithm 5 is a simple matrix form
of the CRS algorithm. Hence, Algorithm 5 has the same properties as the CRS algorithm.
Algorithm 6 is the variant version of the CRS algorithm, which has high computing ef-
ficiency. The numerical examples have verified the validity of the iteration algorithms in
Sect. 4.

Remark 3.2 The BICGSTAB and CRS algorithms have an orthogonality property similar
to that of BICR and thus are omitted.

The convergence result of Algorithms 2 to 6 has been summarized in Theorem 3.3.

Theorem 3.3 For the generalized Lyapunov equation (1), if Algorithms 2 to 6 do not break
down by zero division, for any initial matrix X(1) ∈ R

n×n, Algorithms 2 to 6 can compute
the solution of (1) within a finite number of iterations in the absence of the roundoff error.

Algorithm 5: Matrix form of the CRS algorithm
step 1: Choose X(1), compute R(1) = –C – AX(1) – X(1)AT –

∑m
j=1 NjX(1)NT

j ;
step 2: Pick a matrix R(1)∗, 〈AR(1) + R(1)AT +

∑m
j=1 NjR(1)NT

j , R∗
1〉 �= 0,

R(1)∗ = P(1) = U(1) = R(1), S = AT R(1)∗ + R(1)∗A +
∑m

j=1 NT
j R(1)∗Nj, k = 1;

step 3: While ‖R(k)‖ > tol;

V (k) = AP(k) + P(k)AT +
m∑

j=1

NjP(k)NT
j , α(k) =

〈R(k), S〉
〈V (k), S〉 ,

Q(k) = U(k) – α(k)V (k), X(k + 1) = X(k) + α(k)
(
U(k) + Q(k)

)
,

W (k) = A
(
U(k) + Q(k)

)
+
(
U(k) + Q(k)

)
AT +

m∑

j=1

Nj
(
U(k) + Q(k)

)
NT

j ,

R(k + 1) = R(k) – α(k)W (k), β(k) =
〈R(k + 1), S〉

〈R(k), S〉 ,

U(k + 1) = R(k + 1) + β(k)Q(k), P(k + 1) = U(k + 1) + β(k)
(
Q(k) + β(k)P(k)

)
.
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Algorithm 6: The variant form of the CRS algorithm

step 1: Choose X(1), compute R(1) = P(X(1)) – 2γ Ĉ;
step 2: Pick a matrix R(1)∗, 〈AR(1) + R(1)AT +

∑m
j=1 NjR(1)NT

j , R∗
1〉 �= 0,

R(1)∗ = P(1) = U(1) = R(1), S = P�(R(1)∗), k = 1;
step 3: While ‖R(k)‖ > tol:

V (k) = P(Pk), α(k) =
〈R(k), S〉
〈V (k), S〉 ,

Q(k) = U(k) – α(k)V (k), X(k + 1) = X(k) + α(k)
(
U(k) + Q(k)

)
,

W (k) = P–1(U(k) + Q(k)
)
, R(k + 1) = R(k) – α(k)W (k),

β(k) =
〈R(k + 1), S〉

〈R(k), S〉 , U(k + 1) = R(k + 1) + β(k)Q(k),

P(k + 1) = U(k + 1) + β(k)
(
Q(k) + β(k)P(k)

)
.

4 Numerical experiments
In this section, we give several examples to show the numerical feasibility and effective-
ness of Algorithm 1 (BICR), Algorithm 3 (Bi-CGSTAB algorithm), Algorithm 5 (CRS algo-
rithm) and their improved algorithms, including Algorithm 2 (Var-BICR algorithm), Algo-
rithm 4 (Var-Bi-CGSTAB algorithm), Algorithm 6 (Var-CRS algorithm). Set tol = 1.0e – 8.
The numerical behavior of iteration methods will be listed with respect to the number of
iteration steps (ITs), the computing time (CPU)(s) and relative residual error (Error). All
experiments are performed in Matlab (version R2017a) with double precision on a per-
sonal computer with 3.20 GHz central processing unit (Inter(R) Core(TM) i5-6500 CPU),
6.00G memory and Windows 7 operating system.

Example 4.1 Consider the generalized Lyapunov equation (1) with

A = (aij)n×n =

⎧
⎪⎪⎨

⎪⎪⎩

1.6 i = j,

0.3 |i – j| = 1,

0 else,

N = (nij)n×n =

⎧
⎪⎪⎨

⎪⎪⎩

0.05 i = j,

–0.01 |i – j| = 1,

0 else,

B = –A–1

(
0n1×n1 0n1×n2

0n2×n1 In2

)
A–1, C = BBT , Nj = 0.1 × j × N (j = 1, . . . , 5).

Set the initial value

X(1) = 0, S(1) = I.

We use Table 2 to show the error analysis for this example.
Moreover, when n = 600, we use Fig. 1 to show the error analysis of Algorithms 1 to 6.
By comparing with these algorithms, it is clear that the algorithms’ efficiency will greatly

be improved after using a Cayley transformation. The variant versions of the Bi-CGSTAB
and CRS algorithms have the best efficiency.
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Table 2 Numerical results for Example 4.1

Algorithm n ITs Error CPU n ITs Error CPU

BICR 400 112 7.8882e-7 142.7510 600 112 8.0506e-7 667.4057
Var-BICR 400 14 4.4326e-8 19.8881 600 14 4.4408e-8 83.3214
CRS 400 15 3.2668e-9 13.4433 600 15 3.2507e-9 52.5653
Var-CRS 400 5 2.6410e-9 3.2538 600 5 2.6351e-11 16.3354
Bi-CGSTAB 400 16 9.5717e-8 10.1564 600 16 9.5980e-8 55.0818
Var-Bi-CGSTAB 400 4 6.8168e-9 2.4104 600 4 6.8092e-9 11.6166

Figure 1 Comparison between the residual error of Algorithms 1 to 6 for Example 4.1

Example 4.2 Let P be the block tridiagonal sparse m2 × m2 matrix, given by a finite dif-
ference disretization of the heat equation (3) on an m × m-mesh, i.e.,

P = I ⊗ Tm + Tm ⊗ I ∈R
n×n, Tk =

⎡

⎢⎢⎢⎢⎢⎣

–2 1

1 –2
. . .

. . . . . . 1
1 –2

⎤

⎥⎥⎥⎥⎥⎦
.

If the Robin condition is imposed on the whole boundary, then we have

A = P + E1 ⊗ I + I ⊗ E1 + Em ⊗ I + I ⊗ Em,

where Ej = ejeT
j with canonical unit vector ej. The coefficient matrices Nj and the columns

bj of B corresponding to the left, upper, lower, and right boundaries are given by

N1 = E1 ⊗ I, N2 = I ⊗ E1, N3 = Em ⊗ I, N4 = I ⊗ Em,

b1 = E1 ⊗ e, b2 = e ⊗ E1, b3 = Em ⊗ e, b4 = e ⊗ Em.

Then the above heat equation’s optimal control problem reduces to solving the generalized
Lyapunov equation (1).
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Table 3 Numerical results for Example 4.2

Algorithm n ITs Error CPU n ITs Error CPU

BICR 400 112 3.7523e-6 48.5777 900 110 7.3974e-6 325.2917
Var-BICR 400 57 1.1463e-7 30.7176 900 56 7.3974e-6 167.4174
CRS 400 25 8.9720e-8 6.8191 900 23 8.8132e-9 31.8204
Var-CRS 400 15 7.0257e-9 2.3428 900 13 5.4997e-9 16.4174
Bi-CGSTAB 400 26 9.8350e-8 5.1010 900 24 9.6342e-8 45.3461
Var-Bi-CGSTAB 400 8 7.1782e-8 1.6054 900 7 9.0689e-8 10.1155

Figure 2 Comparison between the residual error of Algorithms 1 to 6 for Example 4.2

We use Table 3 to show the residual error analysis. It is obvious that the effect of the
Var-Bi-CGSTAB algorithm is optimal compared with other algorithms.

Further, we use Fig. 2 to show the error analysis when n = 64. It can be seen that the
variant versions of the algorithms perform better.

Example 4.3 Consider the RC trapezoidal circuit with m resistors with g extensions

⎧
⎨

⎩
ẋ(t) = Ax(t) + Nx(t)u(t) + bu(t),

y(t) = cT x(t).

Since the original system is nonlinear, it is linearized by the second-order Carleman bilin-
ear method to obtain a system of order n = m + m2.

The matrices A, N and b can be referred to [25]. The corresponding generalized Lya-
punov equation is

AX + XAT + NXNT + C = 0.

We use Table 4 to show the residual error analysis. Further, we use Fig. 3 to show the
error analysis when n = 8. It can be seen that the Var-Bi-CGSTAB algorithm performs
best.
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Table 4 Numerical results for Example 4.3

Algorithm n ITs Error CPU n ITs Error CPU

CRS 110 68 2.7672e-9 0.4970 420 81 4.2339e-7 11.9000
var-CRS 110 27 9.8696e-6 0.1882 420 41 6.3712e-9 7.4257
Bi-CGSTAB 110 52 4.7429e-8 0.3558 420 75 6.1473e-8 12.7971
Var-Bi-CGSTAB 110 32 8.1503e-8 0.2264 420 33 4.9993e-8 5.6614

Figure 3 Comparison between the residual error of Algorithms 3 to 6 for Example 4.3

Remark 4.1 From the three numerical examples above, it can be seen that the variant
algorithms proposed in this paper will greatly improve the operating efficiency. In other
words, the conjugate gradient-like methods are more efficient than the generalized Setin
equation.

5 Conclusions
This paper has proposed the matrix versions of the BICR algorithm, Bi-CGSTAB algo-
rithm, and CRS algorithm to solve the generalized Lyapunov equation (1). Then we have
introduced the variant versions of these three algorithms. Finally, we have provided nu-
merical examples to illustrate the feasibility and effectiveness of the derived algorithms.

Appendix: Proof of Theorem 3.1
We prove Theorem 3.1 by mathematical induction to v and u. It is enough to prove (8)–
(11) for 1 ≤ u < v ≤ r.

(i) If v = 2, u = 1, then we have

tr
(
R(2)T W (1)

)
= tr

((
R(1) – α(1) – W (1)

)T W (1)
)

= tr
(
R(1)T W (1)

)
– tr

(
W (1)T R(1)

)

= 0,

tr
(
S(2)T Z(1)

)
= tr

((
S(1) – β(1)Z(1)

)T Z(1)
)
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= tr
(
S(1)T Z(1)

)
– tr

(
Z(1)T S(1)

)

= 0,

tr
(
Z(2)T Z(1)

)

= tr

((
AT R(2) + R(2)A +

m∑

j=1

NT
j R(2)Nj – η(1)Z(1)

)T

Z(1)

)

= tr
((

AT R(2)
)T Z(1)

)
+ tr

((
R(2)A

)T Z(1)
)

+ tr

(( m∑

j=1

NT
j R(2)Nj

)T

Z(1)

)

– tr
(
Z(1)T(AT R(2)

))
– tr

(
Z(1)T(R(2)A

))
– tr

(
Z(1)T

( m∑

j=1

NT
j R(2)Nj

))

= 0,

and

tr
(
W (2)T W (1)

)
= tr

((
AS(2) + S(2)AT +

m∑

j=1

NjS(2)NT
j – γ (1)W (1)

)T

W (1)

)

=

((
AS(2) + S(2)AT +

m∑

j=1

NjS(2)NT
j

)T

W (1)

)

– tr

(
W (1)T

(
AS(2) + S(2)AT +

m∑

j=1

NjS(2)NT
j

))

= 0.

Thus when u = 1, v = 2, (8)–(11) is true.
(ii) Now for u < w < r, we assume that

tr
(
R(w)T W (u)

)
= 0,

tr
(
S(w)T Z(u)

)
= 0,

tr
(
Z(w)T Z(u)

)
= 0,

tr
(
W (w)T W (u)

)
= 0.

(iii) Next, we will prove (8)–(11) for w + 1. Using the induction hypothesis, we get

tr
(
R(w + 1)T W (u)

)
= tr

((
R(w) – α(w)W (w)

)T W (u)
)

= 0

tr
(
S(w + 1)T Z(u)

)
= tr

((
S(w) – β(w)Z(w)

)T Z(u)
)

= 0,

and

tr
(
Z(w + 1)T Z(u)

)

= tr

((
AT R(w + 1) + R(w + 1)A +

m∑

j=1

NT
j R(w + 1)Nj – η(w)Z(w)

)T

Z(u)

)
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=
1

β(u)

[
tr
(
R(w + 1)T(A

(
S(u) – S(u + 1)

)))

+ tr
(
R(w + 1)T(S(u) – S(u + 1)AT))

+ tr

(
R(w + 1)T

( m∑

j=1

NT
j
(
S(u) – S(u + 1)

)
Nj

))]

=
1

β(u)
[
tr
(
R(w + 1)T(W (u) + γ (u – 1)W (u – 1)

))

– tr(R(w + 1)T(W (u + 1) + γ (u)W (u)
)]

= –
1

β(u)
[
tr
(
R(w + 1)T W (u + 1)

)]
, (12)

tr
(
W (w + 1)T W (u)

)

= tr

((
AS(w + 1) + S(w + 1)AT +

m∑

j=1

NjS(w + 1)NT
j

– γ (w)W (w)

)T

w(u)

)

= tr
(
S(w + 1)T(AS(w + 1)

)T) + tr
(
S(w + 1)T(S(w + 1)AT)T)

+ tr

(
S(w + 1)T

( m∑

j=1

NjS(w + 1)NT
j

)T)

=
1

α(u)

[
tr
(
S(w + 1)T(A

(
R(u) – R(u + 1)

)))

+ tr
(
S(w + 1)T(R(u) – R(u + 1)AT))

+ tr

(
S(w + 1)T

( m∑

j=1

NT
j
(
R(u) – R(u + 1)

)
Nj

))]

=
1

α(u)
[tr
(
S(w + 1)T(Z(u) + η(u – 1)Z(u – 1)

)
– Z(u + 1) – η(u)Z(u)

)

= –
1

α(u)
[
tr
(
S(w + 1)T Z(u + 1)

)]
. (13)

For u = w, again from the induction hypothesis we can obtain

tr
(
R(w + 1)T W (w)

)
= tr

((
R(w) – α(w)W (w)T)W (w)

)
,

tr
(
R(w)T W (w)

)
– tr

(
W (w)T R(w)

)
= 0,

tr
(
S(w + 1)T Z(w)

)
= tr

((
S(w) – β(w)Z(w)

)T Z(w)
)

= tr
(
S(w)T Z(w)

)
– tr

(
Z(w)T S(w)

)

= 0,
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and

tr
(
Z(w + 1)T Z(w)

)
= tr

((
AT R(w + 1) + R(w + 1)A

+
m∑

j=1

NT
j R(w + 1)Nj – η(w)Z(w)

)T

Z(w)

)

= tr
((

AT R(w + 1)
)T Z(w)

)
+ tr

((
R(w + 1)A

)T Z(w)
)

+ tr

(( m∑

j=1

NT
j R(w + 1)Nj

)T

Z(w)

)

– tr
(
Z(w)T(AT R(w + 1)

))
– tr

(
Z(w)T(R(w + 1)A

))

– tr

(
Z(w)T

( m∑

j=1

NT
j R(w + 1)Nj

))

= 0,

tr
(
W (w + 1)T W (w)

)

= tr

((
AS(w + 1) + S(w + 1)AT

+
m∑

j=1

NjS(w + 1)NT
j – γ (w)W (w)

)T

W (w)

)

=

((
AS(w + 1) + S(w + 1)AT +

m∑

j=1

NjS(w + 1)NT
j

)T

W (w)

)

– tr

(
W (w)T

(
AS(w + 1) + S(w + 1)AT +

m∑

j=1

NjS(w + 1)NT
j

))

= 0.

Noting that tr(Z(w)T Z(u)) = 0, tr(R(w + 1)T W (w)) = 0 with (12) we deduce that

tr
(
Z(w + 1)T Z(u)

)
= 0.

Similarly from tr(W (w)T W (u)) = 0, tr(S(w)T Z(w)) = 0 and (13), it can be seen that

tr
(
W (w + 1)T W (u)

)
= 0.

Hence, (8)–(11) hold true for w+1. Using mathematical induction, we complete the proof.
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