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1 Introduction and outline
Denote by N the set of natural numbers with N0 = N∪ {0}. For an indeterminate x, define
the rising and falling factorials by (x)0 = 〈x〉0 ≡ 1 and

(x)n = x(x + 1) · · · (x + n – 1) for n ∈N,

〈x〉n = x(x – 1) · · · (x – n + 1) for n ∈ N.

The harmonic numbers of higher order are given by

H (λ)
0 = 1 and H (λ)

n =
n∑

k=1

1
kλ

for n,λ ∈N.

In order to reduce lengthy expressions, we shall employ the notations of elementary and
complete symmetric functions. For a finite set S of real numbers, we define these functions
by �0(x|S) = �0(x|S) ≡ 1 and

�n(x|S) =
∑

∑
α∈S kα=n

0≤kα≤1

∏

α∈S

1
(x + α)kα

for n ∈ N, (1)

�n(x|S) =
∑

∑
α∈S kα=n

0≤kα≤n

∏

α∈S

1
(x + α)kα

for n ∈N. (2)
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We shall also need the signless Stirling numbers of the first kind (see [6]) which are deter-
mined by the connection coefficient of expanding the shifted factorials into monomials

(y)n =
n∑

k=0

[
n
k

]
yk . (3)

There exist numerous summation formulae involving harmonic numbers (cf. [1–3, 7, 8]).
In a recent paper [9], Xi and Luo proposed the following two open problems.

Problem I Let x be an indeterminate. For m, n ∈ N0 with m > n, how to calculate the
combinatorial sums

n∑

k=0

(–1)k
(

n
k

)(
m + k

k

)
and

n∑

k=0

(–1)k
(

n
k

)(
m + k

k

)
x

x + k
?

Problem II Let x be an indeterminate. For m, n,λ,ρ ∈ N0, what are the combinatorial
sums

n∑

k=0

(–1)k
(

n
k

)(
m + k

k

)(
x

x + k

)λ

and
n∑

k=0

(–1)k
(

n
k

)(
m + k

k

){
H (λ)

ρ+k – H (λ)
k

}
?

The first binomial sum in Problem I can easily be evaluated by the Chu–Vandermonde
convolution formula as follows:

n∑

k=0

(–1)k
(

n
k

)(
m + k

k

)
=

n∑

k=0

(
n

n – k

)(
–m – 1

k

)

=
(

n – m – 1
n

)
= (–1)n

(
m
n

)
.

As the primary motivation, the aim of the present paper is to resolve these problems and
evaluate the remaining three sums explicitly in the following theorems.

Theorem 1 Let x be an indeterminate. Then for m, n ∈N0, the following algebraic identity
holds:

n!
(x)n+1

(
m – x

m

)
=

n∑

k=0

(–1)k

x + k

(
n
k

)(
m + k

k

)

+
m–n∑

k=1

(–1)n+k
(

m
n + k

)
(x + n + 1)k–1

(n + 1)k
.

We remark that when m > n, this theorem evaluates the second sum in Problem I by
determining the polynomial part of the rational function explicitly as in the last line, which
vanishes for m ≤ n, instead.
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Theorem 2 Let x be an indeterminate. Then for m, n,λ ∈N0, the following algebraic iden-
tity holds:

n∑

k=0

(
n
k

)(
m + k

k

)
(–1)k

(x + k)λ

=
n!

(x)n+1

(
m – x

m

) λ∑

k=1

�k–1(–x|[1, m])
(k – 1)!

�λ–k
(
x|[0, n]

)

+
m–n∑

k=1

(–1)n+k+λ

(λ – 1)!

(
m

n + k

)
(x + n + 1)k–1

(n + 1)k
�λ–1

(
x + n|[1, k – 1]

)
.

Theorem 3 Let x be an indeterminate. Then for m, n,λ,ρ ∈ N0, the following algebraic
identity holds:

n∑

k=0

(–1)k
(

n
k

)(
m + k

k

){
H (λ)

ρ+k – H (λ)
k

}

=
n!
m!

λ∑

k=1

m∑

j=1

k∑

i=1

(–1)i+j

(j)n+1

[
j
i

][
m – j + 1

k – i

]
�λ–k(j|[0, n])

(k – 1)!

+
λ∑

k=1

ρ∑

j=m+1

n!
(j)n+1

�λ–k(j|[0, n])
(k – 1)!

(
m – j

m

)
�k–1

(
–j|[1, m]

)

+
m–n∑

k=1

ρ∑

j=1

(–1)n+k+λ

(λ – 1)!

(
m

n + k

)
(j + n + 1)k–1

(n + 1)k
�λ–1

(
j + n|[1, k – 1]

)
.

The rest paper will be organized as follows. In the next section, we shall prove Theorem 1
by determining explicitly the polynomial part of a rational function when its numerator
degree is greater than that of the denominator. Then Theorems 2 and 3 will be shown in
Sect. 3 by establishing two analytical formulae of the derivatives of higher order for a poly-
nomial function of the rising factorial and its reciprocal. The informed reader will notice
that by employing symmetric functions � and � , several involved expressions become
simpler than those appearing in [9], where the Bell polynomials were employed.

2 Proof of Theorem 1
Observe that the rational function below can be decomposed into partial fractions

n!
(x)n+1

(
m – x

m

)
= Pm

n (x) +
n∑

k=0

Ak

x + k
,

where Pm
n (x) is a polynomial of degree m – n – 1 in x which reduces to zero when m ≤ n,

and the coefficients Ak are determined by the limits

Ak = lim
x→–k

(x + k)
{

n!
(x)n+1

(
m – x

m

)}
= (–1)k

(
n
k

)(
m + k

m

)
.
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Therefore, we have found the equality

n!
(x)n+1

(
m – x

m

)
= Pm

n (x) +
n∑

k=0

(–1)k

x + k

(
n
k

)(
m + k

k

)
. (4)

By scaling down m and then making use of

m – x
m

=
m + k

m
–

k + x
m

,

we can rewrite the last equality as

n!
(x)n+1

(
m – x

m

)

=
m – x

m
× n!

(x)n+1

(
m – 1 – x

m – 1

)

=
m – x

m

{
Pm–1

n (x) +
n∑

k=0

(–1)k

x + k

(
n
k

)(
m – 1 + k

k

)}

=
m – x

m
Pm–1

n (x) +
n∑

k=0

(–1)k

x + k

(
n
k

)(
m + k

k

)
–

n∑

k=0

(–1)k

m

(
n
k

)(
m – 1 + k

k

)
.

Evaluating the last sum by means of the Chu–Vandemonde formula and then comparing
the resultant expression with (4), we get the following recurrence relation:

Pm
n (x) =

m – x
m

Pm–1
n (x) –

(–1)n

m

(
m – 1

n

)
. (5)

In order to find an explicit expression for Pm
n (x), let Qm := Pm+n

n (x). Then the equality
corresponding to (5) becomes

Qm =
m + n – x

m + n
Qm–1 –

(–1)n

m + n

(
m + n – 1

n

)
. (6)

It is routine to figure out the initial values Q0 = 0 and Q1 = (–1)n+1

n+1 . Then we can manipulate
the generating function

Q(y) :=
∞∑

m=1

Qmym+n

=
∞∑

m=1

(
1 –

x
m + n

)
Qm–1ym+n

–
∞∑

m=1

(–1)n
(

m + n – 1
n

)
ym+n

m + n
.

By differentiating the last equation with respect to y,

Q′(y) =
d
dy

{
yQ(y)

}
– xQ(y) –

∞∑

m=1

(–1)n
(

m + n – 1
n

)
ym+n–1,
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and then evaluating the binomial series on the right, we find, after some simplification,
that Q(y) satisfies the following differential equation:

(1 – y)Q′(y) – (1 – x)Q(y) =
yn

(y – 1)n+1 . (7)

It is trivial to check that the corresponding homogeneous equation

Q′(y)
Q(y)

=
1 – x
1 – y

has the binomial solution

Q(y) = �(1 – y)x–1 (8)

where � is an arbitrary constant. When � := �(y) is considered as a function of y, substi-
tuting the above solution into (7) gives rise to

�′(y) = (–1)n+1yn(1 – y)–x–n–1.

Therefore, we have the integral representation

�(y) = (–1)n+1
∫ y

0
Tn(1 – T)–x–n–1 dT .

Define for simplicity

Jn :=
∫ y

0
Tn(1 – T)–x–n–1 dT with J0 =

(1 – y)–x – 1
x

.

According to integration by parts, we can calculate Jn as follows:

Jn =
∫ y

0
Tn(1 – T)–x–n–1 dT =

yn

x + n
(1 – y)–x–n –

n
x + n

Jn–1

=
yn

x + n
(1 – y)–x–n –

nyn–1

〈x + n〉2
(1 – y)1–x–n +

〈n〉2

〈x + n〉2
Jn–2.

By means of the induction principle, we can show that

Jn =
n–1∑

k=0

(–1)k〈n〉k

〈x + n〉k+1
yn–k(1 – y)k–x–n +

(–1)n〈n〉n

〈x + n〉n
J0

=
n∑

k=0

(–1)k〈n〉k

〈x + n〉k+1
yn–k(1 – y)k–x–n +

(–1)n+1n!
(x)n+1

,

which is equivalent to the expression

�(y) =
n!

(x)n+1
–

n∑

k=0

(–1)n+k〈n〉k

〈x + n〉k+1
yn–k(1 – y)k–x–n.
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Substituting this into (8), we obtain the explicit generating function

Q(y) =
n!

(x)n+1
(1 – y)x–1 –

n∑

k=0

(–1)n+k〈n〉k

〈x + n〉k+1
yn–k(1 – y)k–1–n.

Extracting the coefficient of ym+n across the last equation yields

Qm =
[
ym+n]Q(y) =

(
m + n – x

m + n

)
n!

(x)n+1
–

n∑

k=0

(–1)n+k〈n〉k

〈x + n〉k+1

(
m + n
n – k

)
.

By reformulating the last sum with respect to k as

n∑

k=0

(
m + n
n – k

)
(–1)n–k〈n〉k

〈x + n〉k+1

=
n!

(x)n+1

n∑

k=0

(
m + n
m + k

)(
–x

n – k

)

=
n!

(x)n+1

{ n∑

k=–m

(
m + n
m + k

)(
–x

n – k

)
–

–1∑

k=–m

(
m + n
m + k

)(
–x

n – k

)}

=
n!

(x)n+1

(
m + n – x

m + n

)
–

n!
(x)n+1

m∑

k=1

(
m + n
m – k

)(
–x

n + k

)
,

we find finally the binomial expression

Qm =
n!

(x)n+1

m∑

k=1

(
m + n
m – k

)(
–x

n + k

)
=

m∑

k=1

(–1)n+k
(

m + n
n + k

)
(x + n + 1)k–1

(n + 1)k
.

This gives consequently the desired formula stated in Theorem 1:

Pm
n (x) = Qm–n(x) =

m–n∑

k=1

(–1)n+k
(

m
n + k

)
(x + n + 1)k–1

(n + 1)k
.

3 Proofs of Theorems 2 and 3
For the derivative operator D with respect to x, we have the following analytical formulae
of higher order derivatives:

Dn
∏

α∈S

(x + α) = �n(x|S)
∏

α∈S

(x + α), (9)

Dn
∏

α∈S

1
x + α

= �n(x|S)
n!(–1)n

∏
α∈S(x + α)

. (10)

The first one in (9) can be evaluated easily by induction on n. In order to prove the
second one in (10), define

R(x) :=
∏

α∈S

1
x + α

and DnR(x) = R(x)Gn, (11)
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where the function Gn remains to be determined with the initial values

G0 = 1 and G1 = –�1(x|S).

Then by making use of the Leibniz rule, we have

Dλ+1R(x) = –Dλ
{

R(x)�1(x|S)
}

= –
λ∑

k=0

(
λ

k

)
Dλ–kR(x)Dk�1(x|S)

= –R(x)
λ∑

k=0

(
λ

k

)
Gλ–kDk�1(x|S),

which leads us to the binomial recursion

Gλ+1 = –
λ∑

k=0

(
λ

k

)
Gλ–kDk�1(x|S). (12)

In order to find an explicit expression for Gλ, we examine the exponential generating
function defined by

G(y) :=
∞∑

λ=0

yλ

λ!
Gλ.

According to (12), its derivative with respect to y can be expressed as

G′(y) =
∞∑

λ=0

yλ

λ!
Gλ+1 = –

∞∑

λ=0

yλ

λ!

λ∑

k=0

(
λ

k

)
Gλ–kDk�1(x|S)

= –
∞∑

k=0

yk

k!
Dk�1(x|S)

∞∑

λ=k

yλ–k

(λ – k)!
Gλ–k .

We therefore get the differential equation

G′(y) = –G(y)
∞∑

k=0

yk

k!
Dk�1(x|S)

whose solution is given by the exponential function

G(y) = exp

{
–

∫ y

0

∞∑

k=0

yk

k!
Dk�1(x|S) dy

}
= exp

{
–

∞∑

k=0

yk+1

(k + 1)!
Dk�1(x|S)

}
.
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Evaluating the last sum with respect to k explicitly as

∞∑

k=0

yk+1

(k + 1)!
Dk�1(x|S) =

∞∑

k=0

(–1)k

k + 1
∑

α∈S

yk+1

(x + α)k+1

=
∞∑

k=1

(–1)k–1

k
∑

α∈S

yk

(x + α)k

=
∑

α∈S

ln

(
1 +

y
x + α

)
,

we find the simplified generating function

G(y) =
∏

α∈S

(
1 +

y
x + α

)–1

. (13)

By extracting the coefficient of yn, we confirm the formula (10) as follows:

Gn = n!
[
yn]G(y) = n!(–1)n�n(x|S).

3.1 Proof of Theorem 2
This can be done by differentiating λ– 1 times the equality displayed in Theorem 1. Firstly,
it is trivial to have

Dλ–1 1
x + k

= (–1)λ–1 (λ – 1)!
(x + k)λ

.

Then by making use of the Leibniz rule, we can compute

Dλ–1 (1 – x)m

(x)n+1
= (–1)mDλ–1 〈x – 1〉m

(x)n+1

= (–1)m
λ∑

k=1

(
λ – 1
k – 1

)
Dk–1〈x – 1〉mDλ–k 1

(x)n+1

=
(1 – x)m

(x)n+1

λ∑

k=1

(–1)λ–k (λ – 1)!
(k – 1)!

�k–1
(
x|[–m, –1]

)
�λ–k

(
x|[0, n]

)

= (–1)λ–1 (1 – x)m

(x)n+1

λ∑

k=1

(λ – 1)!
(k – 1)!

�k–1
(
–x|[1, m]

)
�λ–k

(
x|[0, n]

)
,

where we have invoked two derivative formulae (9) and (10). Finally,

Dλ–1(x + n + 1)k–1 = (x + n + 1)k–1�λ–1
(
x|[n + 1, n + k – 1]

)

= (x + n + 1)k–1�λ–1
(
x + n|[1, k – 1]

)
.

Substituting the above three expressions into the equality of Theorem 1 and then making
some simplifications, we find the algebraic identity in Theorem 2.
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3.2 Proof of Theorem 3
Recalling (3), we can deduce, for the signless Stirling numbers, the symmetric function
expression (see [4, Chap. V] and [5, §6.1])

[
n + 1
k + 1

]
=

[
yk](1 + y)n =

∑

1≤i1<i2<···<in–k≤n

i1i2 · · · in–k

= n!
∑

1≤j1<j2<···<jk≤n

1
j1j2 · · · jk

.

This gives rise to the following identity:

�k
(
0|[1, n]

)
=

1
n!

[
n + 1
k + 1

]
. (14)

Let ρ be a natural number. When x → j with 1 ≤ j ≤ ρ , the limiting case of the equation
displayed in Theorem 2 reads as

n∑

k=0

(
n
k

)(
m + k

k

)
(–1)k

(j + k)λ

=
n!

(j)n+1

λ∑

k=1

�λ–k(j|[0, n])
(k – 1)!

lim
x→j

(
m – x

m

)
�k–1

(
–x|[1, m]

)

+
m–n∑

k=1

(–1)n+k+λ

(λ – 1)!

(
m

n + k

)
(j + n + 1)k–1

(n + 1)k
�λ–1

(
j + n|[1, k – 1]

)
.

(15)

When j > m, the limit in the middle line is given directly by letting x = j

lim
x→j

(
m – x

m

)
�k–1

(
–x|[1, m]

)
=

(
m – j

m

)
�k–1

(
–j|[1, m]

)

since the two factors on the right are well defined. Instead, for 1 ≤ j ≤ m, that limit can be
determined as

lim
x→j

(
m – x

m

)
�k–1

(
–x|[1, m]

)

= lim
x→j

(1 – x)m

m!
�k–1

(
–x|[1, m]

)

=
(–1)j–1

j
(m

j
)

k–1∑

i=1

�i–1
(
–j|[1, j – 1]

)
�k–i–1

(
–j|[j + 1, m]

)

=
(–1)j

j
(m

j
)

k–1∑

i=1

(–1)i�i–1
(
0|[1, j – 1]

)
�k–i–1

(
0|[1, m – j]

)

=
(–1)j

m!

k–1∑

i=1

(–1)i
[

j
i

][
m – j + 1

k – i

]
,
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where the last line is justified by (14). Finally summing equation (15) over j from 1 to ρ ,
we obtain the following equality involving harmonic numbers:

n∑

k=0

(–1)k
(

n
k

)(
m + k

k

){
H (λ)

ρ+k – H (λ)
k

}

=
n!
m!

m∑

j=1

(–1)j

(j)n+1

λ∑

k=1

�λ–k(j|[0, n])
(k – 1)!

k–1∑

i=1

(–1)i
[

j
i

][
m – j + 1

k – i

]

+
ρ∑

j=m+1

n!
(j)n+1

λ∑

k=1

�λ–k(j|[0, n])
(k – 1)!

(
m – j

m

)
�k–1

(
–j|[1, m]

)

+
m–n∑

k=1

ρ∑

j=1

(–1)n+k+λ

(λ – 1)!

(
m

n + k

)
(j + n + 1)k–1

(n + 1)k
�λ–1

(
j + n|[1, k – 1]

)
,

which is equivalent to the formula stated in Theorem 3.
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