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Abstract
This paper deals with a split equality equilibrium problem for pseudomonotone
bifunctions and a split equality hierarchical fixed point problem for nonexpansive and
quasinonexpansive mappings. We suggest and analyze an iterative scheme where
the stepsizes do not depend on the operator norms, the so-called simultaneous
projected subgradient-proximal iterative scheme for approximating a common
solution of the split equality equilibrium problem and the split equality hierarchical
fixed point problem. Further, we prove a weak convergence theorem for the
sequences generated by this scheme. Furthermore, we discuss some consequences
of the weak convergence theorem. We present a numerical example to justify the
main result.
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1 Introduction
Let H1, H2, and H3 be real Hilbert spaces with their inner products and induced norms
〈·, ·〉 and ‖·‖. Let C1 and C2 be nonempty closed convex subsets of H1 and H2, respectively.
Recall that a mapping U1 : H1 → H1 is nonexpansive if ‖U1x1 – U1y1‖ ≤ ‖x1 – y1‖ for all
x1, y1 ∈ H1. Note that if Fix(U1) := {x1 ∈ H1 : U1x1 = x1} �= ∅, then Fix(U1) is closed and
convex.

We consider the following split equality equilibrium problem (SEEP): Find x1 ∈ C1

and x2 ∈ C2 such that

g1(x1, y1) ≥ 0, y1 ∈ C1, (1.1)

g2(x2, y2) ≥ 0, y2 ∈ C2, (1.2)

and

A1x1 = A2x2,
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where g1 : C1 ×C1 →R and g2 : C2 ×C2 → R are monotone bifunctions, and A1 : H1 → H3

and A2 : H2 → H3 are bounded linear operators. When looked separately, (1.1) is called the
equilibrium problem (EP). EP (1.1) was introduced and studied by Blum and Otteli [3]. We
denote the solution set of EP (1.1) by Sol(EP(1.1)). The solution set of SEEP (1.1)–(1.2) is
denoted by � = {(x1, x2) ∈ C1 × C1 : x1 ∈ Sol(EP(1.1)), x2 ∈ Sol(EP(1.2)), and A1x1 = A2x2}.
If H3 = H2 and A2 = I (the identity operator), then SEEP (1.1)–(1.2) is reduced to the split
equilibrium problem (SEP), which was initially introduced by Moudafi [26] and studied
by Kazmi and Rizvi [19] for monotone bifunctions. Recently, Hieu [14] studied the strong
convergence of some projected subgradient-proximal iterative schemes for solving SEP for
a pseudomonotone bifunction. For further related work, see [12, 15]. As particular cases,
SEP includes the split variational inequalities [7] and split feasibility problem [6], which
have a wide range of applications; see [4, 5, 7, 10, 11, 21, 31, 32].

SEEP (1.1)–(1.2) has been studied by many authors; see, for instance, Ma et al. [23, 24]
and Ali et al. [2] for monotone bifunctions g1, g2. It is interesting to study SEEP (1.1)–(1.2)
when both bifunctions g1, g2 are pseudomonotone.

Further, we consider the split equality hierarchical fixed point problem (SEHFPP) [8]:
Find x1 ∈ Fix(V1) and x2 ∈ Fix(V2) such that

〈x1 – U1x1, x1 – y1〉 ≤ 0, y1 ∈ Fix(V1), (1.3)

〈x2 – U2x2, x2 – y2〉 ≤ 0, y2 ∈ Fix(V2), (1.4)

and

A1x1 = A2x2,

where U1, V1 : C1 → C1 and U2, V2 : C2 → C2 are nonexpansive mappings. When we look
separately, (1.3) is called a hierarchical fixed point problem (HFPP), introduced and stud-
ied by Moudafi and Mainge [29]. Since then, HFPP has been studied by many authors; see,
for example, [9, 16–18, 20, 25, 29, 30, 33, 35]. The solution set of HFPP (1.3) is denoted
by Sol(HFPP(1.3)). The solution set of SEHFPP (1.3)–(1.4) is denoted by � := {(x1, x2) ∈
Fix(V1)×Fix(V2) : x1 ∈ Sol(HFPP(1.3)), x2 ∈ Sol(HFPP(1.4)), and A1x1 = A2x2}. If H3 = H2

and A2 = I , then SEHFPP (1.3)–(1.4) reduces to a new class of problems called the split
hierarchical fixed point problem. In particular, if we set U1 = I1 and U2 = I2 (the iden-
tity mappings), then SEHFPP (1.3)–(1.4) reduces to the split equality fixed point problem
(SEFPP) [27]: Find x1 ∈ C1 and x2 ∈ C2 such that

x1 ∈ Fix(V1), x2 ∈ Fix(V2), and A1x1 = A2x2. (1.5)

The solution set of SEFPP (1.5) is denoted by �1.
SEHFPP (1.3)–(1.4) was introduced and studied by Behzad et al. [8] for nonexpansive

mappings U1, U2, V1, V2. SEHFPP (1.3)–(1.4) covers the split equality variational inequal-
ity problem over the fixed point sets, and so on; see [8]. Very recently, Alansari et al. [1]
suggested an iterative scheme for solving a split equilibrium problem for a monotone bi-
function, a pseudomonotone bifunction, and a hierarchical fixed point problem for non-
expansive and quasinonexpansive mappings.
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In 2013, Moudafi and Al-Shemas [28] proved a weak convergence theorem for a simul-
taneous iterative algorithm to solve SEFPP (1.5). However, to employ this algorithm, we
need to know a priori the norms (or at least estimates of the norms) of the bounded linear
operators A1 and A2, which is in general not an easy work in practice. To overcome this dif-
ficulty, López et al. [22] presented a helpful iterative method for estimating the stepsizes,
which do not need a priori knowledge of the operator norms for solving the split feasibil-
ity problems. In 2015, Zhao [36] extended the iterative method [22] for SEFPP (1.5). Very
recently, Behzad et al. [8] have extended the iterative method [36] for SEHFPP (1.3)–(1.4).

Inspired by the works mentioned, in this paper, we consider SEEP (1.1)-(1.2) where the
both bifunctions g1 and g2 are pseudomonotone, and SEHFPP (1.3)–(1.4) where the U1, U2

are quasinonexpansive mappings and V1, V2 are nonexpansive mappings in real Hilbert
spaces. We propose an iterative scheme where the stepsizes do not depend on the operator
norms for approximating a common solution of these problems. We further prove a weak
convergence theorem for the proposed iterative scheme. We present a numerical example
to justify the main result.

2 Preliminaries
Let the symbols → and ⇀ denote strong and weak convergence, respectively.

Definition 2.1 A mapping U1 : C1 → C1 is said to be:
(i) quasinonexpansive if, for any p1 ∈ Fix(U1),

‖U1x1 – p1‖ ≤ ‖x1 – p1‖, x1 ∈ C1;

(ii) monotone if

〈U1x1 – U1y1, x1 – y1〉 ≥ 0, x1, y1 ∈ C1;

Lemma 2.1 ([13]) Let V1 : C1 → C1 be a nonexpansive mapping on C1. Then V1 is demi-
closed on C1 in the sense that if {xk

1} converges weakly to x1 ∈ C1 and {xk
1 – V1xk

1} converges
strongly to 0, then x1 ∈ Fix(V1).

Definition 2.2 A bifunction g1 : C1 × C1 →R is said to be:
(i) strongly monotone on C1 if there exists a constant γ1 > 0 such that

g1(x1, y1) + g1(y1, x1) ≤ –γ ‖x1 – y1‖2, x1, y1 ∈ C1;
(ii) monotone on C1 if g1(x1, y1) + g1(y1, x1) ≤ 0, x1, y1 ∈ C1;

(iii) pseudomonotone on C1 if g1(x1, y1) ≥ 0 ⇒ g1(y1, x1) ≤ 0, x1, y1 ∈ C1.

Note that it is evident from the definition that a strongly monotone bifunction is mono-
tone and a monotone bifunction is pseudomonotone.

Definition 2.3 ([12]) Let g1 : C1 ×C1 →R be a bifunction, where g1(x1, ·) is a convex func-
tion for each x1 ∈ C1. Then, for ε ≥ 0, the ε-subdifferential (ε-diagonal subdifferential) of
g1 at x1, denoted by ∂εg1(x1, ·)(x1) or ∂εg1(x1, x1), is given by

∂εg1(x1, ·)(x1) =
{

w1 ∈ H1 : g1(x1, y1) – g1(x1, x1) + ε ≥ 〈w1, y1 – x1〉, y1 ∈ C1
}

.
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Assumption 2.1 For each i = 1, 2, the bifunction gi : Ci × Ci −→ R satisfies the following
assumptions:

(i) gi(xi, xi) = 0, xi ∈ Ci;
(ii) g1 and g2 are pseudomonotone, respectively, on C1 with respect to

x1 ∈ Sol(EP(1.1)) and on C2 with respect to x2 ∈ Sol(EP(1.2));
(iii) gi satisfies the following condition, called the strict paramonotonicity property:

x1 ∈ Sol(EP(1.1)), y1 ∈ C1, g1(y1, x1) = 0 ⇒ y1 ∈ Sol(EP(1.1));

x2 ∈ Sol(EP(1.2)), y2 ∈ C1, g2(y2, x2) = 0 ⇒ y2 ∈ Sol(EP(1.2));

(iv) gi is jointly weakly upper semicontinuous on Ci × Ci in the sense that if xi, yi ∈ Ci

and {xk
i }, {yk

i } ⊆ Ci converge weakly to xi and yi, respectively, then
gi(xk

i , yk
i ) → gi(xi, yi) as k → ∞;

(v) gi(xi, ·) is convex, lower semicontinuous, and subdifferentiable on Ci for all xi ∈ Ci;
(vi) If {xk

i } is bounded sequence in Ci and εk → 0, then the sequence {wk
i } with

wk
i ∈ ∂εk gi(xk

i , ·)(xk
i ) is bounded.

Lemma 2.2 ([34]) Let {δk} and {γk} be nonnegative sequences satisfying

∞∑

k=0

δk < +∞ and γk+1 ≤ γk + δk , k = 0, 1, 2, . . . .

Then {γk} is a convergent sequence.

3 Simultaneous projected subgradient-proximal iterative scheme
We suggest the following simultaneous projected subgradient-proximal iterative scheme
for solving SEEP (1.1)–(1.2) and SEHFPP (1.3)–(1.4).

Scheme 3.1 (Initialization) For each i = 1, 2, choose x0
i ∈ Ci. Take the sequences of real

numbers {ρk}, {βk}, {εk}, {rk}, {μk}, {δk}, and {σk} such that
(i) ρk ≥ ρ > 0, βk ≥ 0, εk > 0, εk → 0 as k → ∞, rk > r > 0, 0 < a < δk < b < 1, and

0 < a′ < σk < b′ < 1.
(ii)

∑∞
k=0

βk
ρk

= +∞,
∑∞

k=0
βkεk
ρk

< +∞, and
∑∞

k=0 β2
k < +∞.

Step I. Choose wk
i ∈ Hi such that wk

i ∈ ∂εk gi(xk
i , ·)(xk

i ) and compute αk = βk
ηk

and ηk =
max{ρk ,‖wk

i ‖}.
Step II. Compute yk

i = PCi (x
k
i – αkwk

i ).
Step III. Compute tk

i = (1 – δk)xk
i + δkVi((1 – σk)Uiyk

i + σkyk
i ).

Step IV. xk+1
i = PCi (t

k
i + μkA∗

i (Aitk
1 – A2tk

2)) for all k ≥ 0, where the step size μk is chosen
in such a way that for some ε > 0,

μk ∈ (ε,γk – ε), k ∈ �; (3.1)

otherwise, μk = μ (μ ≥ 0), where γk := 2‖A1tk
1 –A2tk

2‖2

‖A∗
1(A1tk

1 –A2tk
2 )‖2+‖A∗

2(A1tk
1 –A2tk

2 )‖2 , and the index set

� := {k : A1tk
1 – A2tk

2 �= 0}.
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Remark 3.1 ([36]) Condition (3.1) implies that infk∈�{γk – μk} > 0. Since ‖A∗
1(A1tk

1 –
A2tk

2)‖ ≤ ‖A∗
1‖‖A1tk

1 – A2tk
2‖ and ‖A∗

2(A1tk
1 – A2tk

2)‖ ≤ ‖A∗
2‖‖A1tk

1 – A2tk
2‖, we observe that

{γk} is bounded below by 2
‖A1‖2+‖A2‖2 , and so infk∈� γk > 0. Consequently, with an appro-

priate choice of ε > 0 and γn ∈ (ε, infn∈� μn – ε) for k ∈ �, we have supk∈� μk < +∞, and
hence {μk} is bounded.

Remark 3.2 ([12]) For each i = 1, 2, since gi(xi, ·) is a lower semicontinuous convex function
and Ci ⊂ dom gi(xi, ·) for every xi ∈ Ci, the εk-diagonal subdifferential ∂εk gi(xk

i , ·)(xk
i ) �= ∅

for every εk > 0. Moreover, ρk ≥ ρ > 0. Therefore each step of the scheme is well defined,
implying that Scheme 3.1 is well defined.

Remark 3.3 ([12]) For each i = 1, 2, if gi satisfies Assumption 2.1 ((i), (ii) and (iv)) then
Sol(EP(1.1)), Sol(EP(1.2)) are closed and convex. For each i = 1, 2, since Ai is a linear op-
erator, the solution set � of SEEP (1.1)–(1.2) is closed and convex.

4 Weak convergence theorem
We now prove the following weak convergent theorem, which shows that the sequence
{(xk

1, xk
2)} generated by Scheme 3.1 converges weakly to (q1, q2) ∈ � = � ∩ �, a common

solution of SEEP (1.1)–(1.2) and SEHFPP (1.3)–(1.4).
Assume that � �= ∅.

Theorem 4.1 Let H1, H2, and H3 be real Hilbert spaces. For each i = 1, 2, let Ci ⊆ Hi be a
nonempty closed convex set; let Ai : Hi → H3 be a bounded linear operator with its adjoint
operator A∗

i ; let Vi : Ci → Ci be a nonexpansive mapping, let Ui : Ci → Ci be a continuous
quasinonexpansive mapping such that Ii –Ui (Ii is the identity mapping on Ci) is monotone,
and let gi : Ci × Ci → R be bifunctions satisfying Assumption 2.1. Assume that Fix(U1) ∩
Fix(V1) �= ∅, Fix(U2) ∩ Fix(V2)) �= ∅, and � = �∩ (Fix(U1) ∩ Fix(V1), Fix(U2) ∩ Fix(V2) �= ∅.
Then the iterative sequence {(xk

1, xk
2)} generated by Scheme 3.1 converges weakly to (q1, q2) ∈

�.

Proof Let (p1, p2) ∈ �. Then (p1, p2) ∈ �, p1 ∈ Fix(U1) ∩ Fix(V1), and p2 ∈ Fix(U2) ∩
Fix(V2). For each i = 1, 2, setting

zk
i = (1 – σk)Syk

i + σkyk
i (4.1)

and using the arguments used in the proof of [1, Theorem 3.1], we obtain that

∥∥zk
i – pi

∥∥2 ≤ ∥∥yk
i – pi

∥∥2 – σk(1 – σk)
∥∥Uiyk

i – yk
i
∥∥2 (4.2)

≤ ∥∥yk
i – pi

∥∥2, (4.3)
∥∥tk

i – pi
∥∥2 ≤ (1 – δk)

∥∥xk
i – pi

∥∥2 + δk
∥∥zk

i – pi
∥∥2 – δk(1 – δk)

∥∥Vizk
i – xk

i
∥∥2, (4.4)

lim
k→∞

∥∥xk
i – yk

i
∥∥ = 0, (4.5)

and

∥∥tk
i – pi

∥∥2 ≤ ∥∥xk
i – pi

∥∥2 + 2δkαk
〈
wk

i , pi – xk
i
〉
+ 2δkβ

2
k – δk(1 – δk)

∥∥Vizk
i – xk

i
∥∥2. (4.6)
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Since xk
i ∈ Ci and wk

i ∈ ∂εk gi(xk
i , ·)(xk

i ), we have

gi
(
xk

i , pi
)

+ εk = gi
(
xk

i , pi
)

– gi
(
xk

i , xk
i
)

+ εk ≥ 〈
wk

i , pi – xk
i
〉
, (4.7)

and hence from (4.6) and (4.7) we have

∥∥tk
i – pi

∥∥2 ≤ ∥∥xk
i – pi

∥∥2 + 2δkαk
(
gi

(
xk

i , pi
)

+ εk
)

+ 2δkβ
2
k

– δk(1 – δk)
∥∥Vizk

i – xk
i
∥∥2. (4.8)

Now from the definitions of αk and ηk we obtain αk = βk
ηk

≤ βk
ρk

. Hence from (4.8) we have

∥∥tk
i – pi

∥∥2 ≤ ∥∥xk
i – pi

∥∥2 + 2δkαkgi
(
xk

i , pi
)

+
2δkβkεk

ρk
+ 2δkβ

2
k

– δk(1 – δk)
∥∥Vizk

i – xk
i
∥∥2. (4.9)

Again, since pi ∈ Ci, we have

∥∥xk+1
1 – p1

∥∥2

=
∥∥PC1

(
tk
1 + μkA∗

1
(
A1tk

1 – A2tk
2
))

– (p1)
∥∥2

≤ ∥∥tk
1 – p1

∥∥2 – 2μk
〈
A1tk

1 – A1p1, A1tk
1 – A2tk

2
〉
+ μ2

k
∥∥A∗

1
(
A1tk

1 – A2tk
2
)∥∥2

=
∥∥tk

1 – p1
∥∥2 – μk

[∥∥A1tk
1 – A1p1

∥∥2 +
∥∥A1tk

1 – A2tk
2
∥∥2 –

∥∥A2tk
2 – A1p1

∥∥2]

+ μ2
k
∥∥A∗

1
(
A1tk

1 – A2tk
2
)∥∥2. (4.10)

Similarly, we have

∥∥xk+1
2 – p2

∥∥2

≤ ∥∥tk
2 – p2

∥∥2 – μk
[∥∥A2tk

2 – A2p2
∥∥2 +

∥∥A1tk
1 – A2tk

2
∥∥2 –

∥∥A1tk
1 – A2p2

∥∥2]

+ μ2
k
∥∥A∗

2
(
A1tk

1 – A2tk
2
)∥∥2. (4.11)

From (4.10), (4.11), and the fact that A1p1 = A2p2 we have

∥∥xk+1
1 – p1

∥∥2 +
∥∥xk+1

2 – p2
∥∥2

≤ ∥∥tk
1 – p1

∥∥2 +
∥∥tk

2 – p2
∥∥2 – μk

[
2
∥∥A2tk

2 – A2p2
∥∥2

– μk
(∥∥A∗

1
(
A1tk

1 – A2tk
2
)∥∥2 +

∥∥A∗
2
(
A1tk

1 – A2tk
2
)∥∥2)]. (4.12)

From (4.9) and (4.12) we have

∥∥xk+1
1 – p1

∥∥2 +
∥∥xk+1

2 – p2
∥∥2

≤ ∥∥xk
1 – p1

∥∥2 +
∥∥xk

2 – p2
∥∥2 + 2δkαk

(
g1

(
xk

1, p1
)

+ g2
(
xk

2, p2
))

– μk
[
2
∥∥A2tk

2 – A2p2
∥∥2 – μk

(∥∥A∗
1
(
A1tk

1 – A2tk
2
)∥∥2 +

∥∥A∗
2
(
A1tk

1 – A2tk
2
)∥∥2)]

– δk(1 – δk)
(∥∥V1zk

1 – xk
1
∥∥2 +

∥∥V2zk
2 – xk

2
∥∥2) + ζk , (4.13)

where ζk = 2δk( βkεk
ρk

+ β2
k ).
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Since (p1, p2) ∈ � and xk
i ∈ Ci for i = 1, 2, pi ∈ Ci, and hence gi(pi, xk

i ) ≥ 0. By the pseu-
domonotonicity of gi we have

gi
(
xk

i , pi
) ≤ 0. (4.14)

Hence, using condition (3.1) and δk ∈ (0, 1) in (4.13), we have

∥∥xk+1
1 – p1

∥∥2 +
∥∥xk+1

2 – p2
∥∥2 ≤ ∥∥xk

1 – p1
∥∥2 +

∥∥xk
2 – p2

∥∥2 + ζk . (4.15)

It follows from the conditions on βk , εk , and ρk that
∑∞

k=0 ζk < +∞. Hence it follows from
Lemma 2.2 and (4.15) that the sequence {‖xk

1 – p1‖2 + ‖xk
2 – p2‖2} is convergent, that is,

lim
k→∞

(∥∥xk
1 – p1

∥∥2 +
∥∥xk

2 – p2
∥∥2) exists, (4.16)

which implies that the sequences {xk
1} and {xk

2} are bounded. Therefore it follows from
(4.5) and (4.3) that, for each i = 1, 2, the sequences {yk

i }, {zk
i } are bounded.

Since δk ∈ (0, 1),
∑∞

k=0 ζk < +∞, and {μk} is bounded, from (4.13), (4.14), and (4.16) it
follows that

lim
k→∞

∥∥A∗
1
(
A1tk

1 – A2tk
2
)∥∥ = lim

k→∞
∥∥A∗

2
(
A1tk

1 – A2tk
2
)∥∥ = 0. (4.17)

Similarly, from (4.13) we obtain that

lim
k→∞

∥∥V1zk
1 – xk

1
∥∥ = lim

k→∞
∥∥V2zk

2 – xk
2
∥∥ = 0. (4.18)

Now from
∑∞

k=0 ζk < +∞, (4.13), (4.14), and (4.16)–(4.18) it follows that

lim
k→∞

∥∥A1tk
1 – A2tk

2
∥∥ = 0. (4.19)

Again, since δk ∈ (0, 1), from conditions (3.1), (4.13), and (4.17)–(4.19) it follows that

2δkαk
(
g1

(
xk

1, p1
)

+ g2
(
xk

2, p2
))

≤ ∥∥xk
1 – p1

∥∥2 –
∥∥xk+1

1 – p1
∥∥2 +

∥∥xk
2 – p2

∥∥2 –
∥∥xk+1

2 – p2
∥∥2 + ζk . (4.20)

Hence, for every m, from (4.14) and (4.20) it follows that

0 ≤
m∑

k=0

2δkαk
(
g1

(
xk

1, p1
)

+ g2
(
xk

2, p2
))

≤ ∥∥x0
1 – p1

∥∥2 –
∥∥xm+1

1 – p1
∥∥2 +

∥∥x0
2 – p2

∥∥2 –
∥∥xm+1

2 – p2
∥∥2 + 4

m∑

k=0

βkεk

ρk
+ 4

m∑

k=0

β2
k .

By taking the limit as m → ∞ we have

0 ≤ 2
∞∑

k=0

δkαk
(
g1

(
xk

1, p1
)

+ g2
(
xk

2, p2
))

< +∞,
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which implies

∞∑

k=0

δkαkgi
(
xk

i , pi
)

< +∞ (4.21)

for i = 1, 2. For i = 1, 2, the boundedness of the sequence {xk
i } and Assumption 2.1(vi) imply

that the sequence {wk
i } is bounded. Further, using the conditions on the parameters, we

have αk = βk

ρk max{1, ‖wk‖
ρk

‖}
≥ βkρ

ρk w . Since δk ∈ (a, b) ⊂ (0, 1), from (4.21) it follows that

0 ≤ 2ρa
w

∞∑

k=0

βk

ρk

(
–gi

(
xk

i , pi
)) ≤ 2a

∞∑

k=0

αk
(
–gi

(
xk

i , pi
))

< +∞. (4.22)

Since
∑∞

k=0
βk
ρk

= +∞, from (4.14) and (4.22) it follows that

lim sup
k→∞

g1
(
xk

1, p1
)

= lim sup
k→∞

g2
(
xk

2, p2
)

= 0. (4.23)

Further, from the equation in Step III of Scheme 3.1 and (4.18) it follows that

lim
k→∞

∥∥tk
1 – xk

1
∥∥ = lim

k→∞
∥∥tk

2 – xk
2
∥∥ = 0. (4.24)

Since

∥∥yk
i – pi

∥∥2 ≤ ∥∥xk
i – pi

∥∥2 + 2
〈
yk

i – xk
i , yk

i – pi
〉

(i = 1, 2) (4.25)

and {yk
1}, {yk

1} are bounded, from (4.2), (4.4), and (4.12) it follows that

δkσk(1 – σk)
(∥∥U1yk

1 – yk
1
∥∥2 +

∥∥U2yk
2 – yk

2
∥∥2)

≤ ∥∥xk
1 – p1

∥∥2 –
∥∥xk+1

1 – p1
∥∥2 +

∥∥xk
2 – p2

∥∥2 –
∥∥xk+1

2 – p2
∥∥2

+ 2δk
[∥∥yk

1 – xk
1
∥∥∥∥yk

1 – p1
∥∥ +

∥∥yk
2 – xk

2
∥∥∥∥yk

2 – p2
∥∥]

– δk(1 – δk)
[∥∥V1zk

1 – xk
1
∥∥2 +

∥∥V1zk
2 – xk

2
∥∥2]

– μk
[
2
∥∥A2tk

2 – A2p2
∥∥2 – μk

(∥∥A∗
1
(
A1tk

1 – A2tk
2
)∥∥2

+
∥∥A∗

2
(
A1tk

1 – A2tk
2
)∥∥2)]. (4.26)

Again, since δk ∈ (a, b) ⊂ (0, 1) and σk ∈ (a′, b′) ⊂ (0, 1), from (4.5) and (4.16)–(4.19) it
follows that

lim
k→∞

∥∥U1yk
1 – yk

1
∥∥2 = lim

k→∞
∥∥U2yk

2 – yk
2
∥∥2 = 0. (4.27)

For each i = 1, 2, from the inequality

∥∥Vizk
i – yk

i
∥∥2 ≤ ∥∥Vizk

i – xk
i
∥∥2 + 2

〈
xk

i – yk
i , Vizk

i – yk
i
〉

≤ ∥∥Vizk
i – xk

i
∥∥2 + 2

∥∥xk
i – yk

i
∥∥∥∥Vizk

i – yk
i
∥∥, (4.28)
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the boundedness of the sequences {yk
i } and {zk

i }, (4.5), and(4.18) it follows that

lim
k→∞

∥∥Vizk
i – yk

i
∥∥2 = 0. (4.29)

Since

∥∥Uiyk
i – Vizk

i
∥∥ ≤ ∥∥Uiyk

i – yk
i
∥∥ +

∥∥yk
i – Vizk

i
∥∥, (4.30)

from (4.27), (4.29), and (4.30) it follows that

lim
k→∞

∥∥Uiyk
i – Vizk

i
∥∥ = 0. (4.31)

The equality

∥∥zk
i – yk

i
∥∥ = (1 – σk)

∥∥Uiyk
i – yk

i
∥∥

implies that

lim
k→∞

∥∥zk
i – yk

i
∥∥ = 0. (4.32)

The inequality

∥∥Vizk
i – zk

i
∥∥ ≤ ∥∥Vizk

i – yk
i
∥∥ +

∥∥yk
i – zk

i
∥∥ (4.33)

implies that

lim
k→∞

∥∥Vizk
i – zk

i
∥∥ = 0. (4.34)

Now, since the sequence {xk
i } is bounded in Ci for i = 1, 2„ without the loss of generality, we

can assume that there exists a subsequence {xkl
i } of {xk

i } such that xkl
i ⇀ qi ∈ Ci as l → ∞

and lim supk→∞ gi(xk
i , pi) = liml→∞ gi(x

kl
i , pi). From (4.5), (4.24), and (4.32) it follows that

the sequences {xk
i }, {yk

i }, {tk
i }, and {zk

i } have the same asymptotic behavior, and hence there
are subsequences {ykl

i } of {yk
i }, {tkl

i } of {tk
i }, and {zkl

i } of {zk
i } such that ykl

i ⇀ qi, tkl
i ⇀ qi, and

zkl
i ⇀ qi as l → ∞. Since Ai is continuous for i = 1, 2, Ait

kl
i ⇀ Aiqi. Further, for i = 1, 2, it

follows from the demiclosedness of Ii – Vi on Ci and (4.34) that qi ∈ Fix(Vi). We now show
that (q1, q2) ∈ �. From (4.1) it follows that

zk
i – Vizk

i
σk

= (Ii – Ui)yk
i +

1
σk

(
Uiyk

i – Vizk
i
)
. (4.35)

Therefore, for all zi ∈ Fix(Vi), using (4.1) and the monotonicity of (Ii – Ui), we estimate

〈
zk

i – Vizk
i

σk
, yk

i – zi

〉

=
〈
(Ii – Ui)yk

i – (Ii – Ui)zi, yk
i – zi

〉
+

〈
zi – Uizi, yk

i – zi
〉
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+
1
σk

〈
Uiyk

i – Vizk
i , yk

i – zi
〉

≥ 〈
zi – Uizi, yk

i – zi
〉
+

1
σk

〈
Uiyk

i – Vizk
i , yk

i – zi
〉
. (4.36)

Since {yk
i } is bounded and σk ∈ (a′, b′) ⊂ (0, 1), from (4.31), (4.34), and (4.36) it follows that

lim sup
k→∞

〈
zi – Uizi, yk

i – zi
〉 ≤ 0, zi ∈ Fix(Vi). (4.37)

Replacing k with kl in (4.37) and then taking the limit as l → ∞, we have

〈
(Ii – Ui)zi, qi – zi

〉 ≤ 0, zi ∈ Fix(Vi). (4.38)

Since Fix(Vi) is convex, λzi + (1 – λ)qi ∈ Fix(Vi) for λ ∈ (0, 1), and hence

〈
(Ii – Ui)

(
λzi + (1 – λ)qi

)
, qi – zi

〉 ≤ 0, zi ∈ Fix(Vi). (4.39)

Since (Ii – Ui) is continuous, by taking the limit as λ → 0+, we have

〈
(Ii – Ui)qi, qi – zi

〉 ≤ 0, zi ∈ Fix(Vi), (4.40)

that is, q1 ∈ Sol(HFPP(1.3)) and q1 ∈ Sol(HFPP(1.3)). Further, since ‖ · ‖2 is weakly lower
semicontinuous, from (4.19) it follows that

‖A1q1 – A2q2‖2 ≤ lim inf
k→∞

∥∥A1tkl
1 – A2tkl

2
∥∥2 = 0, (4.41)

that is, A1q1 = A2q2. Hence (q1, q2) ∈ �. Next, we show that (q1, q2) ∈ �. Since xkl
i ⇀ qi and

lim supk→∞ gi(xk
i , pi) = liml→∞ gi(x

kl
i , pi), by the weak upper semicontinuity of gi(·, pi) and

(4.23) we have

gi(qi, pi) ≥ lim sup
l→∞

gi
(
xkl

i , pi
)

= lim
l→∞

gi
(
xkl

i , pi
)

= lim sup
k→∞

gi
(
xk

i , pi
)

= 0. (4.42)

Since (p1, p2) ∈ � and qi ∈ Ci, we have gi(pi, qi) ≥ 0, and hence from Assumption 2.1(ii) it
follows that gi(qi, pi) ≤ 0. Consequently, gi(qi, pi) = 0, and therefore by Assumption 2.1(iv)
we have q1 ∈ Sol(EP(1.1)) and q2 ∈ Sol(EP(1.2)). Hence (q1, q2) ∈ �, and thus (q1, q2) ∈ �.

From (4.16) it follows that limk→∞ ‖xk
i – pi‖ exists for i = 1, 2. Therefore since the Hilbert

space Hi satisfies the Opial condition, it follows that the sequence {xk
i } has only one weak

cluster point, and hence {(xk
1, xk

2)} converges weakly to (q1, q2) ∈ �. �

5 Consequences
Now, we give some consequences of Theorem 4.1.

(I). The following theorem shows that the sequence {(xk
1, xk

2)} generated by Scheme 3.1
with Ui = Ii (i = 1, 2) converges weakly to (q1, q2) ∈ �1 = � ∩ �1, a common solution of
SEEP (1.1)–(1.2) and SEFPP (1.5).
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Assume that �1 �= ∅.

Theorem 5.1 Let H1, H2, and H3 be real Hilbert spaces. For i = 1, 2, let Ci ⊆ Hi be a
nonempty closed convex set, let Ai : Hi → H3 be a bounded linear operator with its ad-
joint operator A∗

i , let Vi : Ci → Ci be a nonexpansive mapping, and let gi : Ci × Ci → R be
a bifunction satisfying Assumption 2.1. Assume that Fix(V1) �= ∅, Fix(V2)) �= ∅, and �1 =
� ∩ (Fix(V1), Fix(V2) �= ∅. Then the iterative sequence {(xk

1, xk
2)} generated by Scheme 3.1

with Ui = Ii (i = 1, 2) converges weakly to (q1, q2) ∈ �1.

(II). The following theorem shows that the sequence {xk
1} generated by Scheme 3.1 with

H1 = H2, U1 = U2, V1 = V2, C1 = C2 = Q2 = Q1, and Ai = Bi = Ii (i = 1, 2) converges weakly
to q1 ∈ �2 = Sol(EP(1.1))∩Sol(HFPP(1.3)), a common solution of EP (1.1) and HFPP (1.3).

Assume that �2 �= ∅.

Theorem 5.2 Let H1 and H3 be real Hilbert spaces. Let C1 ⊆ H1 be a nonempty closed
convex set, let V1 : C1 → C1 be a nonexpansive mapping, let U1 : C1 → C1 be a continuous
quasi-onexpansive mapping such that I1 – U1 (I1 is the identity mapping on C1) is mono-
tone, and let g1 : C1 × C1 → R be a bifunction satisfying Assumption 2.1. Assume that
Fix(U1) ∩ Fix(V1) �= ∅ and �2 = Sol(EP(1.1)) ∩ Fix(U1) ∩ Fix(V1) �= ∅. Then the iterative
sequence {xk

1} generated by Scheme 3.1 with H1 = H2, U1 = U2, V1 = V2, C1 = C2 = Q2 = Q1,
and Ai = Bi = Ii (i = 1, 2) converges weakly to q1 ∈ �2.

6 Numerical example
Finally, we give a numerical example for Scheme 3.1.

Example 6.1 Let H1 = H2 = H3 = R, the set of all real numbers, with the inner product
defined by 〈x, y〉 = xy, x, y ∈ R, and induced usual norm | · |. Let C1 = [–π , 0] and C2 =
[0,π ], let g1 : C1 × C1 → R and g2 : C2 × C2 → R be defined by g1(x1, y1) = 2x1y1(y1 –
x1) + x1y1|y1 – x1|, x1, y1 ∈ C1, and g2(x2, y2) = x2

2(y2 – x2), x2, y2 ∈ C2. Let the mappings
A1 : R→ R and A2 : R →R be defined by A1(x1) = 2x1, x1 ∈ R, and A2(x2) = –2x2, x2 ∈R.
Let the mappings V1 : C1 → C1 and U1 : C1 → C1 be defined by V1x1 = x1

2 , U1x1 = x1 cos x1,
x1 ∈ C1, and V2 : C2 → C2 and U2 : C2 → C2 be defined by V2x2 = x2

3 , U2x2 = –x2 cos x2,
x2 ∈ C2. Setting δk = 1

2k , σk = 1
2k , ρk = 1, εk = 0, αk = 1

2 , βk = 1
k , k ≥ 1. Then the sequences

{xk
1} and {xk

2} generated by Scheme 3.1 converge to q1 = 0 and q2 = 0, respectively, so that
(q1, q2) = (0, 0) ∈ �.

Proof It is easy to prove that the bifunctions g1 and g2 are pseudomonotone on C1 and
C2, respectively. Note that g1(x1, ·) and g1(x2, ·) are convex for x1 ∈ C1 and x2 ∈ C2 and
∂g1(x, ·)x1 = [x2

1, 3x2
1] and ∂g2(x2, ·)x2 = [x2

2] by taking εk = 0 for all k ∈ N. A1 and A2 are
bounded linear operators on R with adjoint operators A∗

1 and A∗
2, ‖A1‖ = ‖A∗

1‖ = 2, ‖A2‖ =
‖A∗

2‖ = 2, and hence μk ∈ (ε, 1
9 –ε). Therefore, for ε = 1

100 , we choose μk = 0.02 + 0.02
k for all

k. The mappings V1 and V2 are nonexpansive with Fix(V1) = {0} and Fix(V2) = {0}. Further,
U1 and U2 are continuous with Fix(U1) = {0} and Fix(U2) = {0}, and (I – U1) and (I – U2)
are monotone. The mappings U1 and U2 are quasinonexpansive but not nonexpansive.
After computation, we obtain � = Sol(SEHFPP(1.3)–(1.4)) = {0} and � = {0}. Therefore



Alansari Advances in Difference Equations        (2021) 2021:226 Page 12 of 14

Figure 1 Convergence for initial values x01 = –3, x02 = 3

� = � ∩ � = {0} �= ∅. After simplification, Scheme 3.1 is reduced to the following:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wk
1 ∈ H1, wk

2 ∈ H2 such that wk
1 ∈ ∂εk g1(xk

1, ·)(xk
1) = [(xk

1)2, 3(xk
1)2]

and wk
2 ∈ ∂εk g2(xk

2, ·)(xk
2) = [(xk

2)2];

yk
1 =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x1 < 0,

1 if x1 > 1,

xk
1 – αkwk

1 otherwise;

yk
2 =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x2 < 0,

1 if x2 > 1,

xk
2 – αkwk

2 otherwise;

tk
1 = (1 – δk)xk

1 + δkV1
(
(1 – σk)yk

1 cos yk
1 + σkyk

1
)
;

tk
2 = (1 – δk)xk

2 + δkV2
(
–(1 – σk)yk

2 cos yk
2 + σkyk

2
)
;

xk+1
1 = PC1

(
tk
1 + μkA∗

1
(
A1tk

1 – A2tk
2
))

;

xk+1
2 = PC2

(
tk
2 + μkA∗

2
(
A2tk

1 – A2tk
2
))

.

(6.1)

Finally, using the software Matlab 7.8.0, we have Fig. 1, which shows that {xk
1} and {xk

2}
converge to q1 = 0 and q2 = 0, respectively, so that (q1, q2) = (0, 0) ∈ �. �

7 Conclusion
We have proved a weak convergence theorem for an iterative scheme called the simultane-
ous projected subgradient-proximal iterative scheme, where the stepsizes do not depend
on the operator norms, for solving the split equality equilibrium problem SEEP (1.1)–(1.2)
for pseudomonotone bifunctions and the split equality hierarchical fixed point problem
SEHFPP (1.3)–(1.4) for nonexpansive and quasinonexpansive mappings. Further, we have
discussed some consequences of Theorem 4.1. Finally, we presented a numerical example
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to justify Theorem 4.1. Further research is needed to extend the presented work to the
setting of Banach spaces.
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