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Abstract
In this paper, an uncertain SIR (spreader, ignorant, stifler) rumor spreading model
driven by one Liu process is formulated to investigate the influence of perturbation in
the transmission mechanism of rumor spreading. The deduced process of the
uncertain SIR rumor spreading model is presented. Then an existence and uniqueness
theorem concerning the solution is proved. Moreover, the stability of uncertain SIR
rumor spreading differential equation is proved. In addition, the influence of different
parameters on rumor spreading is analyzed through numerical simulation. This paper
also presents a paradox of stochastic SIR rumor spreading model.
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1 Introduction
Rumor is a statement that has no basis in fact, but is made up out of thin air or according to
one’s will and spread by some means. In other words, a rumor is a piece of information that
is created out of nothing but spreads widely. With the development of the society and the
internet, compared with the traditional interpersonal communication, rumor propagation
has the characteristics of faster information transmission, wider influence, stronger force,
and more concealment. Rumors have a great negative effect on our daily life. Rumors not
only convey some inaccurate information to the society, but also cause bad social habits,
crimes, and economic losses, as well as pose a great threat to the national and public secu-
rity [1, 2]. At the same time, changes in rumor spreading are sudden and uncertain. How
to remove rumors in a timely manner and how to effectively suppress rumors have be-
come a crucial issue to the government and the society. Therefore, it is significant to study
uncertain SIR rumor spreading model for rumor control and social stability.

Due to the similarity between rumor spreading process and propagating process of epi-
demic diseases, an epidemic model has been favored by most domestic and overseas schol-
ars in the research on rumor spreading. Kermack and McKendrick [3] first proposed the
classic SIR epidemic model in 1927. Subsequently, based on this research, many scholars
used mathematical models to establish SI [4], SIS [4], SIRS [5], SEIRS [6], and other mod-
els, all of which are playing an increasingly important role in predicting and controlling
infectious diseases. These models provide more ideas and insights for people to study the
rumor propagation process. In 1964, based on theoretical analysis and practical obser-
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vation of infectious disease models, Daley and Kendall found that rumor and infectious
disease spreads have many similarities on the surface, but their transmission systems have
essential differences. Therefore, Daley and Kendall [7, 8] established the classical rumor
spreading model for the first time and named it DK model. In the DK model, the general
population is divided into three categories: those who don’t know rumors (ignorant), those
who know and spread rumors (spreader), and those who know but do not spread rumors
(stiflers). Later, Maki [9] modified the DK model and established MK model in 1973. This
model more truly reflected the rumor propagation process, because it indicated that direct
contact between the disseminator and others was the way to spread rumors. Although DK
and MK models have rigorous logic in establishing the model process, they ignore many
factors that affect the rumor propagation process. Based on the DK, MK, and infectious
disease models, more extensive studies have been conducted on rumor propagation from
different perspectives, such as small-world networks [10, 11], complex networks [12, 13],
forgetting mechanism [14], memory mechanism [15], retweeting mechanism [16], indi-
vidual behavior [17], education [18], internal and external influences [19]. In 2016, Zhang
et al. [20] used existing epidemic models to study the dynamics of information diffusion
and applied them to complex networks, emphasizing the importance of information dis-
semination. In 2018, based on a nonlinear model of SIS in a complex network environ-
ment, Zhan et al. [21] studied the coupling dynamics of epidemic transmission and infor-
mation diffusion.

The deterministic rumor spreading model has made great achievements in all aspects,
but some scholars have found that in the process of rumor propagation, rumor spread
form is largely influenced by the environment noise. Human contact is not fixed and can be
disturbed by some random factors. Therefore, the use of deterministic rumor propagation
model to describe the rumor propagation process will reduce the accuracy of rumor prop-
agation results. There are a lot of studies on stochastic infectious disease model, but there
are few studies on stochastic rumor propagation. Tornatore et al. [22] built a stochastic
SIR model with or without distributed time delay and studied the stability of disease-free
equilibrium of the model. Miao et al. [23] proposed a dynamic behavior of stochastic SIR
infectious disease with horizontal and vertical characteristics by using stochastic differen-
tial equation theory and inequality technique. Ball et al. [24] considered the propagation
of a Markovian SIR model over the configuration model network. In 2016, Chen [25] used
Brownian movement to describe environmental noise to establish a random rumor prop-
agation model with parametric perturbation. In 2020, Huo and Dong [26] analyzed the
propagation mechanism of the rumor spreading model in media reports with white noise
interference based on the classical rumor propagation model. However, it is unreasonable
to use stochastic differential equations with Wiener process to study the uncertain factors
in rumor propagation process in a short time. In this paper, we use another effective math-
ematical tool, uncertainty theory, to study the uncertainty factors in SIR rumor spreading
model.

The uncertainty theory was established by Liu [27, 28] in 2007 and revised in 2009. Un-
certainty theory is a new branch of mathematics based on normality, duality, subadditivity,
and product axioms. It is used to describe and deal with the phenomenon of uncertainty
[29]. In this theory, uncertain phenomena are characterized by uncertain variables, and
uncertain variables are described by uncertain distributions. In 2008, Liu [30] proposed
the uncertain process. An uncertain process is actually a series of uncertain variables with
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time as the index, which describes the dynamic behavior of the uncertain phenomenon.
Then, in 2009, Liu [28] proposed a special class of uncertain processes called Liu pro-
cess, which is a stationary, independent increment process whose increments are nor-
mal uncertain variables [31]. Liu process is the uncertain counterpart of Wiener process.
Uncertain differential equation is a kind of differential equation with Liu process, which
was first proposed by Liu [30] in 2008. In 2010, Chen and Liu [32] proved the existence
and uniqueness theorem of solutions for uncertain differential equations under Lipschitz
and linear growth conditions. Moreover, some scholars presented some methods to solve
special uncertain differential equations [32–34]. Based on the Lipschitz continuity of Liu
process, Yao et al. [35] gives a sufficient condition for the stability of uncertain differential
equations. In many cases, uncertain differential equations are difficult to solve to obtain
analytic solutions. Yao and Chen [36] first put forward the concept of an α-path and Yao–
Chen fomula, which can transform uncertain differential equations into ordinary differen-
tial equations, and one can use Euler method to solve the uncertain differential equation.
Based on the uncertain process in the uncertainty theory and the knowledge of an uncer-
tain differential equation, we propose an uncertain SIR rumor spreading model.

In this paper, the uncertain differential equation and Liu process in the uncertainty the-
ory is used to study the rumor spreading for the first time, and establish the uncertain SIR
rumor spreading model. The rest of the paper is arranged as follows. In Sect. 2, the basic
definitions and theorems of uncertain variable, uncertain process and uncertain differ-
ential equation in uncertainty theory are introduced. Section 3 establishes the uncertain
SIR rumor spreading model with one Liu process, and gives the derivation process of the
model. Section 4 proves the existence and uniqueness of the solutions of uncertain SIR
rumor spreading differential equations. Section 5 proves that the uncertain SIR rumor
spreading model is stable in measure under certain conditions. In Sect. 6, we give a nu-
merical solution of the model. Section 7 introduces a paradox of stochastic rumor spread-
ing model that shows it is unreasonable to use Wiener process to describe the uncertain
disturbance in rumor propagation. In Sect. 8, a brief discussion is given.

2 Preliminaries
In this section, we review some definitions and useful results about uncertain variable,
uncertain process, and uncertain differential equation.

2.1 Uncertain variable
Definition 1 (Liu [27]) Let L be a σ -algebra on a nonempty set �. A set function M :
L→ [0, 1] is called an uncertain measure if it satisfies:

Axiom 1 (Normality axiom) M{�} = 1 for the universal set �.
Axiom 2 (Duality axiom) M{�} + M{�c} = 1 for any event �.
Axiom 3 (Subadditivity axiom) For every countable sequence of events �1,�2, · · · , we

have

M
{ ∞⋃

i=1

�i

}
≤

∞∑
i=1

M{�i}.

In this case, the triple (�,L,M) is called an uncertainty space.
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Beside, the product uncertain measure on the product σ -algebra L was defined by Liu
[28].

Axiom 4 (Product axiom) Let (�i,Li,Mi) be uncertainty spaces for i = 1, 2, · · · , then the
product uncertain measure M is an uncertain measure satisfying

M
{ ∞∏

i=1

�i

}
=

∞∧
i=1

Mi{�i},

where �i are arbitrarily chosen events from Li for i = 1, 2, · · · , respectively.

Definition 2 (Liu [27]) An uncertain variable is a measurable function ξ from an uncer-
tainty space (�,L,M) to the real number set �, i.e., for any Borel set B of real numbers,
the set {ξ ∈ B} = {γ ∈ �|ξ (γ ) ∈ B} is an event.

Definition 3 (Liu [27]) The uncertainty distribution � of an uncertain variable ξ is de-
fined by �(x) = M{ξ ≤ x} for any real number x.

Definition 4 (Liu [27]) An uncertain variable ξ is called normal if it has a normal uncer-
tainty distribution

�(x) =
(

1 + exp

(
π (e – x)√

3σ

))–1

, x ∈ �,

where e and σ are real numbers with σ > 0. In particular, if e = 0 and σ = 1, ξ is called
standard normal.

If the inverse function �–1 exists and is unique for each α ∈ (0, 1), then it is called the
inverse uncertainty distribution of ξ . In this case, the uncertainty distribution � is said to
be regular.

Definition 5 (Liu [28]) The uncertain variables ξ1, ξ2, . . . , ξm are said to be independent if

M
{ m⋂

i=1

(ξi ∈ Bi)

}
=

m∧
i=1

M{ξi ∈ Bi}

for any Borel sets B1, B2, . . . , Bm of real numbers.

2.2 Uncertain process
Definition 6 (Liu [30]) Let T be an index set, and (�,L,M) be an uncertainty space.
An uncertain process Xt is a measurable function from T × (�,L,M) to the set of real
numbers, i.e., for each t ∈ T and any Borel set B of real numbers, the set {Xt ∈ B} = {γ ∈
�|Xt(γ ) ∈ B} is an event.

Definition 7 (Liu [31]) An uncertain process Xt is said to have an uncertainty distribution
�t(x) if at each time t, the uncertain variable Xt has the uncertainty distribution �t(x).

Definition 8 (Liu [28]) An uncertain process Ct is said to be a Liu process if
(i) C0 = 0 and almost all sample paths are Lipschitz continuous.
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(ii) Ct has stationary and independent increments.
(iii) Every increment Cs+t – Cs is a normal uncertain variable with an uncertainty

distribution

�t(x) =
(

1 + exp

(
–

πx√
3t

))–1

, x ∈ �.

2.3 Uncertain differential equation
Definition 9 (Liu [30]) Let Xt be an uncertain process. For any partition of closed interval
[a, b] with a = t1 < t2 < · · · < tk+1 = b, the mesh is written as 
 = max1≤i≤k |ti+1 – ti|. Then
the time integral of Xt with respect to t is

∫ b

a
Xt dt = lim


→0

k∑
i=1

Xti (ti+1 – ti)

provided that the limit exists almost surely and is finite.

Definition 10 (Liu [28]) Let Xt be an uncertain process and Ct be a Liu process. For any
partition of closed interval [a, b] with a = t1 < t2 < · · · < tk+1 = b, the mesh is written as

 = max1≤i≤k |ti+1 – ti|. Then the Liu integral of Xt is defined by

∫ b

a
Xt dCt = lim


→0

k∑
i=1

Xti (Cti+1 – Cti )

provided that the limit exists almost surely and is finite.

Definition 11 (Liu [30]) Suppose Ct is a Liu process, and f and g are two given functions.
Then

dXt = f (t, Xt) dt + g(t, Xt) dCt (1)

is called an uncertain differential equation. An uncertain process that satisfies equation
(1) identically at each time t is called a solution of the uncertain differential equation.

Definition 12 (Yao and Chen [36]) The α-path (0 < α < 1) of an uncertain differential
equation dXt = f (t, Xt) dt + g(t, Xt) dCt with initial value X0 is a deterministic function Xα

t

with respect to t that solves the corresponding ordinary differential equation

dXα
t = f

(
t, Xα

t
)

dt +
∣∣g(

t, Xα
t
)∣∣�–1(α) dt,

where �–1(α) is the inverse uncertainty distribution of standard normal uncertain vari-
able, i.e.,

�–1(α) =
√

3
π

ln
α

1 – α
, 0 < α < 1.
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Theorem 1 (Yao and Chen [36]) Assume that f (t, x) and g(t, x) are continuous functions.
Let Xα

t be an α-path of the uncertain differential equation

dXα
t = f

(
t, Xα

t
)

dt +
∣∣g(

t, Xα
t
)∣∣�–1(α) dt, t ∈ [0, s].

Then M{Xs ≤ Xα
s } = α, i.e., Xs has an inverse uncertainty distribution

�–1
s (α) = Xα

s , 0 < α < 1.

Definition 13 (Yao [37]) Let Xt be an uncertain process. If for each α ∈ (0, 1), there exists
a real function Xα

t such that

M
{

Xt ≤ Xα
t ,∀t

}
= α, M

{
Xt > Xα

t ,∀t
}

= 1 – α.

then Xt is called a contour process. Xα
t is called the α-path of the uncertain process Xt .

Theorem 2 (Yao [37]) An uncertain process Xt is a contour process if and only if for each
α ∈ (0, 1), there exists a real function Xα

t such that

M
{

Xt < Xα
t ,∀t

}
= α, M

{
Xt ≥ Xα

t ,∀t
}

= 1 – α.

Theorem 3 (Yao et al. [35]) Let Ct be a Liu process. Then there exists an uncertain variable
K such that for each γ , K(γ ) is a Lipschitz constant of the sample path Ct(γ ), and

M{K ≤ x} ≥ 2
(

1 + exp

(
–

πx√
3

))–1

– 1.

Theorem 4 (Yao et al. [35]) Let Ct be a Liu process. Then there exists an uncertain variable
K such that for each γ , K(γ ) is a Lipschitz constant of the sample path Ct(γ ), and

lim
x→+∞M{K ≤ x} = 1.

3 Model formulation
DK model is a classical rumor spreading model. On the basis of the DK model, the for-
getting mechanism is added to establish the deterministic model of SIR rumor spreading.
The ordinary differential equation SIR model is given as follows:

⎧⎪⎪⎨
⎪⎪⎩

dIt
dt = –ItSt ,
dSt
dt = βItSt – λStRt – ηSt ,

dRt
dt = λStRt + ηSt + (1 – β)ItSt .

(2)

In a closed environment, the total population is grouped into three categories: ignorants,
spreaders, and stiflers, which are represented by I , S, and R, respectively:

• Rumor ignorant (I), individuals who know nothing about rumors;
• Rumor spreader (S), individuals who know rumors and will spread them;
• Rumor stifler (R), individuals who know rumors but don’t spread them.
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Figure 1 Schematic diagram of SIR rumor spreading

The population sizes of I , S, and R individuals at time t are denoted by It , St , and Rt ,
respectively. The parameters in the above model are expressed as follows:

• β , the spreading rate that an ignorant turns into a spreader after he comes into
contact with the spreader;

• λ, the rate that the spreader converts into a stifler after contacting with the rumor
stifler;

• η, the rate that a spreader becomes a stifler because he forgotten or lost interest in the
rumor.

It is worth to mention that the deterministic SIR rumor spreading model and uncer-
tain SIR rumor spreading model proposed in this manuscript are suitable to the following
cases:

1. The total population size is considered as a constant, N . Suppose that there is no
entry and exit in the total population.

2. Assume that the mixture of individuals in the population is sufficiently uniform.
3. Suppose that one spreader is in contact with another, and their status does not

change.
The SIR rumor spreading process is shown in Fig. 1.
However, in real life, rumor spreading is affected by environmental noise. This paper,

based on the ordinary differential equation (2), introduces the Liu process to describe the
uncertain factors in the environment, the rate λ of a spreader turning into a stifler affected
by uncertainties. In this part, we change the rate λ into an uncertain variable λt .

Let the time interval [0, t] be divided uniformly into n subintervals such that 0 = t0 < t1 <
t2 < · · · < tn = t, and the interval length is 
t = ti+1 – ti, i = 0, 1, 2, . . . , n – 1. We assume that

λt = λ + σ

Ct


t
,

where λ is a constant, Ct is a Liu process representing the uncertain disturbance, and σ is
a constant denoting the intensity of Ct .

An increase in the number of spreader individuals, who are the original spreaders in the
interval (ti, ti+1], is equal to

(βIti Sti – λti Sti Rti – ηSti )
t = (βIti Sti – λSti Rti – ηSti )
t – σSti Rti
Ct .

Thus

Sti+1 – Sti = (βIti Sti – λSti Rti – ηSti )
t – σSti Rti
Ct .
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Then we have

St – S0 =
n–1∑
i=0

(Sti+1 – Sti ) =
n–1∑
i=0

(
(βIti Sti – λSti Rti – ηSti )
t – σSti Rti
Ct

)
.

Letting 
t → 0, the above equation can be written as an uncertain integral equation,

St – S0 =
∫ t

0
(βIsSs – λSsRs – ηSs) ds –

∫ t

0
σSsRs dCs.

The number of stiflers in the interval (ti, ti+1] is equal to

Rti+1 – Rti =
(
λti Sti Rti + ηSti + (1 – β)Iti Sti

)

t

=
(
λSti Rti + ηSti + (1 – β)Iti Sti

)

t + σSti Rti
Ct .

Then we have

Rt – R0 =
n–1∑
i=0

(Rti+1 – Rti ) =
n–1∑
i=0

((
λSti Rti + ηSti + (1 – β)Iti Sti

)

t + σSti Rti
Ct

)
.

Letting 
t → 0, an uncertain integral equation can be obtained as

Rt – R0 =
∫ t

0

(
λSsRs + ηSs + (1 – β)IsSs

)
ds +

∫ t

0
σSsRs dCs.

The number of ignorants in the interval (ti, ti+1] is equal to

Iti+1 – Iti = –Iti Sti
t.

Then we have

It – I0 =
n–1∑
i=0

(Iti+1 – Iti ) =
n–1∑
i=0

–Iti Sti
t.

Letting 
t → 0, an uncertain integral equation can be obtained as

It – I0 = –
∫ t

0
IsSs ds.

We obtain a system of uncertain integral equations

⎧⎪⎪⎨
⎪⎪⎩

It = I0 –
∫ t

0 IsSs ds,

St = S0 +
∫ t

0 (βIsSs – λSsRs – ηSs) ds –
∫ t

0 σSsRs dCs,

Rt = R0 +
∫ t

0 (λSsRs + ηSs + (1 – β)IsSs) ds +
∫ t

0 σSsRs dCs.

(3)
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It is equal to a system of uncertain differential equations, called the uncertain SIR rumor
spreading model, as follows:

⎧⎪⎪⎨
⎪⎪⎩

dIt = –ItSt dt,

dSt = (βItSt – λStRt – ηSt) dt – σStRt dCt ,

dRt = (λStRt + ηSt + (1 – β)ItSt) dt + σStRt dCt ,

(4)

where It , St , Rt are the numbers of ignorant, spreader, and stifler individuals, respectively,
Ct is a Liu process representing the uncertain disturbers, σ is a constant denoting the
intensity of Ct , and β , λ, and η are constants.

4 Existence and uniqueness of uncertain SIR rumor spreading model
Lemma 1 If, in the uncertain SIR rumor spreading model (4), Ct is a Liu process, then we
have ∣∣∣∣

∫ t

0
σSs(γ )Rs(γ ) dCs(γ )

∣∣∣∣ ≤ K(γ )
∫ t

0

∣∣σSs(γ )Rs(γ )
∣∣ds, (5)

where K(γ ) is the Lipschitz constant of the sample path Ct(γ ) for each γ ∈ �.

Proof According to model (3), we have

max

{∣∣∣∣–
∫ t

0
σSs(γ )Rs(γ ) dCs(γ )

∣∣∣∣,
∣∣∣∣
∫ t

0
σSs(γ )Rs(γ ) dCs(γ )

∣∣∣∣
}

=
∣∣∣∣
∫ t

0
σSs(γ )Rs(γ ) dCs(γ )

∣∣∣∣
=

∣∣∣∣∣ lim

t→0

n∑
i=1

σSti–1 (γ )Rti–1 (γ )
(
Cti (γ ) – Cti–1 (γ )

)∣∣∣∣∣
≤ lim


t→0

n∑
i=1

∣∣σSti–1 (γ )Rti–1 (γ )
∣∣ · ∣∣Cti (γ ) – Cti–1 (γ )

∣∣.
For every sample γ , it can be seen from the definition of Liu process that Ct(γ ) is Lips-
chitz continuous with respect to t. So there exists a finite number K(γ ), called Lipschitz
constant, such that

∣∣Cti (γ ) – Cti–1 (γ )
∣∣ ≤ K(γ )|ti – ti–1|, i = 1, 2, · · · , n.

Thus

lim

t→0

n∑
i=1

∣∣σSti–1 (γ )Rti–1 (γ )
∣∣ · ∣∣Cti (γ ) – Cti–1 (γ )

∣∣

≤ K(γ ) lim

t→0

n∑
i=1

∣∣σSti–1 (γ )Rti–1 (γ )
∣∣ · |ti – ti–1|

≤ K(γ )
∫ t

0

∣∣σSs(γ )Rs(γ )
∣∣ds.

The lemma is proved. �
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Theorem 4.1 If the coefficients of the uncertain SIR rumor spreading model (4) satisfy the
Lipschitz condition

max
{∣∣–(xy – x̃ỹ)

∣∣, ∣∣β(xy – x̃ỹ) – λ(yz – ỹz̃) – η(y – ỹ)
∣∣,∣∣λ(yz – ỹz̃) + η(y – ỹ) + (1 – β)(xy – x̃ỹ)

∣∣}
+

∣∣σ (yz – ỹz̃)
∣∣

≤ L max
{|x – x̃|, |y – ỹ|, |z – z̃|},

for all (x, y, z), (x̃, ỹ, z̃) ∈ �3, t ≥ 0 and some constant L, then model (4) has a unique solution.

Proof To prove the existence of solution for uncertain SIR rumor spreading model (4), a
successive approximation method is used to obtain the solution of the uncertain SIR ru-
mor spreading model (4). For any sample γ , we define (I(0)

t (γ ), S(0)
t (γ ), R(0)

t (γ )) = (I0, S0, R0),
and set

I(n+1)
t (γ ) = I0 –

∫ t

0
I(n)

s (γ )S(n)
s (γ ) ds,

S(n+1)
t (γ ) = S0 +

∫ t

0

(
βI(n)

s (γ )S(n)
s (γ ) – λS(n)

s (γ )R(n)
s (γ ) – ηS(n)

s (γ )
)

ds

–
∫ t

0
σS(n)

s (γ )R(n)
s (γ ) dCs(γ ),

R(n+1)
t (γ ) = R0 +

∫ t

0

(
λS(n)

s (γ )R(n)
s (γ ) + ηS(n)

s (γ ) + (1 – β)I(n)
s (γ )S(n)

s (γ )
)

ds

+
∫ t

0
σS(n)

s (γ )R(n)
s (γ ) dCs(γ ),

and

D(n)
t (γ ) = max

0≤s≤t

{
max

{∣∣I(n+1)
s (γ ) – I(n)

s (γ )
∣∣, ∣∣S(n+1)

s (γ ) – S(n)
s (γ )

∣∣, ∣∣R(n+1)
s (γ ) – R(n)

s (γ )
∣∣}}

for n = 0, 1, 2, · · · . We assert that

D(n)
t (γ ) ≤ (

1 + max
{|I0|, |S0|, |R0|

})
× Ln+1(1 + K(γ ))n+1

(n + 1)!
tn+1, n = 0, 1, 2, . . . , 0 ≤ t ≤ T , (6)

where T is a constant. Inequality (6) is proved by using the mathematical induction as
follows. For n = 0, we have

D(0)
t (γ )

= max
0≤v≤t

{
max

{∣∣I(1)
v (γ ) – I(0)

v (γ )
∣∣, ∣∣S(1)

v (γ ) – S(0)
v (γ )

∣∣, ∣∣R(1)
v (γ ) – R(0)

v (γ )
∣∣}}

= max
0≤v≤t

{
max

{∣∣∣∣–
∫ v

0
I(0)

s (γ )S(0)
s (γ ) ds

∣∣∣∣,∣∣∣∣
∫ v

0

(
βI(0)

s (γ )S(0)
s (γ ) – λS(0)

s (γ )R(0)
s (γ ) – ηS(0)

s (γ )
)

ds
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–
∫ v

0
σS(0)

s (γ )R(0)
s (γ ) dCs(γ )

∣∣∣∣,∣∣∣∣
∫ v

0

(
λS(0)

s (γ )R(0)
s (γ ) + ηS(0)

s (γ ) + (1 – β)I(0)
s (γ )S(0)

s (γ )
)

ds

+
∫ v

0
σS(0)

s (γ )R(0)
s (γ ) dCs(γ )

∣∣∣∣
}}

≤ max
0≤v≤t

{
max

{∣∣∣∣
∫ v

0
–I(0)

s (γ )S(0)(γ )
s ds

∣∣∣∣,∣∣∣∣
∫ v

0

(
βI(0)

s (γ )S(0)
s (γ ) – λS(0)

s (γ )R(0)
s (γ ) – ηS(0)

s (γ )
)

ds
∣∣∣∣,∣∣∣∣

∫ v

0

(
λS(0)

s (γ )R(0)
s (γ ) + ηS(0)

s (γ ) + (1 – β)I(0)
s (γ )S(0)

s (γ )
)

ds
∣∣∣∣
}

+
∣∣∣∣
∫ v

0
σS(0)

s (γ )R(0)
s (γ ) dCs(γ )

∣∣∣∣
}

≤
∫ t

0
max

{|–I0S0|, |βI0S0 – λS0R0 – ηS0|,
∣∣λS0R0 + ηS0 + (1 – β)I0S0

∣∣}ds

+
∣∣∣∣
∫ t

0
σS0R0 dCs(γ )

∣∣∣∣
≤

∫ t

0
max

{|–I0S0|, |βI0S0 – λS0R0 – ηS0|,
∣∣λS0R0 + ηS0 + (1 – β)I0S0

∣∣}ds

+ K(γ )
∫ t

0
|σS0R0|ds

≤ (
1 + K(γ )

)(
max

{|I0S0|, |βI0S0 – λS0R0 – ηS0|,
∣∣λS0R0 + ηS0 + (1 – β)I0S0

∣∣}
+ |σS0R0|

)
t

≤ (
1 + K(γ )

)
L
(
1 + max

{|I0|, |S0|, |R0|
})

t,

which is satisfied if we take

L ≥ max{|I0S0|, |βI0S0 – λS0R0 – ηS0|, |λS0R0 + ηS0 + (1 – β)I0S0|} + |σS0R0|
1 + max{|I0|, |S0|, |R0|} .

Assume inequality (6) holds for n – 1. Then

D(n)
t (γ )

= max
0≤v≤t

{
max

{∣∣I(n+1)
v (γ ) – I(n)

v (γ )
∣∣, ∣∣S(n+1)

v (γ ) – S(n)
v (γ )

∣∣, ∣∣R(n+1)
v (γ ) – R(n)

v (γ )
∣∣}}

= max
0≤v≤t

{
max

{∣∣∣∣–
∫ v

0

(
I(n)

s (γ )S(n)
s (γ ) – I(n–1)

s (γ )S(n–1)
s (γ )

)
ds

∣∣∣∣,∣∣∣∣
∫ v

0
β
(
I(n)

s (γ )S(n)
s (γ ) – I(n–1)

s (γ )S(n–1)
s (γ )

)
– λ

(
S(n)

s (γ )R(n)
s (γ ) – S(n–1)

s (γ )R(n–1)
s (γ )

)

– η
(
S(n)

s (γ ) – S(n–1)
s (γ )

)
ds –

∫ v

0
σ
(
S(n)

s (γ )R(n)
s (γ ) – S(n–1)

s (γ )R(n–1)
s (γ )

)
dCs(γ )

∣∣∣∣,∣∣∣∣
∫ v

0
λ
(
S(n)

s (γ )R(n)
s (γ ) – S(n–1)

s (γ )R(n–1)
s (γ )

)
+ η

(
S(n)

s (γ ) – S(n–1)
s (γ )

)
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+ (1 – β)
(
I(n)

s (γ )S(n)
s (γ ) – I(n–1)

s (γ )S(n–1)
s (γ )

)
ds

+
∫ v

0
σ
(
S(n)

s (γ )R(n)
s (γ ) – S(n–1)

s (γ )R(n–1)
s (γ )

)
dCs(γ )

∣∣∣∣
}}

≤ max

{∣∣∣∣
∫ t

0
–
(
I(n)

s (γ )S(n)
s (γ ) – I(n–1)

s (γ )S(n–1)
s (γ )

)
ds

∣∣∣∣,∣∣∣∣
∫ t

0
β
(
I(n)

s (γ )S(n)
s (γ ) – I(n–1)

s (γ )S(n–1)
s (γ )

)

– λ
(
S(n)

s (γ )R(n)
s (γ ) – S(n–1)

s (γ )R(n–1)
s (γ )

)
– η

(
S(n)

s (γ ) – S(n–1)
s (γ )

)
ds

∣∣∣∣,∣∣∣∣
∫ t

0
λ
(
S(n)

s (γ )R(n)
s (γ ) – S(n–1)

s (γ )R(n–1)
s (γ )

)
+ η

(
S(n)

s (γ ) – S(n–1)
s (γ )

)

+ (1 – β)
(
I(n)

s (γ )S(n)
s (γ ) – I(n–1)

s (γ )S(n–1)
s (γ )

)
ds

∣∣∣∣
}

+ max

{∣∣∣∣
∫ t

0
–σ

(
S(n)

s (γ )R(n)
s (γ ) – S(n–1)

s (γ )R(n–1)
s (γ )

)
dCs(γ )

∣∣∣∣,∣∣∣∣
∫ t

0
σ
(
S(n)

s (γ )R(n)
s (γ ) – S(n–1)

s (γ )R(n–1)
s (γ )

)
dCs(γ )

∣∣∣∣
}

= max

{∣∣∣∣
∫ t

0
–
(
I(n)

s (γ )S(n)
s (γ ) – I(n–1)

s (γ )S(n–1)
s (γ )

)
ds

∣∣∣∣,∣∣∣∣
∫ t

0
β
(
I(n)

s (γ )S(n)
s (γ ) – I(n–1)

s (γ )S(n–1)
s (γ )

)

– λ
(
S(n)

s (γ )R(n)
s (γ ) – S(n–1)

s (γ )R(n–1)
s (γ )

)
– η

(
S(n)

s (γ ) – S(n–1)
s (γ )

)
ds

∣∣∣∣,∣∣∣∣
∫ t

0
λ
(
S(n)

s (γ )R(n)
s (γ ) – S(n–1)

s (γ )R(n–1)
s (γ )

)
+ η

(
S(n)

s (γ ) – S(n–1)
s (γ )

)

+ (1 – β)
(
I(n)

s (γ )S(n)
s (γ ) – I(n–1)

s (γ )S(n–1)
s (γ )

)
ds

∣∣∣∣
}

+
∣∣∣∣
∫ t

0
σ
(
S(n)

s (γ )R(n)
s (γ ) – S(n–1)

s (γ )R(n–1)
s (γ )

)
dCs(γ )

∣∣∣∣
≤

∫ t

0
max

{∣∣–(
I(n)

s (γ )S(n)
s (γ ) – I(n–1)

s (γ )S(n–1)
s (γ )

)∣∣,
∣∣β(

I(n)
s (γ )S(n)

s (γ ) – I(n–1)
s (γ )S(n–1)

s (γ )
)

– λ
(
S(n)

s (γ )R(n)
s (γ ) – S(n–1)

s (γ )R(n–1)
s (γ )

)
– η

(
S(n)

s (γ ) – S(n–1)
s (γ )

)∣∣,
∣∣λ(

S(n)
s (γ )R(n)

s (γ ) – S(n–1)
s (γ )R(n–1)

s (γ )
)

+ (1 – β)
(
I(n)

s (γ )S(n)
s (γ ) – I(n–1)

s (γ )S(n–1)
s (γ )

)
+ η

(
S(n)

s (γ ) – S(n–1)
s (γ )

)∣∣}ds

+ K(γ )
∫ t

0

∣∣σ (
S(n)

s (γ )R(n)
s (γ ) – S(n–1)

s (γ )R(n–1)
s (γ )

)∣∣ds

≤ L
∫ t

0
max

{∣∣I(n)
s (γ ) – I(n–1)

s (γ )
∣∣, ∣∣S(n)

s (γ ) – S(n–1)
s (γ )

∣∣, ∣∣R(n)
s (γ ) – R(n–1)

s (γ )
∣∣}ds
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+ K(γ )L
∫ t

0
max

{∣∣I(n)
s (γ ) – I(n–1)

s (γ )
∣∣, ∣∣S(n)

s (γ ) – S(n–1)
s (γ )

∣∣,
∣∣R(n)

s (γ ) – R(n–1)
s (γ )

∣∣}ds

≤ L
(
1 + K(γ )

)∫ t

0
max

{∣∣I(n)
s (γ ) – I(n–1)

s (γ )
∣∣, ∣∣S(n)

s (γ ) – S(n–1)
s (γ )

∣∣,
∣∣R(n)

s (γ ) – R(n–1)
s (γ )

∣∣}ds

≤ L
(
1 + K(γ )

)∫ t

0

(
1 + max

{|I0|, |S0|, |R0|
})Ln(1 + K(γ ))n

n!
sn ds

=
(
1 + max

{|I0|, |S0|, |R0|
})Ln+1(1 + K(γ ))n+1

(n + 1)!
tn+1.

Therefore, inequality (6) is proved. By using the Weierstrass’ criterion, we obtain

+∞∑
n=0

(
1 + max

{|I0|, |S0|, |R0|
})Ln+1(1 + K(γ ))n+1

(n + 1)!
tn+1

≤
+∞∑
n=0

(
1 + max

{|I0|, |S0|, |R0|
})Ln+1(1 + K(γ ))n+1

(n + 1)!
Tn+1

< +∞, ∀γ ∈ �.

Thus (I(k)
t (γ ), S(k)

t (γ ), R(k)
t (γ )) converges uniformly in t ∈ [0, T]. For any γ ∈ �, t ∈ [0, T],

we obtain

It(γ ) = lim
k→+∞

I(k)
t (γ ), St(γ ) = lim

k→+∞
S(k)

t (γ ), Rt(γ ) = lim
k→+∞

R(k)
t (γ ).

Therefore,

It = I0 –
∫ t

0
IsSs ds,

St = S0 +
∫ t

0
(βIsSs – λSsRs – ηSs) ds –

∫ t

0
σSsRs dCs,

Rt = R0 +
∫ t

0

(
λSsRs + ηSs + (1 – β)IsSs

)
ds +

∫ t

0
σSsRs dCs

is the solution of model (4) for any t ≥ 0, where T is arbitrary.
Then we prove the uniqueness of the solution under the given conditions. Assume that

(It(γ ), St(γ ), Rt(γ )) and (I∗
t (γ ), S∗

t (γ ), R∗
t (γ )) are two solutions of the uncertain SIR rumor

spreading model (4) with the same initial value (I0, S0, R0). For each γ ∈ �, we obtain

max
{∣∣It(γ ) – I∗

t (γ )
∣∣, ∣∣St(γ ) – S∗

t (γ )
∣∣, ∣∣Rt(γ ) – R∗

t (γ )
∣∣}

= max

{∣∣∣∣
∫ t

0
–
(
Iu(γ )Su(γ ) – I∗

u(γ )S∗
u(γ )

)
du

∣∣∣∣,∣∣∣∣
∫ t

0
β
(
Iu(γ )Su(γ ) – I∗

u(γ )S∗
u(γ )

)
– λ

(
Su(γ )Ru(γ ) – S∗

u(γ )R∗
u(γ )

)
– η

(
Su(γ ) – S∗

u(γ )
)

du
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+
∫ t

0
–σ

(
Su(γ )Ru(γ ) – S∗

u(γ )R∗
u(γ )

)
dCu(γ )

∣∣∣∣,∣∣∣∣
∫ t

0
λ
(
Su(γ )Ru(γ ) – S∗

u(γ )R∗
u(γ )

)
+ η

(
Su(γ ) – S∗

u(γ )
)

+ (1 – β)
(
Iu(γ )Su(γ ) – I∗

u(γ )S∗
u(γ )

)
du

+
∫ t

0
σ
(
Su(γ )Ru(γ ) – S∗

u(γ )R∗
u(γ )

)
dCu(γ )

∣∣∣∣
}

≤ max

{∣∣∣∣
∫ t

0

(
Iu(γ )Su(γ ) – I∗

u(γ )S∗
u(γ )

)
du

∣∣∣∣,∣∣∣∣
∫ t

0
β
(
Iu(γ )Su(γ ) – I∗

u(γ )S∗
u(γ )

)
– λ

(
Su(γ )Ru(γ ) – S∗

u(γ )R∗
u(γ )

)

– η
(
Su(γ ) – S∗

u(γ )
)

du
∣∣∣∣,∣∣∣∣

∫ t

0
λ
(
Su(γ )Ru(γ ) – S∗

u(γ )R∗
u(γ )

)
+ η

(
Su(γ ) – S∗

u(γ )
)

+ (1 – β)
(
Iu(γ )Su(γ ) – I∗

u(γ )S∗
u(γ )

)
du

∣∣∣∣
}

+
∣∣∣∣
∫ t

0
σ
(
Su(γ )Ru(γ ) – S∗

u(γ )R∗
u(γ )

)
dCu(γ )

∣∣∣∣
≤

∫ t

0
max

{∣∣Iu(γ )Su(γ ) – I∗
u(γ )S∗

u(γ )
∣∣,

∣∣β(
Iu(γ )Su(γ ) – I∗

u(γ )S∗
u(γ )

)
– λ

(
Su(γ )Ru(γ ) – S∗

u(γ )R∗
u(γ )

)
– η

(
Su(γ ) – S∗

u(γ )
)∣∣,∣∣λ(

Su(γ )Ru(γ ) – S∗
u(γ )R∗

u(γ )
)

+ η
(
Su(γ ) – S∗

u(γ )
)

+ (1 – β)
(
Iu(γ )Su(γ ) – I∗

u(γ )S∗
u(γ )

)∣∣}du

+ K(γ )
∫ t

0

∣∣σ (
Su(γ )Ru(γ ) – S∗

u(γ )R∗
u(γ )

)∣∣du

≤ L
(
1 + K(γ )

)∫ t

0
max

{∣∣Iu(γ ) – I∗
u(γ )

∣∣, ∣∣Su(γ ) – S∗
u(γ )

∣∣, ∣∣Ru(γ ) – R∗
u(γ )

∣∣}du.

Therefore,

max
{∣∣It(γ ) – I∗

t (γ )
∣∣, ∣∣St(γ ) – S∗

t (γ )
∣∣, ∣∣Rt(γ ) – R∗

t (γ )
∣∣}

≤ 0 · exp
(
L
(
1 + K(γ )

)
t
)

= 0

can be obtained by using the Grönwall’s inequality. It is equivalent to (It(γ ), St(γ ), Rt(γ )) =
(I∗

t (γ ), S∗
t (γ ), R∗

t (γ )) almost certainly. The uniqueness of the solution is verified. �

5 Stability of uncertain SIR rumor spreading model
Lemma 2 Assume the uncertain SIR rumor spreading model (4) has a unique solution for
each given initial value. Then it is stable in measure if the coefficients of the uncertain SIR
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rumor spreading model (4) satisfy the strong Lipschitz condition

max
{∣∣–(xy – x̃ỹ)

∣∣, ∣∣β(xy – x̃ỹ) – λ(yz – ỹz̃) – η(y – ỹ)
∣∣,∣∣λ(yz – ỹz̃) + η(y – ỹ) + (1 – β)(xy – x̃ỹ)

∣∣}
+

∣∣σ (yz – ỹz̃)
∣∣

≤ Lt max
{|x – x̃|, |y – ỹ|, |z – z̃|}

for any (x, y, z), (x̃, ỹ, z̃) ∈ �3, t ≥ 0, where Lt is some positive function satisfying

∫ +∞

0
Lt dt < +∞.

Proof Let (It(γ ), St(γ ), Rt(γ )) and (I∗
t (γ ), S∗

t (γ ), R∗
t (γ )) be two solutions of the uncertain

SIR rumor spreading model (4) with different initial values (I0, S0, R0) and (I∗
0 , S∗

0, R∗
0), re-

spectively. On the basis of Lipschitz continuous sample path Ct(γ ), we have

⎧⎪⎪⎨
⎪⎪⎩

It = I0 –
∫ t

0 IsSs ds,

St = S0 +
∫ t

0 (βIsSs – λSsRs – ηSs) ds –
∫ t

0 σSsRs dCs,

Rt = R0 +
∫ t

0 (λSsRs + ηSs + (1 – β)IsSs) ds +
∫ t

0 σSsRs dCs

and

⎧⎪⎪⎨
⎪⎪⎩

I∗
t = I∗

0 –
∫ t

0 I∗
s S∗

s ds,

S∗
t = S∗

0 +
∫ t

0 (βI∗
s S∗

s – λS∗
s R∗

s – ηS∗
s ) ds –

∫ t
0 σS∗

s R∗
s dCs,

R∗
t = R∗

0 +
∫ t

0 (λS∗
s R∗

s + ηS∗
s + (1 – β)I∗

s S∗
s ) ds +

∫ t
0 σS∗

s R∗
s dCs.

According to the strong Lipschitz condition, we have

max
{∣∣It(γ ) – I∗

t (γ )
∣∣, ∣∣St(γ ) – S∗

t (γ )
∣∣, ∣∣Rt(γ ) – R∗

t (γ )
∣∣}

≤ max
{∣∣I0 – I∗

0
∣∣, ∣∣S0 – S∗

0
∣∣, ∣∣R0 – R∗

0
∣∣} +

∫ t

0
max

{∣∣–(
Is(γ )Ss(γ ) – I∗

s (γ )S∗
s (γ )

)∣∣,
∣∣β(

Is(γ )Ss(γ ) – I∗
s (γ )S∗

s (γ )
)

– λ
(
Ss(γ )Rs(γ ) – S∗

s (γ )R∗
s (γ )

)
– η

(
Ss(γ ) – S∗

s (γ )
)∣∣,∣∣λ(

Ss(γ )Rs(γ ) – S∗
s (γ )R∗

s (γ )
)

+ η
(
Ss(γ ) – S∗

s (γ )
)

+ (1 – β)
(
Is(γ )Ss(γ ) – I∗

s (γ )S∗
s (γ )

)∣∣}ds

+
∫ t

0
max

{∣∣–σ
(
Ss(γ )Rs(γ ) – S∗

s (γ )R∗
s (γ )

)∣∣,
∣∣σ (

Ss(γ )Rs(γ ) – S∗
s (γ )R∗

s (γ )
)∣∣}|dCs(γ )|

≤ max
{∣∣I0 – I∗

0
∣∣, ∣∣S0 – S∗

0
∣∣, ∣∣R0 – R∗

0
∣∣}

+
∫ t

0
Ls max

{∣∣Is(γ ) – I∗
s (γ )

∣∣, ∣∣Ss(γ ) – S∗
s (γ )

∣∣, ∣∣Rs(γ ) – R∗
s (γ )

∣∣}ds

+
∫ t

0
K(γ )Ls max

{∣∣Is(γ ) – I∗
s (γ )

∣∣, ∣∣Ss(γ ) – S∗
s (γ )

∣∣, ∣∣Rs(γ ) – R∗
s (γ )

∣∣}ds
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= max
{∣∣I0 – I∗

0
∣∣, ∣∣S0 – S∗

0
∣∣, ∣∣R0 – R∗

0
∣∣}

+
(
1 + K(γ )

)∫ t

0
Ls max

{∣∣Is(γ ) – I∗
s (γ )

∣∣, ∣∣Ss(γ ) – S∗
s (γ )

∣∣, ∣∣Rs(γ ) – R∗
s (γ )

∣∣}ds,

where K(γ ) is the Lipschitz constant of Ct(γ ). By the Grönwall’s inequality, we have

max
{∣∣It(γ ) – I∗

t (γ )
∣∣, ∣∣St(γ ) – S∗

t (γ )
∣∣, ∣∣Rt(γ ) – R∗

t (γ )
∣∣}

≤ max
{∣∣I0 – I∗

0
∣∣, ∣∣S0 – S∗

0
∣∣, ∣∣R0 – R∗

0
∣∣} · exp

((
1 + K(γ )

)∫ t

0
Ls ds

)

≤ max
{∣∣I0 – I∗

0
∣∣, ∣∣S0 – S∗

0
∣∣, ∣∣R0 – R∗

0
∣∣} · exp

((
1 + K(γ )

)∫ +∞

0
Ls ds

)

for any t ≥ 0. So we get

sup
t≥0

max
{∣∣It – I∗

t
∣∣, ∣∣St – S∗

t
∣∣, ∣∣Rt – R∗

t
∣∣}

≤ max
{∣∣I0 – I∗

0
∣∣, ∣∣S0 – S∗

0
∣∣, ∣∣R0 – R∗

0
∣∣} · exp

((
1 + K(γ )

)∫ +∞

0
Ls ds

)

almost surely, where K is a nonnegative uncertain variable such that

lim
x→∞M

{
γ ∈ �|K(γ ) ≤ x

}
= 1

by Theorem 4. For any given ε > 0, there exists a real number H such that M{γ |K(γ ) ≤
H} ≥ 1 – ε. Let

δ = exp

(
–(1 + H)

∫ +∞

0
Ls ds

)
ε.

Then max{|It(γ ) – I∗
t (γ )|, |St(γ ) – S∗

t (γ )|, |Rt(γ ) – R∗
t (γ )|} ≤ ε for any time t, provided that

max{|I0 – I∗
0 |, |S0 – S∗

0|, |R0 – R∗
0|} ≤ δ and K(γ ) ≤ H . This means

M
{

sup
t≥0

max
{∣∣It – I∗

t
∣∣, ∣∣St – S∗

t
∣∣, ∣∣Rt – R∗

t
∣∣} ≤ ε

}
> 1 – ε,

as long as max{|I0 – I∗
0 |, |S0 – S∗

0|, |R0 – R∗
0|} ≤ δ. In other words,

lim
max{|I0–I∗0 |,|S0–S∗

0 |,|R0–R∗
0 |}→0

M
{

sup
t≥0

max
{∣∣It – I∗

t
∣∣, ∣∣St – S∗

t
∣∣, ∣∣Rt – R∗

t
∣∣} ≤ ε

}
= 1

and the uncertain differential equation (4) is stable in measure. The theorem is
proved. �

6 Numerical algorithms
In this section, we use a numerical algorithm based on Euler method to solve the uncertain
SIR rumor spreading model. For the uncertain SIR rumor spreading model (4), the most
important thing is to obtain spectra of α-paths of It , St , and Rt .
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Algorithm
• Step 1. Fix α on (0, 1). Given the initial values I0, S0, R0 and all parameters N , β , λ, η,

and σ .
• Step 2. Solve the ordinary differential equation corresponding to the uncertain

differential equation

dIα
t = –Iα

t Sα
t dt,

dRα
t =

(
λSα

t Rα
t + ηSα

t + (1 – β)Iα
t Sα

t +
∣∣σSα

t Rα
t
∣∣�–1(α)

)
dt,

then obtain the α-paths Iα
t and Rα

t . On the basis of Sα
t = N – I1–α

t – R1–α
t , by using the

recursion formula, we solve it as follows:

⎧⎪⎪⎨
⎪⎪⎩

Iα
i+1 = Iα

i – (Iα
i Sα

i )h,

Rα
i+1 = Rα

i + (λSα
i Rα

i + ηSα
i + (1 – β)Iα

i Sα
i + |σSα

i Rα
i |�–1(α))h,

Sα
i+1 = N – I1–α

i+1 – R1–α
i+1 ,

where h is the step length and �–1(α) =
√

3
π

ln α
1–α

is the inverse standard normal
uncertainty distribution.

• Step 3. The α-paths Iα
t , Sα

t , and Rα
t are obtained.

Example 1 In the uncertain SIR rumor spreading model (4), take N = 1, I0 = 0.99, S0 =
0.01, R0 = 0, and β = 0.5, λ = 0.2, η = 0.02, σ = 0.1. By the algorithm, for every α, we can
obtain the corresponding α-paths Sα

t and Rα
t . Figure 2 shows the trajectories of Iα

t , Sα
t , and

Rα
t when α = 0.1, 0.2, · · · , 0.9.
From Fig. 2 we can see that no matter how α changes, the image will eventually stabilize.

The number of spreaders goes up to its peak in a very short time and then down, eventually

Figure 2 Trajectories of α-paths Iαt , S
α
t , and Rα

t with β = 0.5, λ = 0.2, η = 0.02
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Figure 3 Trajectories of α-paths Iαt , S
α
t , and Rα

t with α = 0.4, σ = 0, 0.5, 0.7, and 1

declining to 0, which suggests that the rumors will fade away. In addition, the uncertain
SIR rumor spreading model (4) is equal to the deterministic rumor spreading model (2)
when α = 0.5. The range of the trajectories of Iα

t , Sα
t and Rα

t in the figure is between the
0.1-path and the 0.9-path of the uncertain differential equation, and the higher the value
of α, the earlier the rumor dissipates.

Example 2 In this example, we study the effect of different σ on the uncertain SIR rumor
spreading model (4), fixing α = 0.4. The other parameters are the same as in Example 1.
Figure 3 shows the trajectories of Iα

t , Sα
t , and Rα

t when σ = 0, 0.5, 0.7, and 1.
Figure 3 shows the paths of the It , St , and Rt with different σ when γ , λ, η, and α are

fixed to 0.5, 0.2, 0.02, and 0.4. It can be clearly seen that when other parameters are fixed,
the greater the value of σ , the larger the number of spreaders, and the longer the time for
rumor to dissipate.

When σ = 0, the uncertain differential equation (4) is an ordinary differential equation
(2). The peak of rumor spreading will be higher as the value of σ increases, which suggests
that the bigger the value of σ , the more factors that affect λ, the fewer people change from
spreaders to stiflers, so it takes longer for rumors to disappear.

Example 3 In this example, when other parameters are fixed, the influence of different
values of β on rumor spreading is discussed. In UDE model (4), take N = 1, I0 = 0.99,
S0 = 0.01, R0 = 0, and λ = 0.2, η = 0.02, α = 0.4, σ = 0.2. Base on the algorithm, Fig. 4 gives
the α-paths of Iα

t , Sα
t , and Rα

t when β = 0.3, 0.5, 0.7, and 0.9. According to the image shown
in Fig. 4, the change of β value has a great impact on the rumor spreading process. The
smaller the value of β , the fewer the spreaders, the faster the rumor tends to stabilize. At
the same time, when there is no one to spread rumors, a minority of the population will
never know about the rumors when β is small. The result is in agreement with the actual
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Figure 4 The α-paths of Iαt , S
α
t , and Rα

t with β = 0.3, 0.5, 0.7, and 0.9

situation, the smaller the β , the less contact there is between ignorants and spreaders, thus
the fewer people who spread rumors. In addition, for higher values of β , the proportion of
spreaders will increase rapidly, the number of ignorants will decline quickly, and the spread
of rumors will be wider. Therefore, the government can control the spread of rumors by
reducing the rate β .

7 Paradox of stochastic SIR rumor spreading model
Let us consider a stochastic SIR rumor spreading model

⎧⎪⎪⎨
⎪⎪⎩

dIt
dt = –ItSt ,
dSt
dt = β̃ItSt – λ̃StRt – η̃St – σ̃StRt

dWt
dt ,

dRt
dt = λ̃StRt + η̃St + (1 – β̃)ItSt + σ̃StRt

dWt
dt ,

(7)

where It is the population size of ignorant individuals, St is the population size of spread-
ers, Rt is the population size of stifler individuals, β̃ is the rumor spread rate, λ̃ is the prob-
ability of not spreading rumors, η̃ is the forgetting rate, Wt is a standard Wiener process,
σ̃ is a constant that represents the intensity of Wt , and time t ≥ 0.

It has been widely accepted that Wiener process is used to describe the environmental
noise in the rumor spreading process, but is this really justified? By deforming the model
(7), one can obtain

⎧⎪⎪⎨
⎪⎪⎩

dIt
dt = –ItSt ,
dSt
dt = β̃ItSt – η̃St – (λ̃ + σ̃ dWt

dt )StRt ,
dRt
dt = η̃St + (1 – β̃)ItSt + (λ̃ + σ̃ dWt

dt )StRt .
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Let λ̇ = λ̃ + σ̃ dWt
dt , which is called the effective rumor avoidance rate. It can be seen that

the stochastic model (7) uses Wiener process to describe the noise influence of λ̃ in the
process of rumor spreading, next we use �Wt

�t instead of dWt
dt . From �Wt ∼ N (0,�t), we

can get that

�Wt

�t
∼N

(
0,

1
�t

)

is a normal random variable, with expected value 0 and variance 1/�t. And from the prop-
erties of the normal distribution, we have

λ̇ ∼N
(

λ̃,
σ̃ 2

�t

)
.

When �t → 0, we have

Pr
{
λ̇ ∈ [0, 1]

}
= Pr{0 ≤ λ̇ ≤ 1}

= Pr

{
–

λ̃

σ̃ /
√�t

≤ λ̇ – λ̃

σ̃ /
√�t

≤ 1 – λ̃

σ̃ /
√�t

}

= �

(
1 – λ̃

σ̃ /
√�t

)
– �

(
–

λ̃

σ̃ /
√�t

)

→ 0,

where λ̃ ∈ [0, 1], σ̃ is a constant, and �(·) is the standard normal distribution function. It
means that

Pr
{
λ̇ ∈ [0, 1]

} ≈ 0, Pr
{
λ̇ /∈ [0, 1]

} ≈ 1.

That is to say, the probability that the effective rumor avoidance rate λ̇ is less than 0 or
greater than 1 is almost 1. However, from the point of view of rumor spreading, λ̇ is the
effective avoidance rate of rumor spreader turning into rumor stifler. In the actual rumor
spreading process, it should be bounded on [0, 1]. That is,

λ̇ =
Number of spreaders converted to rumor stiflers per unit time

The total number of people who spread rumors
.

Thus, it is incorrect to use Brownian motion to describe the uncertain disturbance in ru-
mor propagation. Therefore, it is not reasonable to use stochastic SIR rumor spreading
model (7) to describe the process of rumor spreading.

8 Conclusion
This paper mainly proposed an uncertain SIR rumor spreading model by uncertain differ-
ential equation and Liu process. It first deduced the process of establishing uncertain SIR
rumor spreading model. Then the existence and uniqueness of solutions of uncertain dif-
ferential equation SIR rumor spreading model were proved, and the model was proved to
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be stable in measure when it satisfied certain conditions. Furthermore, we transformed the
uncertain differential equation into an ordinary differential equation by using Yao–Chen
formula. And through numerical simulation, several examples were given to compare the
influence of different parameters on the uncertain SIR rumor spreading model. The results
showed that in daily life, we can predict the time when rumor spreading reaches its peak
and rumor dissipates through uncertain SIR rumor spreading model. Finally, a paradox of
stochastic SIR rumor spreading model was introduced.
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