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Abstract
In this paper, we focus on the synchronization of fractional-order coupled neural
networks (FCNNs). First, by taking information on activation functions into account,
we construct a convex Lur’e–Postnikov Lyapunov function. Based on the convex
Lyapunov function and a general convex quadratic function, we derive a novel
Mittag-Leffler synchronization criterion for the FCNNs with symmetrical coupled
matrix in the form of linear matrix inequalities (LMIs). Then we present a robust
Mittag-Leffler synchronization criterion for the FCNNs with uncertain parameters.
These two Mittag-Leffler synchronization criteria can be solved easily by LMI tools in
Matlab. Moreover, we present a novel Lyapunov synchronization criterion for the
FCNNs with unsymmetrical coupled matrix in the form of LMIs, which can be easily
solved by YALMIP tools in Matlab. The feasibilities of the criteria obtained in this paper
are shown by four numerical examples.
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1 Introduction
The rapid development of modern network science and technology makes humans be
aware of the importance and universality of the research on complex networks. Qualita-
tive and quantitative analysis on various artificial and real complex network systems need
to be conducted. As a typical complex network system, a neural network has a strong in-
telligence characteristic and learning functions, which plays an important role in artificial
intelligence-related fields over the past few decades [1].

In the 1980s, Mandelbrot [2] found that fractional-order phenomena appeared in real
life and engineering, which caused great repercussion both in engineering and academic
circles. Different from classical calculus, fractional-order calculus has unique memoriza-
tion and heredity. Thus fractional-order systems can more reasonably reflect the dynami-
cal response process of the model [3]. In fact, since memory exists in the fractional-order
derivatives and biological neurons, neurons in the human brain can be more accurately
described and simulated by fractional-order neural networks. Nowadays, fractional-order
neural networks play an important role in artificial intelligence-related fields, such as au-
tomatic control, intelligent robots, pattern recognition, and so on. An increasing number
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of scholars turn to the study on dynamical behaviors of fractional-order neural networks,
and many excellent results are reported (see, e.g., [4–8] and references therein).

Synchronization of fractional-order neural networks, as a collective behavior, has re-
ceived much attention and is extensively investigated [9–14]. In [9] the authors study
the synchronization and robust synchronization issues for the FCNNs based on the gen-
eral convex quadratic Lyapunov function. However, the synchronization criteria are in
the form of nonlinear matrix inequalities (NLMIs), which brings certain difficulty in the
solving process. In [10] the authors investigate the hybrid synchronization problem of
two coupled complex networks with fractional-order dynamical nodes based on the gen-
eral convex quadratic Lyapunov function by the fractional-order Lyapunov stability theo-
rem. In [11] a Lyapunov function including fractional-order integral term is constructed
to derive the synchronization stability conditions for Riemann–Liouville fractional-order
delay-coupled complex neural networks. However, the relationship between node net-
works and coupling matrix is neglected.

Due to the complexity of fractional-order calculus theory, some existing synchroniza-
tion criteria for fractional-order neural networks have not fully considered the informa-
tion of FCNNs, such as activation functions and coupled matrix. Based on the fractional-
order Lyapunov stability theory, Lyapunov functions play a key role in the synchroniza-
tion discrimination of the fractional-order system and directly affect the conservatism of
synchronization discrimination conditions. Constructing some Lyapunov functions in-
cluding the information of activation function may be more reasonable and effective. Re-
cently, the global Mittag-Leffler group consensus and group consensus in finite time for
fractional-order multiagent systems are concerned in [15]. Under the fractional-order Fil-
ippov differential inclusion framework, by applying the Lur’e–Postnikov-type convex Lya-
punov functional approach and Clarke’s nonsmooth analysis technique, some sufficient
conditions are provided in terms of LMIs. However, the Lur’e–Postnikov Lyapunov func-
tion constructed in [15] requires that the activation function should be nondecreasing.
In this paper, we remove this constraint. The activation function just needs to satisfy the
general Lipschitz condition. Since the existing research methods have some limitations,
further research is needed.

Motivated by the discussion above, in this paper, we study the synchronization of FC-
NNs. The results obtained enrich the theory of synchronization of FCNNs. The major
contributions can be highlighted as follows:

• The Lur’e–Postnikov Lyapunov function is extended to a general case suitable for the
activation functions satisfying the generalized Lipschitz condition;

• A novel Mittag-Leffler synchronization criterion is derived for the FCNNs with
symmetrical coupled matrix in the form of LMIs. Then a robust Mittag-Leffler
synchronization criterion is given for the FCNNs with uncertain parameters;

• A novel Lyapunov synchronization criterion is derived for the FCNNs with
unsymmetrical coupled matrix in the form of LMIs, which can be easily solved by
YALMIP tools in Matlab;

• The information of network node and coupling matrix is adequately considered in the
synchronization criteria.

The paper is structured as follows. In Sect. 2, we present some definitions and main
properties of Caputo fractional-order calculus. In Sect. 3, we present three novel synchro-



Wang et al. Advances in Difference Equations        (2021) 2021:240 Page 3 of 29

nization criteria for different types of FCNNs in the form of LMIs. Simulation examples
are given in Sect. 4. Conclusions are given in Sect. 5.

2 Preliminaries
To study the synchronization of FCNNs, we first provide some definitions of Caputo
fractional-order calculus and some useful lemmas.

Definition 1 ([16]) Let α ∈ R+. The operator D–α defined on L1[0, b] by

D–αf (t) � 1
�(α)

∫ t

0

f (s)
(t – s)1–α

ds (1)

for 0 ≤ t ≤ b is called the Riemann–Liouville fractional-order integral of order α where �

is the gamma function, �(α) =
∫ +∞

0 tα–1e–t dt.

Definition 2 ([16]) Let n – 1 ≤ α < n, where n ∈ N+. The operator Dα defined by

Dαf (t) � 1
�(n – α)

∫ t

0

f (n)(s)
(t – s)α+1–n ds (2)

is called the Caputo fractional-order differential of order α.

Lemma 1 ([17]) Let V : � → R and x : [0,∞) → � be continuous differentiable functions,
where � ⊂ Rn. Suppose that V (x(t)) is convex over � and V (0) = 0. Then, for any time
instant t ≥ 0,

DαV
(
x(t)

)≤
(

∂V (x(t))
∂x(t)

)T

Dαx(t), ∀α ∈ (0, 1). (3)

Lemma 1 allows us to construct some more useful convex Lyapunov functions. Based
on Lemma 1, the following propositions obviously hold.

Proposition 1 ([18]) Let x : [0,∞) → � be a continuous differentiable function, where
� ⊂ Rn. Let P ∈ Rn×n be a positive definite matrix. Then, for any time instant t ≥ 0,

Dα
[
xT (t)Px(t)

]≤ 2xT (t)PDαx(t), ∀α ∈ (0, 1). (4)

Proposition 2 ([19]) Let x : [0,∞) → R be a continuous differentiable function. Then, for
any time instant t ≥ 0,

Dα
∣∣x(t)

∣∣≤ sign
{

x(t)
}

Dαx(t), ∀α ∈ (0, 1), (5)

almost everywhere.

Proposition 3 ([20]) Let f : R → R and x : [0,∞) → R be continuous differentiable func-
tions. Let f be a continuous nondecreasing function. Then, for any time instant t ≥ 0,

Dα

∫ x(t)

0
f (s) ds ≤ f

(
x(t)

)
Dαx(t), ∀α ∈ (0, 1). (6)
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Moreover, we introduce Lemmas 2 and 3 for the discussion that follows.

Lemma 2 Let α and β be real column vectors of dimensions of n1 and n2, respectively.
For real positive symmetric matrices �1 ∈ Rn1×n1 and �2 ∈ Rn2×n2 , we have the following
inequality for any matrix S ∈ Rn1×n2 satisfying

(�1 S
ST �2

)≥ 0:

2αT Sβ ≤ αT�1α + βT�2β . (7)

Proof The conclusion is obvious, and we omit the proof. �

This lemma is equivalent to the Moon inequality [21]. In this paper, we change its form
for more convenient applications.

Lemma 3 ([22]) Let x = 0 be an equilibrium point of system Dαx(t) = f (t, x), 0 ∈ D ⊂ Rn.
Let V : [0, +∞) × D → R be a continuously differentiable function that is locally Lipschitz
in x and such that

⎧⎨
⎩

α1‖x(t)‖a ≤ V (t, x(t)) ≤ α2‖x(t)‖ab,

DαV (t, x(t)) ≤ –α3‖x(t)‖ab,
(8)

where t ≥ 0, x ∈ D, α ∈ (0, 1), and α1, α2, α3, a, and b are arbitrary positive constants. Then
x = 0 is Mittag-Leffler stable. Moreover, if α3 = 0, then x = 0 is Lyapunov stable.

3 Main results
In this paper, we consider the synchronization of the following FCNNs:

Dαyi(t) = –Cyi(t) + Bg
(
yi(t)

)
+ J(t) + d

N∑
j=1

Aij�yj(t), t ≥ 0, (9)

where i = 1, 2, . . . , N , α ∈ (0, 1), N is the number of nodes, yi(t) = (yi1(t), yi2(t), . . . , yin(t))T ∈
Rn is the state vector of node i, g(yi(t)) = [g1(yi1(t)), g2(yi2(t)), . . . , gn(yin(t))]T with gi(0) = 0
is the activation function of node i, J(t) denotes the external input, B = (Bij)n×n and 0 <
C = diag{C1, C2, . . . , Cn} are real matrices, 0 < d ∈ R denotes the overall coupling strength,
A = (Aij)N×N is the coupled matrix of network, and � = (�ij)n×n corresponds to the inner
coupling matrix.

Throughout this paper, we make the following assumption on the FCNNs.

Assumption 1 ([23, 24]) The activation function g is continuous and bounded. For any
x1, x2 ∈ R, x1 
= x2, the activation functions gj satisfy

k–
j ≤ gj(x1) – gj(x2)

x1 – x2
≤ k+

j , j = 1, 2, . . . , n, (10)

where k+
j and k–

j are known constant values. For convenience, we denote K+ = diag{k+
j },

K– = diag{k–
j }, kj = max{|k+

j |, |k–
j |}, and K = diag{kj}.
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Remark 1 Assumption 1 for activation functions is introduced to investigate the Mittag-
Leffler synchronization of the FCNNs to guarantee the existence and uniqueness of the
equilibrium point. Most of the common activation functions satisfy the generalized Lips-
chitz condition, such as A linear excitation function, threshold or step excitation function,
and so on.

Next, for easier understanding, we give the definition of synchronization.

Definition 3 ([9, 25]) The FCNNs (9) realize synchronization if

lim
t→+∞

∥∥∥∥∥yi(t) –
1
N

N∑
i=1

yi(t)

∥∥∥∥∥ = 0, i = 1, 2, . . . , N . (11)

3.1 Mittag-Leffler synchronization analysis for FCNNs with symmetrical coupled
matrix

In this section, we consider FCNNs (9) with symmetrical coupled matrix, that is, A =
(Aij)N×N is the coupled matrix of network satisfying Aii = –

∑N
j=1,j 
=i Aij; Aij = Aji > 0 if i 
= j

and there is a connection between nodes i and j, otherwise, Aij = 0, i, j = 1, 2, . . . , N .
Defining ȳ(t) = 1

N
∑N

i=1 yi(t) and the error vector ei(t) = yi(t) – ȳ(t), we have

Dαei(t) = –Cei(t) + Bg
(
yi(t)

)
–

1
N

N∑
i=1

Bg
(
yi(t)

)
+ d

N∑
j=1

Aij�ej(t), i = 1, 2, . . . , N . (12)

Thus the synchronization of FCNNs (9) with symmetrical coupled matrix is equivalent to
the stability of system (12).

Notice that if we take e(t) = [eT
1 (t), eT

2 (t), . . . , eT
N (t)]T , then system (12) can be written as

Dαe(t) = –
[
IN ⊗ C – d(A ⊗ �)

]
e(t) +

[(
IN –

EN

N

)
⊗ B

]
g
(
y(t)

)
,

where EN = (Eij)N×N with all Eij = 1.
For the synchronization of FCNNs (9) with symmetrical coupled matrix, we have the

following result.

Theorem 1 FCNNs (9) with symmetrical coupled matrix realize Mittag-Leffler synchro-
nization if there exist positive definite matrices P, �1, �1, �2, 	2 ∈ Rn×n, positive definite
diagonal matrices Di (i = 1, 2, 3, 4), �2, �2, �1, 
1, 
2, �1, �2, 	1 ∈ Rn×n and a matrix
� ∈ RNn×Nn such that the following linear matrix inequalities hold:

(
�1 PB
∗ �2

)
> 0,

(
�1 [K+D1 – K–D2 + KD3 + KD4]B
∗ �2

)
> 0,

(
�1 [D1 – D2 + D3 – D4]C
∗ �2

)
> 0,
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(

1 [–D1 + D2 – D3 + D4]B
∗ 
2

)
> 0, (13)

(
�1 [–D1 + D2 – D3 + D4]B
∗ �2

)
> 0,

(
	1 d[–D1 + D2 – D3 + D4]
∗ 	2

)
> 0,

� < 0,

where � = –IN ⊗ (PC + CT P) + IN ⊗�1 + IN ⊗ (K�2K) + dA ⊗ (P� + �T P) – IN ⊗ [(K+D1 –
K–D2 + KD3 + KD4)C + CT (K+D1 – K–D2 + KD3 + KD4)] + IN ⊗�1 + IN ⊗ (K�2K) + dA ⊗
[(K+D1 – K–D2 + KD3 + KD4)� + �T (K+D1 – K–D2 + KD3 + KD4)) + IN ⊗ (K�1K) + IN ⊗
�2 + IN ⊗ (K
1K) + IN ⊗ (K
2K) + IN ⊗ (K�1K) + IN ⊗ (K�2K) + NIN ⊗ (K	1K) + Ā ⊗
(�T	2�) + �(EN ⊗ In) + (EN ⊗ In)�T and Ā = diag{∑N

i=1 A2
i1,
∑N

i=1 A2
i2, . . . ,

∑N
i=1 A2

iN }.

Proof Construct the Lyapunov function

V
(
e(t)

)
= V1

(
e(t)

)
+ V2

(
e(t)

)
, (14)

where

V1
(
e(t)

)
=

N∑
i=1

eT
i (t)Pei(t),

V2
(
e(t)

)
= 2

N∑
i=1

n∑
j=1

∫ eij(t)

0
d1j
[
k+

j s – gj(s)
]

ds

+ 2
N∑

i=1

n∑
j=1

∫ eij(t)

0
d2j
[
gj(s) – k–

j s
]

ds

+ 2
N∑

i=1

n∑
j=1

∫ eij(t)

0
d3j
[
kjs – gj(s)

]
ds

+ 2
N∑

i=1

n∑
j=1

∫ eij(t)

0
d4j
[
gj(s) + kjs

]
ds.

(15)

To prove the synchronization of FCNNs (9) with symmetrical coupled matrix, the pro-
cess involves three steps.

Step 1: We prove that V (e(t)) is positive.
Obviously, V1(e(t)) is positive by the positive definiteness of P. Next, we prove that

V2(e(t)) is nonnegative.
From Assumption 1 we have

gj(eij(t))
eij(t)

≤ k+
j , j = 1, 2, . . . , n. (16)
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Then

[
k+

j eij(t) – gj
(
eij(t)

)]
eij(t) ≥ 0, j = 1, 2, . . . , n, (17)

which leads to
∫ eij(t)

0 [k+
j s – gj(s)] ds ≥ 0. Similarly,

∫ eij(t)
0 [gj(s) – k–

j s] ds ≥ 0,
∫ eij(t)

0 [kjs –

gj(s)] ds ≥ 0, and
∫ eij(t)

0 [gj(s) + kjs] ds ≥ 0.
Step 2: We prove that there exist positive constants α1 and α2 satisfying α1‖e(t)‖2 ≤

V (e(t)) ≤ α2‖e(t)‖2.
Obviously, we have λmin{P}‖e(t)‖2 ≤ V (e(t)) ≤ [λmax{P} + 8 max1≤k≤4,1≤j≤n{dkj} ·

max1≤j≤n{kj}]‖e(t)‖2.
Step 3: We prove that there exists a positive constant α3 such that DαV (e(t)) ≤

–α3‖e(t)‖2.
For V1(e(t)), by Proposition 1 we have

DαV1
(
e(t)

)≤ 2
N∑

i=1

eT
i (t)PDαei(t)

= 2
N∑

i=1

eT
i (t)P

[
–Cei(t) + Bg

(
yi(t)

)
–

1
N

N∑
i=1

Bg
(
yi(t)

)

+ d
N∑

j=1

Aij�ej(t)

]
.

(18)

Noticing that
∑N

i=1 eT
i (t) = 0, we have

DαV1
(
e(t)

)≤ 2
N∑

i=1

eT
i (t)P

[
–Cei(t) + Bg

(
yi(t)

)
– Bg

(
ȳ(t)

)
+ d

N∑
j=1

Aij�ej(t)

]

= –2
N∑

i=1

eT
i (t)PCei(t) + 2

N∑
i=1

eT
i (t)PB

(
g
(
yi(t)

)
– g

(
ȳ(t)

))

+ 2d
N∑

i=1

N∑
j=1

eT
i (t)PAij�ej(t).

(19)

For 2
∑N

i=1 eT
i (t)PB(g(yi(t)) – g(ȳ(t))), by Lemma 2 there exist a positive definite matrix

�1 and a positive definite diagonal matrix �2 such that

2
N∑

i=1

eT
i (t)PB

(
g
(
yi(t)

)
– g

(
ȳ(t)

))

≤
N∑

i=1

eT
i (t)�1ei(t) +

N∑
i=1

(
g
(
yi(t)

)
– g

(
ȳ(t)

))T
�2
(
g
(
yi(t)

)
– g

(
ȳ(t)

))

≤
N∑

i=1

eT
i (t)�1ei(t) +

N∑
i=1

eT
i (t)K�2Kei(t)

(20)
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and
(

�1 PB
∗ �2

)
> 0.

So

DαV1
(
e(t)

)≤ –2
N∑

i=1

eT
i (t)PCei(t) +

N∑
i=1

eT
i (t)�1ei(t) +

N∑
i=1

eT
i (t)K�2Kei(t)

+ 2d
N∑

i=1

N∑
j=1

eT
i (t)PAij�ej(t)

= eT (t)
[
–IN ⊗ (

PC + CT P
)

+ IN ⊗ �1 + IN ⊗ (K�2K)

+ dA ⊗ (
P� + �T P

)]
e(t).

(21)

For V2(e(t)), based on Proposition 3, we have

DαV2
(
e(t)

)≤ 2
N∑

i=1

[
eT

i (t)K+ – gT(ei(t)
)]

D1

[
–Cei(t) + Bg

(
yi(t)

)

–
1
N

N∑
i=1

Bg
(
yi(t)

)
+ d

N∑
j=1

Aij�ej(t)

]

+ 2
N∑

i=1

[
gT(ei(t)

)
– eT

i (t)K–]D2

[
–Cei(t) + Bg

(
yi(t)

)

–
1
N

N∑
i=1

Bg
(
yi(t)

)
+ d

N∑
j=1

Aij�ej(t)

]

+ 2
N∑

i=1

[
eT

i (t)K – gT(ei(t)
)]

D3

[
–Cei(t) + Bg

(
yi(t)

)

–
1
N

N∑
i=1

Bg
(
yi(t)

)
+ d

N∑
j=1

Aij�ej(t)

]

+ 2
N∑

i=1

[
gT(ei(t)

)
+ eT

i (t)K
]
D4

[
–Cei(t) + Bg

(
yi(t)

)

–
1
N

N∑
i=1

Bg
(
yi(t)

)
+ d

N∑
j=1

Aij�ej(t)

]
,

(22)

where Dk = diag{dk1, dk2, . . . , dkn}, k = 1, 2, 3, 4.
By simple calculation we get

DαV2
(
e(t)

)≤ 2
N∑

i=1

eT
i (t)

[
K+D1 – K–D2 + KD3 + KD4

][
–Cei(t) + Bg

(
yi(t)

)

–
1
N

N∑
i=1

Bg
(
yi(t)

)
+ d

N∑
j=1

Aij�ej(t)

]
(23)
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+ 2
N∑

i=1

gT(ei(t)
)
[–D1 + D2 – D3 + D4]

[
–Cei(t) + Bg

(
yi(t)

)

–
1
N

N∑
i=1

Bg
(
yi(t)

)
+ d

N∑
j=1

Aij�ej(t)

]
.

Similarly to (20), there exist a positive definite matrix �1 and a positive definite diagonal
matrix �2 such that

2
N∑

i=1

eT
i (t)

[
K+D1 – K–D2 + KD3 + KD4

][
–Cei(t) + Bg

(
yi(t)

)

–
1
N

N∑
i=1

Bg
(
yi(t)

)
+ d

N∑
j=1

Aij�ej(t)

]

≤ –2
N∑

i=1

eT
i (t)

[
K+D1 – K–D2 + KD3 + KD4

]
Cei(t)

+
N∑

i=1

eT
i (t)�1ei(t) +

N∑
i=1

eT
i (t)K�2Kei(t)

+ 2d
N∑

i=1

N∑
j=1

eT
i (t)

[
K+D1 – K–D2 + KD3 + KD4

]
Aij�ej(t)

= eT (t)
{

–IN ⊗ [(
K+D1 – K–D2 + KD3 + KD4

)
C

+ CT(K+D1 – K–D2 + KD3 + KD4
)]

+ IN ⊗ �1

+ IN ⊗ (K�2K) + dA ⊗ [(
K+D1 – K–D2 + KD3 + KD4

)
�

+ �T(K+D1 – K–D2 + KD3 + KD4
)]}

e(t)

(24)

and

(
�1 [K+D1 – K–D2 + KD3 + KD4]B
∗ �2

)
> 0.

From (23) we have

2
N∑

i=1

gT(ei(t)
)
[–D1 + D2 – D3 + D4]

[
–Cei(t) + Bg

(
yi(t)

)

–
1
N

N∑
i=1

Bg
(
yi(t)

)
+ d

N∑
j=1

Aij�ej(t)

]

= 2
N∑

i=1

gT(ei(t)
)
[D1 – D2 + D3 – D4]Cei(t) (25)
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+ 2
N∑

i=1

gT(ei(t)
)
[–D1 + D2 – D3 + D4]B

[
g
(
yi(t)

)
– g

(
ȳ(t)

)]

+
2
N

N∑
i=1

N∑
j=1

gT(ei(t)
)
[–D1 + D2 – D3 + D4]B

[
g
(
ȳ(t)

)
– g

(
yj(t)

)]

+ 2d
N∑

i=1

N∑
j=1

gT(ei(t)
)
[–D1 + D2 – D3 + D4]Aij�ej(t).

For 2
∑N

i=1 gT (ei(t))[D1 – D2 + D3 – D4]Cei(t), there exist a positive definite matrix �1 and
a positive definite diagonal matrix �2 such that

2
N∑

i=1

gT(ei(t)
)
[D1 – D2 + D3 – D4]Cei(t)

≤
N∑

i=1

gT(ei(t)
)
�1g

(
ei(t)

)
+

N∑
i=1

eT
i (t)�2ei(t)

≤
N∑

i=1

eT
i (t)K�1Kei(t) +

N∑
i=1

eT
i (t)�2ei(t)

= eT (t)
[
IN ⊗ (K�1K)

]
e(t) + eT (t)[IN ⊗ �2]e(t)

(26)

and

(
�1 [D1 – D2 + D3 – D4]C
∗ �2

)
> 0.

For 2
∑N

i=1 gT (ei(t))[–D1 + D2 – D3 + D4]B[g(yi(t)) – g(ȳ(t))], we have a positive definite
matrix 
1 and a positive definite diagonal matrix 
2 such that

2
N∑

i=1

gT(ei(t)
)
[–D1 + D2 – D3 + D4]B

[
g
(
yi(t)

)
– g

(
ȳ(t)

)]

≤
N∑

i=1

gT(ei(t)
)

1g

(
ei(t)

)
+

N∑
i=1

[
g
(
yi(t)

)
– g

(
ȳ(t)

)]T

2
[
g
(
yi(t)

)
– g

(
ȳ(t)

)]

≤
N∑

i=1

eT
i (t)K
1Kei(t) +

N∑
i=1

eT
i (t)K
2Kei(t)

= eT (t)
[
IN ⊗ (K
1K) + IN ⊗ (K
2K)

]
e(t)

(27)

and

(

1 [–D1 + D2 – D3 + D4]B
∗ 
2

)
> 0.
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For 2
N
∑N

i=1
∑N

j=1 gT (ei(t))[–D1 + D2 – D3 + D4]B[g(ȳ(t)) – g(yj(t))], we have a positive def-
inite matrix �1 and a positive definite diagonal matrix �2 such that

2
N

N∑
i=1

N∑
j=1

gT(ei(t)
)
[–D1 + D2 – D3 + D4]B

[
g
(
ȳ(t)

)
– g

(
yj(t)

)]

≤
N∑

i=1

gT(ei(t)
)
�1g

(
ei(t)

)
+

N∑
i=1

[
g
(
ȳ(t)

)
– g

(
yi(t)

)]T
�2
[
g
(
ȳ(t)

)
– g

(
yi(t)

)]

≤
N∑

i=1

eT
i (t)K�1Kei(t) +

N∑
i=1

eT
i (t)K�2Kei(t)

= eT (t)
[
IN ⊗ (K�1K) + IN ⊗ (K�2K)

]
e(t)

(28)

and

(
�1 [–D1 + D2 – D3 + D4]B
∗ �2

)
> 0.

For 2d
∑N

i=1
∑N

j=1 gT (ei(t))[–D1 +D2 –D3 +D4]Aij�ej(t), we have a positive definite matrix
	1 and a positive definite diagonal matrix 	2 such that

2d
N∑

i=1

N∑
j=1

gT(ei(t)
)
[–D1 + D2 – D3 + D4]Aij�ej(t)

≤
N∑

i=1

N∑
j=1

gT(ei(t)
)
	1g

(
ei(t)

)
+

N∑
i=1

N∑
j=1

[
Aij�ej(t)

]T
	2
[
Aij�ej(t)

]

≤ N
N∑

i=1

eT
i (t)K	1Kei(t) +

N∑
i=1

N∑
j=1

[
Aij�ej(t)

]T
	2Aij�ej(t)

= eT (t)
[
NIN ⊗ (K	1K) + Ā ⊗ (

�T	2�
)]

e(t)

(29)

and

(
	1 d[–D1 + D2 – D3 + D4]
∗ 	2

)
> 0,

where Ā = diag{∑N
i=1 A2

i1,
∑N

i=1 A2
i2, . . . ,

∑N
i=1 A2

iN }.
Since

∑N
i=1 ei(t) = 0, we get

2eT (t)�(EN ⊗ In)e(t) = 0, (30)

where � ∈ RNn×Nn.
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From (21), (24), and (26)–(30) we have

DαV
(
e(t)

)≤ eT (t)
{

–IN ⊗ (
PC + CT P

)
+ IN ⊗ �1 + IN ⊗ (K�2K)

+ dA ⊗ (
P� + �T P

)
– IN ⊗ [(

K+D1 – K–D2 + KD3 + KD4
)
C

+ CT(K+D1 – K–D2 + KD3 + KD4
)]

+ IN ⊗ �1

+ IN ⊗ (K�2K) + dA ⊗ [
(
K+D1 – K–D2 + KD3 + KD4

)
�

+ �T(K+D1 – K–D2 + KD3 + KD4
)
) + IN ⊗ (K�1K)

+ IN ⊗ �2 + IN ⊗ (K
1K) + IN ⊗ (K
2K) + IN ⊗ (K�1K)

+ IN ⊗ (K�2K) + NIN ⊗ (K	1K) + Ā ⊗ (
�T	2�

)

+ �(EN ⊗ In) + (EN ⊗ In)�T}e(t)

= eT (t)�e(t).

(31)

So there exists a positive constant α3 such that DαV (e(t)) ≤ –α3‖e(t)‖2 if � < 0. There-
fore by Lemma 3 FCNNs (9) with symmetrical coupled matrix realizes synchronization
under condition (13).

The proof is completed. �

3.2 Mittag-Leffler synchronization analysis for FCNNs with uncertain parameters
FCNNs may contain uncertain parameters due to the existence of environmental noises
or model errors in many circumstances. In this section, we consider the following FCNNs
with uncertain parameters:

Dαyi(t) = –
(
C + �C(t)

)
yi(t) +

(
B + �B(t)

)
g
(
yi(t)

)
+ J(t)

+ d
N∑

j=1

Aij�yj(t), t ≥ 0,
(32)

where A = (Aij)N×N is the coupled matrix of network that satisfies Aij = Aji > 0 if i 
= j and
there is a connection between node i and node j, otherwise, Aij = 0, and Aii = –

∑N
j=1,j 
=i Aij,

i = 1, 2, . . . , N .
For the uncertain parameters �C(t) and �B(t) in (32), we make the following assump-

tion.

Assumption 2 The parametric uncertainties �C(t) and �B(t) are of the form

[
�C(t),�B(t)

]
= MF(t)[HC , HB], (33)

where M, HC , and HB ∈ Rn×n are known real constant matrices, and the uncertain matrix
F(t) is unknown real time-varying matrix satisfying FT (t)F(t) ≤ In.

To study the synchronization of (32), we need the following lemma.
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Lemma 4 ([26]) For given matrices Y , D, and E of proper dimensions, assume that Y sat-
isfies Y T = Y . Then

Y + DFE + ET FT DT < 0 (34)

for any F satisfying FT F ≤ I if and only if there is a real number ε > 0 such that

Y + εDDT + ε–1ET E < 0. (35)

For the synchronization of FCNNs (32), we have the following result.

Theorem 2 FCNNs (32) realize Mittag-Leffler synchronization if there exist positive defi-
nite matrices P, �1, �1, �2, 	2 ∈ Rn×n, positive definite diagonal matrices Di (i = 1, 2, 3, 4),
�2, �2, �1, 
1, 
2, �1, �2, 	1 ∈ Rn×n, a matrix � ∈ RNn×Nn, and positive real numbers
ε1, ε2, ε3, ε4, ε5, ε6, ε7 such that the following linear matrix inequalities hold:

(
	1 d[–D1 + D2 – D3 + D4]
∗ 	2

)
> 0,

⎛
⎜⎝

�1 PB PM
∗ �2 – ε1HT

B HB O
∗ ∗ ε1In

⎞
⎟⎠ > 0,

⎛
⎜⎝

�1 [K+D1 – K–D2 + KD3 + KD4]B [K+D1 – K–D2 + KD3 + KD4]M
∗ �2 – ε2HT

B HB O
∗ ∗ ε2In

⎞
⎟⎠ > 0,

⎛
⎜⎝

�1 [D1 – D2 + D3 – D4]C [D1 – D2 + D3 – D4]M
∗ �2 – ε3HT

C HC O
∗ ∗ ε3In

⎞
⎟⎠ > 0,

⎛
⎜⎝


1 [–D1 + D2 – D3 + D4]B [–D1 + D2 – D3 + D4]M
∗ 
2 – ε4HT

B HB O
∗ ∗ ε4In

⎞
⎟⎠ > 0,

⎛
⎜⎝

�1 [–D1 + D2 – D3 + D4]B [–D1 + D2 – D3 + D4]M
∗ �2 – ε5HT

B HB O
∗ ∗ ε5In

⎞
⎟⎠ > 0,

⎛
⎜⎝

� + ε6�1 + ε7�2 IN ⊗ (PM) IN ⊗ [(K+D1 – K–D2 + KD3 + KD4)M]
∗ –ε6INn O
∗ ∗ –ε7INn

⎞
⎟⎠ < 0,

(36)

where �1 = �2 = [IN ⊗ HT
C ][IN ⊗ HC], and � is the same as in Theorem 1.

Proof By Theorem 1 FCNNs (32) realize Mittag-Leffler synchronization if the following
matrix inequalities hold:

(
�1 P(B + MF(t)HB)
∗ �2

)
> 0,
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(
�1 [K+D1 – K–D2 + KD3 + KD4](B + MF(t)HB)
∗ �2

)
> 0,

(
�1 [D1 – D2 + D3 – D4](C + MF(t)HC)
∗ �2

)
> 0,

(

1 [–D1 + D2 – D3 + D4](B + MF(t)HB)
∗ 
2

)
> 0,

(
�1 [–D1 + D2 – D3 + D4](B + MF(t)HB)
∗ �2

)
> 0,

(
	1 d[–D1 + D2 – D3 + D4]
∗ 	2

)
> 0,

�∗ = –IN ⊗ [
P
(
C + MF(t)HC

)
+
(
C + MF(t)HC

)T P
]

+ IN ⊗ �1

+ IN ⊗ (K�2K) + dA ⊗ (
P� + �T P

)
(37)

– IN ⊗ [(
K+D1 – K–D2 + KD3 + KD4

)(
C + MF(t)HC

)

+
(
C + MF(t)HC

)T(K+D1 – K–D2 + KD3 + KD4
)]

+ IN ⊗ �1 + IN ⊗ (K�2K) + dA ⊗ [(
K+D1 – K–D2 + KD3 + KD4

)
�

+ �T(K+D1 – K–D2 + KD3 + KD4
)]

+ IN ⊗ (K�1K)

+ IN ⊗ �2 + IN ⊗ (K
1K) + IN ⊗ (K
2K) + IN ⊗ (K�1K)

+ IN ⊗ (K�2K) + NIN ⊗ (K	1K) + Ā ⊗ (
�T	2�

)

+ �(EN ⊗ In) + (EN ⊗ In)�T < 0.

Let e1 = [In, O] and e2 = [O, In]. Then

(
�1 P(B + MF(t)HB)
∗ �2

)

=

(
�1 PB + PMF(t)HB

∗ �2

)

=

(
�1 PB
∗ �2

)
+ eT

1 PMF(t)HBe2 + eT
2 HT

B FT (t)MT Pe1.

(38)

Lemma 4 implies that
(�1 PB

∗ �2

)
+ eT

1 PMF(t)HBe2 + eT
2 HT

B FT (t)MT Pe1 > 0 if and only if
there exists ε� > 0 such that

(
�1 PB
∗ �2

)
– ε–1

� eT
1 PMMT Pe1 – ε�eT

2 HT
B HBe2 > 0. (39)
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By the Schur complement theorem,
(�1 PB

∗ �2

)
– ε–1

� eT
1 PMMT Pe1 – ε�eT

2 HT
B HBe2 > 0 if and

only if

⎛
⎜⎝
(

�1 PB
∗ �2

)
– ε�eT

2 HT
B HBe2 eT

1 PM

∗ ε�I

⎞
⎟⎠

=

⎛
⎜⎝

�1 PB PM
∗ �2 – ε�HT

B HB O
∗ ∗ ε�In

⎞
⎟⎠ > 0.

(40)

So
(�1 P(B+MF(t)HB)

∗ �2

)
> 0 is equivalent to

⎛
⎜⎝

�1 PB PM
∗ �2 – ε�HT

B HB O
∗ ∗ ε�In

⎞
⎟⎠ > 0 (41)

for some ε� > 0.
Similarly,

(
�1 [K+D1–K–D2+KD3+KD4](B+MF(t)HB)
∗ �2

)
> 0 if and only if

⎛
⎜⎝

�1 [K+D1 – K–D2 + KD3 + KD4]B [K+D1 – K–D2 + KD3 + KD4]M
∗ �2 – ε�HT

B HB O
∗ ∗ ε�In

⎞
⎟⎠ > 0 (42)

for some ε� > 0;( �1 [D1–D2+D3–D4](C+MF(t)HC )
∗ �2

)
> 0 if and only if

⎛
⎜⎝

�1 [D1 – D2 + D3 – D4]C [D1 – D2 + D3 – D4]M
∗ �2 – ε3HT

C HC O
∗ ∗ ε3In

⎞
⎟⎠ > 0 (43)

for some ε3 > 0;(
1 [–D1+D2–D3+D4](B+MF(t)HB)
∗ 
2

)
> 0 if and only if

⎛
⎜⎝


1 [–D1 + D2 – D3 + D4]B [–D1 + D2 – D3 + D4]M
∗ 
2 – ε4HT

B HB O
∗ ∗ ε4In

⎞
⎟⎠ > 0 (44)

for some ε4 > 0; and(�1 [–D1+D2–D3+D4](B+MF(t)HB)
∗ �2

)
> 0 if and only if

⎛
⎜⎝

�1 [–D1 + D2 – D3 + D4]B [–D1 + D2 – D3 + D4]M
∗ �2 – ε5HT

B HB O
∗ ∗ ε5In

⎞
⎟⎠ > 0 (45)

for some ε5 > 0.
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Moreover, for �∗, we have

�∗ = � – IN ⊗ [
PMF(t)HC +

(
MF(t)HC

)T P
]

– IN ⊗ [(
K+D1 – K–D2 + KD3 + KD4

)
MF(t)HC

+
(
MF(t)HC

)T(K+D1 – K–D2 + KD3 + KD4
)]

= � –
[
IN ⊗ (PM)

][
IN ⊗ F(t)

]
[IN ⊗ HC]

–
[
IN ⊗ HT

C
][

IN ⊗ FT (t)
][

IN ⊗ (PM)T]

–
[
IN ⊗ ((

K+D1 – K–D2 + KD3 + KD4
)
M
)][

IN ⊗ F(t)
]
[IN ⊗ HC]

–
[
IN ⊗ HT

C
][

IN ⊗ FT (t)
][

IN ⊗ ((
K+D1 – K–D2 + KD3 + KD4

)
M
)T],

(46)

where [IN ⊗ FT (t)][IN ⊗ F(t)] ≤ INn.
Thus by the Schur complement theorem, �∗ < 0 is equivalent to

⎛
⎜⎝

� + ε6�1 + ε7�2 IN ⊗ (PM) IN ⊗ [(K+D1 – K–D2 + KD3 + KD4)M]
∗ –ε6INn O
∗ ∗ –ε7INn

⎞
⎟⎠ < 0 (47)

for some ε6 > 0 and ε7 > 0, where �1 = �2 = [IN ⊗ HT
C ][IN ⊗ HC].

By Lemma 3 FCNNs (32) realize synchronization under condition (36).
The proof is completed. �

3.3 Synchronization analysis for FCNNs with unsymmetrical coupled matrix
In this section, we consider FCNNs (9) with unsymmetrical coupled matrix, that is,
A = (Aij)N×N is an unsymmetrical coupled matrix representing the coupling strength and
topological structure of the networks.

Let ȳ(t) = 1
N
∑N

i=1 yi(t) and define the error vector ei(t) = yi(t) – ȳ(t). From FCNNs (9) we
have

Dαei(t) = –Cei(t) + Bg
(
yi(t)

)
–

1
N

N∑
i=1

Bg
(
yi(t)

)

+ d
N∑

j=1

(
Aij –

1
N

N∑
i=1

Aij

)
�yj(t), i = 1, 2, . . . , N .

(48)

The synchronization of FCNNs (9) with unsymmetrical coupled matrix is equivalent to
the stability of system (48).

Theorem 3 FCNNs (9) with unsymmetrical coupled matrix realize synchronization in the
sense of Lyapunov if there exist positive definite matrices P ∈ Rn×n, positive definite diagonal
matrices Di (i = 1, 2, 3, 4), positive semidefinite matrices �i, �i, �i, 
i, �i, 	i ∈ Rn×n, i =
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1, 2, and matrices �1 ∈ RNn×Nn such that the following linear matrix inequalities hold:

� ≤ 0,

(
�1 PB
∗ �2

)
≥ 0,

(
�1 [K+D1 – K–D2 + KD3 + KD4]B
∗ �2

)
≥ 0,

(
�1 [D1 – D2 + D3 – D4]C
∗ �2

)
≥ 0,

(

1 [–D1 + D2 – D3 + D4]B
∗ 
2

)
≥ 0,

(
�1 [–D1 + D2 – D3 + D4]B
∗ �2

)
≥ 0,

(
	1 –D1 + D2 – D3 + D4

∗ 	2

)
≥ 0,

(49)

where � = (INn – EN ⊗In
N )[–IN ⊗ (PC + CT P) + IN ⊗ �1 + IN ⊗ (K�2K) – IN ⊗ ((K+D1 –

K–D2 + KD3 + KD4)C + CT (K+D1 – K–D2 + KD3 + KD4)) + IN ⊗ �1 + IN ⊗ (K�2K) + IN ⊗
(K�1K) + IN ⊗ �2 + IN ⊗ (K
1K) + IN ⊗ (K
2K) + IN ⊗ (K�1K) + IN ⊗ (K�2K) + NIN ⊗
(K	1K)](INn – EN ⊗In

N ) + sym{�1(EN ⊗ In)}(INn – EN ⊗In
N ) + sym{d(INn – EN ⊗In

N )[A ⊗ ((P +
K+D1 – K–D2 + KD3 + KD4)�)]} + d2A∗ ⊗ (�T	2�), A = (Aij – Aj)N×N , Aj = 1

N
∑N

i=1 Aij,
and A∗ = diag{∑N

i=1(Ai1 – A1)2,
∑N

i=1(Ai2 – A2)2, . . . ,
∑N

i=1(AiN – AN )2}.

Proof Construct the Lyapunov function

V
(
e(t)

)
= V1

(
e(t)

)
+ V2

(
e(t)

)
, (50)

where

V1
(
e(t)

)
=

N∑
i=1

eT
i (t)Pei(t),

V2
(
e(t)

)
= 2

N∑
i=1

n∑
j=1

∫ eij(t)

0
d1j
[
k+

j s – gj(s)
]

ds

+ 2
N∑

i=1

n∑
j=1

∫ eij(t)

0
d2j
[
gj(s) – k–

j s
]

ds

+ 2
N∑

i=1

n∑
j=1

∫ eij(t)

0
d3j
[
kjs – gj(s)

]
ds

+ 2
N∑

i=1

n∑
j=1

∫ eij(t)

0
d4j
[
gj(s) + kjs

]
ds.

(51)

Proposition 1 implies

DαV1
(
e(t)

)≤ 2
N∑

i=1

eT
i (t)PDαei(t)

= 2
N∑

i=1

eT
i (t)P

[
–Cei(t) + Bg

(
yi(t)

)
– Bg

(
ȳ(t)

)

+ Bg
(
ȳ(t)

)
–

1
N

N∑
i=1

Bg
(
yi(t)

)
+ d

N∑
j=1

(Aij – Aj)�yj(t)

]
,

(52)

where Aj = 1
N
∑N

i=1 Aij.
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Because
∑N

i=1 eT
i (t) = 0, we get

DαV1
(
e(t)

)≤ 2
N∑

i=1

eT
i (t)P

[
–Cei(t) + Bg

(
yi(t)

)
– Bg

(
ȳ(t)

)

+ d
N∑

j=1

(Aij – Aij)�yj(t)

]

= –2
N∑

i=1

eT
i (t)PCei(t) + 2

N∑
i=1

eT
i (t)PB

(
g
(
yi(t)

)
– g

(
ȳ(t)

))

+ 2d
N∑

i=1

N∑
j=1

eT
i (t)P(Aij – Aj)�yj(t).

(53)

By Lemma 2 there exist a positive definite matrix �1 and a positive semidefinite matrix
�2 such that

2
N∑

i=1

eT
i (t)PB

(
g
(
yi(t)

)
– g

(
ȳ(t)

))≤
N∑

i=1

eT
i (t)�1ei(t) +

N∑
i=1

eT
i (t)K�2Kei(t) (54)

and

(
�1 PB
∗ �2

)
≥ 0.

So

DαV1
(
e(t)

)≤ –2
N∑

i=1

eT
i (t)PCei(t) +

N∑
i=1

eT
i (t)�1ei(t) +

N∑
i=1

eT
i (t)K�2Kei(t)

+ 2d
N∑

i=1

N∑
j=1

eT
i (t)P(Aij – Aj)�yj(t)

= eT (t)
[
–IN ⊗ (

PC + CT P
)

+ IN ⊗ �1 + IN ⊗ (K�2K)
]
e(t)

+ 2deT (t)A ⊗ (P�)y(t),

(55)

where A = (Aij – Aj)N×N .
Noting that e(t) = (INn – EN ⊗In

N )y(t), we have

DαV1
(
e(t)

)≤ yT (t)
{(

INn –
EN ⊗ In

N

)[
–IN ⊗ (

PC + CT P
)

+ IN ⊗ �1 + IN ⊗ (K�2K)
](

INn –
EN ⊗ In

N

)

+ 2d
(

INn –
EN ⊗ In

N

)[
A ⊗ (P�)

]}
y(t).

(56)
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For V2(e(t)), by Proposition 3 we have

DαV2
(
e(t)

)≤ 2
N∑

i=1

eT
i (t)

[
K+D1 – K–D2 + KD3 + KD4

][
–Cei(t)

+ Bg
(
yi(t)

)
–

1
N

N∑
i=1

Bg
(
yi(t)

)
+ d

N∑
j=1

(Aij – Aj)�yj(t)

]

+ 2
N∑

i=1

gT(ei(t)
)
[–D1 + D2 – D3 + D4]

[
–Cei(t) + Bg

(
yi(t)

)

–
1
N

N∑
i=1

Bg
(
yi(t)

)
+ d

N∑
j=1

(Aij – Aj)�yj(t)

]
,

(57)

where Dk = diag{dk1, dk2, . . . , dkn}, k = 1, 2, 3, 4.
Similarly, there are a positive definite matrix �1 and a positive semi-definite matrix �2

such that

2
N∑

i=1

eT
i (t)

[
K+D1 – K–D2 + KD3 + KD4

][
–Cei(t) + Bg

(
yi(t)

)

–
1
N

N∑
i=1

Bg
(
yi(t)

)
+ d

N∑
j=1

(Aij – Aj)�yj(t)

]

≤ –2
N∑

i=1

eT
i (t)

[
K+D1 – K–D2 + KD3 + KD4

]
Cei(t)

+
N∑

i=1

eT
i (t)�1ei(t) +

N∑
i=1

eT
i (t)K�2Kei(t)

+ 2d
N∑

i=1

N∑
j=1

eT
i (t)

[
K+D1 – K–D2 + KD3 + KD4

]
(Aij – Aj)�yj(t)

= yT (t)
{(

INn –
EN ⊗ In

N

)[
–IN ⊗ ((

K+D1 – K–D2 + KD3 + KD4
)
C

+ CT(K+D1 – K–D2 + KD3 + KD4
))

+ IN ⊗ �1 + IN ⊗ (K�2K)
](

INn –
EN ⊗ In

N

)

+ 2d
(

INn –
EN ⊗ In

N

)[
A ⊗ ((

K+D1 – K–D2 + KD3 + KD4
)
�
)]}

y(t)

(58)

and

(
�1 [K+D1 – K–D2 + KD3 + KD4]B
∗ �2

)
≥ 0.
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Simple calculation yields

2
N∑

i=1

gT(ei(t)
)
[–D1 + D2 – D3 + D4]

[
–Cei(t) + Bg

(
yi(t)

)

–
1
N

N∑
i=1

Bg
(
yi(t)

)
+ d

N∑
j=1

(Aij – Aj)�yj(t)

]

= 2
N∑

i=1

gT(ei(t)
)
[D1 – D2 + D3 – D4]Cei(t)

+ 2
N∑

i=1

gT(ei(t)
)
[–D1 + D2 – D3 + D4]B

[
g
(
yi(t)

)
– g

(
ȳ(t)

)]

+
2
N

N∑
i=1

N∑
j=1

gT(ei(t)
)
[–D1 + D2 – D3 + D4]B

[
g
(
ȳ(t)

)
– g

(
yj(t)

)]

+ 2d
N∑

i=1

N∑
j=1

gT(ei(t)
)
[–D1 + D2 – D3 + D4](Aij – Aj)�yj(t).

(59)

There exist a positive definite matrix �1 and a positive semidefinite matrix �2 such that

2
N∑

i=1

gT(ei(t)
)
[D1 – D2 + D3 – D4]Cei(t)

≤
N∑

i=1

eT
i (t)K�1Kei(t) +

N∑
i=1

eT
i (t)�2ei(t)

= yT (t)
(

INn –
EN ⊗ In

N

)[
IN ⊗ (K�1K) + IN ⊗ �2

](
INn –

EN ⊗ In

N

)
y(t)

(60)

and

(
�1 [D1 – D2 + D3 – D4]C
∗ �2

)
≥ 0.

Similarly, we have a positive definite matrix 
1 and a positive semidefinite matrix 
2 such
that

2
N∑

i=1

gT(ei(t)
)
[–D1 + D2 – D3 + D4]B

[
g
(
yi(t)

)
– g

(
ȳ(t)

)]

≤
N∑

i=1

eT
i (t)K
1Kei(t) +

N∑
i=1

eT
i (t)K
2Kei(t)

= yT (t)
(

INn –
EN ⊗ In

N

)[
IN ⊗ (K
1K)

+ IN ⊗ (K
2K)
](

INn –
EN ⊗ In

N

)
y(t)

(61)
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and

(

1 [–D1 + D2 – D3 + D4]B
∗ 
2

)
≥ 0.

By Lemma 2 we have a positive definite matrix �1 and a positive semidefinite matrix �2

satisfying the matrix inequalities

2
N

N∑
i=1

N∑
j=1

gT(ei(t)
)
[–D1 + D2 – D3 + D4]B

[
g
(
ȳ(t)

)
– g

(
yj(t)

)]

≤
N∑

i=1

eT
i (t)K�1Kei(t) +

N∑
i=1

eT
i (t)K�2Kei(t)

= yT (t)
(

INn –
EN ⊗ In

N

)[
IN ⊗ (K�1K) + IN ⊗ (K�2K)

](
INn –

EN ⊗ In

N

)
y(t)

(62)

and

(
�1 [–D1 + D2 – D3 + D4]B
∗ �2

)
≥ 0,

where �1 and �2 are diagonal matrices.
For 2d

∑N
i=1
∑N

j=1 gT (ei(t))[–D1 + D2 – D3 + D4](Aij – Aj)�yj(t), by Lemma 2 there exist a
positive definite matrix 	1 and a positive semidefinite matrix 	2 such that

2d
N∑

i=1

N∑
j=1

gT(ei(t)
)
[–D1 + D2 – D3 + D4](Aij – Aj)�yj(t)

≤ N
N∑

i=1

eT
i (t)K	1Kei(t) + d2

N∑
i=1

N∑
j=1

[
(Aij – Aj)�yj(t)

]T
	2(Aij – Aj)�yj(t)

= yT (t)
{(

INn –
EN ⊗ In

N

)[
NIN ⊗ (K	1K)

](
INn –

EN ⊗ In

N

)

+ d2A∗ ⊗ (
�T	2�

)}
y(t)

(63)

and

(
	1 –D1 + D2 – D3 + D4

∗ 	2

)
≥ 0,

where A∗ = diag{∑N
i=1(Ai1 – A1)2,

∑N
i=1(Ai2 – A2)2, . . . ,

∑N
i=1(AiN – AN )2}.
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Combining (58) with (60)–(63) gives

DαV2
(
e(t)

)≤ yT (t)
{(

INn –
EN ⊗ In

N

)[
–IN ⊗ ((

K+D1 – K–D2 + KD3 + KD4
)
C

+ CT(K+D1 – K–D2 + KD3 + KD4
))

+ IN ⊗ �1

+ IN ⊗ (K�2K) + IN ⊗ (K�1K) + IN ⊗ �2 + IN ⊗ (K
1K)

+ IN ⊗ (K
2K) + IN ⊗ (K�1K) + IN ⊗ (K�2K)

+ NIN ⊗ (K	1K)
](

INn –
EN ⊗ In

N

)

+ 2d
(

INn –
EN ⊗ In

N

)[
A ⊗ ((

K+D1 – K–D2 + KD3 + KD4
)
�
)]

+
[
A∗ ⊗ (

�T	2�
)]}

y(t).

(64)

Since
∑N

i=1 eT
i (t) = 0, we have 2yT (t)�1(EN ⊗ In)(INn – EN ⊗In

N )y(t) = 0 for any matrix �1 ∈
RNn×Nn. Then

DαV
(
e(t)

)≤ yT (t)
{(

INn –
EN ⊗ In

N

)[
–IN ⊗ (

PC + CT P
)

+ IN ⊗ �1

+ IN ⊗ (K�2K) – IN ⊗ ((
K+D1 – K–D2 + KD3 + KD4

)
C

+ CT(K+D1 – K–D2 + KD3 + KD4
))

+ IN ⊗ �1

+ IN ⊗ (K�2K) + IN ⊗ (K�1K) + IN ⊗ �2 + IN ⊗ (K
1K)

+ IN ⊗ (K
2K) + IN ⊗ (K�1K) + IN ⊗ (K�2K)

+ NIN ⊗ (K	1K)
](

INn –
EN ⊗ In

N

)

+ 2�1(EN ⊗ In)
(

INn –
EN ⊗ In

N

)

+ 2d
(

INn –
EN ⊗ In

N

)[
A ⊗ ((

P + K+D1 – K–D2 + KD3 + KD4
)
�
)]

+ d2A∗ ⊗ (
�T	2�

)}
y(t)

= yT (t)�y(t).

(65)

So DαV (e(t)) ≤ 0 if yT (t)�y(t) ≤ 0. Therefore by Lemma 3 FCNNs (9) with unsymmetri-
cal coupled matrix realize synchronization in the sense of Lyapunov under condition (49).
The proof is completed. �

The Lyapunov synchronization of the FCNNs with unsymmetrical coupled matrix in
Theorem 3 is weaker than the Mittag-Leffler synchronization.

Remark 2 Each sufficient synchronization condition proposed in Theorems 1–3 includes
several LMIs. The forms of sufficient synchronization conditions seem to be complicated,
but they can be easily solved by Matlab. The sufficient conditions in Theorems 1–3 require
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(0.5N2 + 2.5)n2 + (14.5 + 0.5N)n, (0.5N2 + 2.5)n2 + (14.5 + 0.5N)n + 7 and (0.5N2 + 2.5)n2 +
(14.5 + 0.5N)n decision variables, respectively, where N stands for the number of nodes,
and n is the dimension of the state vector for each node.

4 Numerical examples
In this section, we provide four numerical examples to confirm the correctness of the
obtained synchronization criteria.

Example 1 Consider FCNNs (9) consisting of 5 identical 2-D fractional-order neural net-
works, where α = 0.97, fj(ξ ) = |ξ+1|–|ξ–1|

4 (j = 1, 2), d = 0.7,

C =

(
0.6 0
0 0.5

)
, B =

(
0.1 0.2
0.1 0.1

)
, � =

(
0.5 0.6
0.7 0.3

)
,

J(t) =

(
0.1

0.05

)
, A =

⎛
⎜⎜⎜⎜⎜⎜⎝

–0.4 0.2 0.1 0 0.1
0.2 –0.5 0 0.3 0
0.1 0 –0.5 0.3 0.1
0 0.3 0.3 –0.6 0

0.1 0 0.1 0 –0.2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(66)

It is clear that fj satisy Assumption 1 with k–
j = –0.5 and k+

j = 0.5. Solving LMIs in Theo-
rem 1 by using LMI tools in Matlab, we get tmin = –0.3441. So the FCNNs in this example
realize synchronization.

Take y11(0) = 0.2, y12(0) = –0.1, y21(0) = 0.15, y22(0) = –0.3, y31(0) = –0.26, y32(0) = 0.16,
y41(0) = 0.05, y42(0) = –0.07, y51(0) = 0.1, and y52(0) = –0.19. The trajectories of the state
and error systems are shown in Figs. 1 and 2, respectively. Figure 2 shows that FCNNs (9)
with coefficient (66) achieve synchronization.

Remark 3 This example was studied in [9]. The fractional-order neural network is syn-
chronized under a pinning controller U(t) = Ke(t) with K = diag{0.8I, 1.6I, O, O, O}. How-
ever, the synchronization criteria are in the form of NLMIs, which brings certain difficulty
in the solving process. Differently from the method used in [9], Lemma 2 is adopted to get
a synchronization criterion in the form of LMIs. Moreover, a novel convex Lyapunov func-
tion V2 is constructed to take into account the information of the activation functions.

Figure 1 State trajectories of the state system in Example 1
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Figure 2 State trajectories of the error system in Example 1

Figure 3 State trajectories of the state system in Example 2

Example 2 Consider FCNNs (9) with uncertain parameters consisting of 5 identical 2-D
fractional-order neural networks, where α = 0.97, fj(ξ ) = |ξ+1|–|ξ–1|

4 (j = 1, 2), d = 0.7,

C =

(
0.6 0
0 0.5

)
, B =

(
0.1 0.2
0.1 0.1

)
, � =

(
0.5 0.6
0.7 0.3

)
,

J(t) =

(
sin(t)
cos(t)

)
, A =

⎛
⎜⎜⎜⎜⎜⎜⎝

–0.4 0.2 0.1 0 0.1
0.2 –0.5 0 0.3 0
0.1 0 –0.5 0.3 0.1
0 0.3 0.3 –0.6 0

0.1 0 0.1 0 –0.2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

M =

(
0.1 0
0 0.1

)
, HC =

(
0.05 0

0 –0.05

)
, HB =

(
–0.03 0

0 0.03

)
.

(67)

It is clear that fj satisfy Assumption 1 with k–
j = –0.5 and k+

j = 0.5. Solving LMIs in Theo-
rem 2 by LMI tools in Matlab, we get tmin = –0.2642. So FCNNs with uncertain parameters
realize synchronization.

Take y11(0) = 0.3, y12(0) = –0.2, y21(0) = 0.15, y22(0) = –0.3, y31(0) = –0.15, y32(0) = –0.25,
y41(0) = 0.05, y42(0) = –0.07, y51(0) = 0.1, and y52(0) = –0.1. The trajectories of the state
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Figure 4 State trajectories of the error system in Example 2

system are shown in Fig. 3. The trajectories of the error system are shown in Fig. 4. From
Fig. 4 we can see that FCNNs with coefficient (67) are synchronized.

Example 3 Consider the FCNNs (9) with unsymmetrical coupled matrix consisting of 2
identical 2-D fractional-order neural networks, where α = 0.97, fj(ξ ) = |ξ+1|–|ξ–1|

4 (j = 1, 2),
d = 0.5,

C =

(
3 0
0 4

)
, B =

(
0.5 –0.1

–0.2 0.4

)
, � =

(
1 0
0 1

)
,

A =

(
–0.1 0.1
0.3 –0.4

)
, J(t) =

(
0.05
0.05

)
.

(68)

It is clear that fj satisfy Assumption 1 with k–
j = –0.5 and k+

j = 0.5.
Solving LMIs in Theorem 3 by YALMIP tools in Matlab, we get

� = 1.0e–06 ∗

⎛
⎜⎜⎜⎝

–0.0793 0.0020 0.0803 –0.0020
0.0020 –0.1166 –0.0020 0.1177
0.0803 –0.0020 –0.0812 0.0020

–0.0020 0.1177 0.0020 –0.1188

⎞
⎟⎟⎟⎠≤ 0.

Since � is negative semidefinite, FCNNs with uncertain parameters in this example re-
alize synchronization in the sense of Lyapunov.

Take y11(0) = 0.05, y12(0) = –0.05, y21(0) = 0.2, and y22(0) = –0.2. The trajectories of the
state system are shown in Fig. 5. The trajectories of the error system are shown in Fig. 6.
Figure 6 shows that FCNNs with coefficient (68) are synchronized.
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Figure 5 State trajectories of the state system in Example 3

Figure 6 State trajectories of the error system in Example 3

Example 4 Consider FCNNs (9) consisting of 5 identical 2-D fractional-order neural net-
works. Let α = 0.97, fj(ξ ) = |ξ+1|–|ξ–1|

4 (j = 1, 2), d = 0.7,

C =

(
0.6 0
0 0.5

)
, B =

(
0.1 0.2
0.1 0.1

)
, � =

(
0.5 0.6
0.7 0.3

)
,

J(t) =

(
0.1 sin(t)

cos(t)

)
, A =

⎛
⎜⎜⎜⎜⎜⎜⎝

–0.4 0.2 0.1 0 0.1
0.2 –0.5 0 0.3 0
0.1 0 –0.5 0.3 0.1
0 0.3 0.3 –0.6 0

0.1 0 0.1 0 –0.2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(69)

It is clear that fj satisfy Assumption 1 with k–
j = –0.5 and k+

j = 0.5.
Since all conditions in Theorem 1 are satisfied, FCNNs in this example can realize syn-

chronization.
The trajectories of the state system are shown in Fig. 7. From Fig. 7 we see that FCNN

system is unstable. The trajectories of the error system are shown in Fig. 8. Figure 8 shows
that FCNNs with coefficient (69) realize synchronization.



Wang et al. Advances in Difference Equations        (2021) 2021:240 Page 27 of 29

Figure 7 State trajectories of the state system in Example 4

Figure 8 State trajectories of the error system in Example 4

5 Conclusions
In this paper, we study the synchronization of FCNNs. We construct some novel convex
Lyapunov functions containing the activation function information, based on which, we
present several novel Mittag-Leffler synchronization criteria for FCNNs with and without
uncertain parameters. Then we establish a novel synchronization criterion in the sense of
Lyapunov for FCNNs with unsymmetrical coupled matrix. The benefits of the synchro-
nization criteria obtained in this paper are illustrated by four numerical examples. The
global synchronization for stochastic dynamic networks [27, 28] and the synchronization
in fixed or finite time for fractional-order network [29, 30] have attracted considerable at-
tention in the past few decades. In the future, we will study the global synchronization of
fractional-order stochastic neural networks basing on the event-triggered strategy.
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