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Abstract
In this paper, a stochastic SICA epidemic model with standard incidence rate for HIV
transmission is proposed. The sufficient conditions of the extinction and persistence
in mean for the disease are established. Numerical simulations show that random
perturbations can suppress disease outbreaks and the risk of HIV transmission can be
reduced by reducing the transmission coefficient of HIV while increasing the strength
of the stochastic perturbation.
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1 Introduction

To the best of our knowledge, the human immunodeficiency virus (HIV) is a retrovirus
that causes HIV infection and, over time, acquired immunodeficiency syndrome (AIDS).
There is no cure or vaccine to AIDS. However, antiretroviral (ART) treatment improves
health, prolongs life, and substantially reduces the risk of HIV transmission. As more
people receive antiretroviral therapy, the number of new HIV infections worldwide is ap-
proximately 2.3 million, a 33 per cent decline in new infections compared to 2001. At the
same time, the number of AIDS deaths is also declining, with approximately 1.6 million
AIDS deaths in 2012, down from 2.3 million in 2005 [1]. This goes to show that access
to antiretroviral therapy has a huge impact on HIV prevention. Parvaiz et al. consider a
fractional-order HIV epidemic model with the inclusion of prostitution in the population
and its consequences on the disease transmission [2]. In [3], the authors consider a non-
linear fractional order epidemic model for HIV transmission and analyze by including an
extra compartment, namely the exposed class, to the basic SIR epidemic model. They show
through numerical simulations that the control measures effectively increase the quality
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of life and age limit of the HIV patients. The authors in [4] consider the following model:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS(t)
dt = λ – μS(t) – βS(t)I(t)

N(t) ,
dI(t)

dt = βS(t)I(t)
N(t) – (μ + γ + ρ)I(t) + αA(t) + ωC(t),

dC(t)
dt = γ I(t) – (μ + ω)C(t),

dA(t)
dt = ρI(t) – (α + μ + d)A(t),

(1.1)

where the parameters are:
• N(t): The total population at time t;
• S(t): Susceptible individuals at time t;
• I(t): HIV-infected individuals with no clinical symptoms of AIDS at time t;
• C(t): HIV-infected individuals under ART treatment with a viral load remaining low

at time t;
• A(t): HIV-infected individuals with AIDS clinical symptoms at time t;
• λ: Recruitment rate;
• μ: Natural death rate;
• β : HIV transmission rate;
• γ : HIV treatment rate for I individuals;
• ρ : Default treatment rate for I individuals;
• α: AIDS treatment rate;
• ω: Default treatment rate for C individuals;
• d: AIDS induced death rate.
They found that when R0 < 1, the disease-free equilibrium of system (1.1) is asymptot-

ically stable; when R0 > 1, the disease-free equilibrium is unstable and there is a globally
asymptotically stable endemic equilibrium. Here, R0 = β(α+μ+d)(μ+ω)

μ[(μ+ω)(ρ+α+μ+d)+γ (α+μ+d)+ρd]+ρωd is
the basic reproduction number.

The above studies did not consider the effect of white noise in the environment on the
model; in fact, infectious diseases are inevitably affected by random white noise in the en-
vironment. May [5] finds that because of the fluctuation of the environment, the param-
eters of the deterministic system, such as the death rate and the transmission coefficient,
and other parameters of the deterministic system show a certain degree of random fluc-
tuation. Therefore, the transmission coefficient may be affected by many environmental
factors, such as temperature, wind, rain, and snow. In [6], the authors extend the classical
SIS epidemic model from a deterministic framework to a stochastic one and formulate
it as a stochastic differential equation (SDE) for the number of infectious individuals I(t).
They discuss perturbation by stochastic noise. In the case of persistence they show the ex-
istence of a stationary distribution and derive expressions for its mean and variance. In [7],
the authors present the threshold of a stochastic SIQS epidemic model which determines
the extinction and persistence of the disease and find that noise can suppress the disease
outbreak. Therefore, when establishing the corresponding mathematical model, we must
consider the impact of white noise on the disease. Many scholars have introduced white
noise into the infectious disease model [8–12]. In addition, there are a number of other
types of stochastic models that have been developed to further explain that stochastic fac-
tors are integral to the modeling of infectious diseases, see [13–16].

In this paper, our aim is to introduce random white noise in the environment into the
deterministic model and to study the effect of random disturbance on the number of HIV
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infected people and the conditions between the random disturbance and the parameters
of the model, and if the number of HIV infected people can be controlled. Motivated by
[6], we consider here random white noise in the environment, which is assumed to demon-
strate itself as fluctuations in the parameter β , so that β → β +σ dB(t), where B(t) is a stan-
dard Brownian motion with intensity σ 2 > 0. Hence, we can derive the following stochastic
model:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS(t) = [λ – μS(t) – βS(t)I(t)
N(t) ] dt – σS(t)I(t)

N(t) dB(t),

dI(t) = [ βS(t)I(t)
N(t) – (μ + γ + ρ)I(t) + αA(t) + ωC(t)] dt + σS(t)I(t)

N(t) dB(t),

dC(t) = [γ I(t) – (μ + ω)C(t)] dt,

dA(t) = [ρI(t) – (α + μ + d)A(t)] dt.

(1.2)

This paper is organized as follows. In Sect. 2, we prove that there is a unique global
positive solution for system (1.2). In Sect. 3, we show that the disease goes to extinction
exponentially under certain conditions and the persistence of the disease, that is to say,
the disease will prevail. In Sect. 4, we carry out the numerical simulations to demonstrate
the analytical results. In Sect. 5, we give some conclusions.

Throughout this paper, we let (	,F , {F}t≥0,P) be a complete probability space with fil-
tration {F}t≥0 satisfying the usual conditions (that is to say, it is increasing and right con-
tinuous while F0 contains all P-null sets). On the other hand, we define R

d
+ = {x ∈R

d|xi >
0 for all 1 ≤ i ≤ d}.

Generally speaking, consider the d-dimensional stochastic differential equation

dx(t) = f
(
x(t), t

)
dt + g

(
x(t), t

)
dBt , (1.3)

where f (t, x(t)) is a function in R
d defined in [t0,∞] ×R

d , and g(x(t), t) is a d × m matrix,
f , g are locally Lipschitz functions in x. Bt denotes an m-dimensional standard Brownian
motion defined on the complete probability space (	,F , {F}t≥0,P). Denote by C2,1(Rd ×
[t0,∞];R+) the family of all nonnegative functions V (x(t), t) defined on R

d × [t0,∞] such
that they are continuously twice differentiable in x and once in t. We define the differential
operator L of equation (1.3) by [17]

L =
∂

∂t
+

d∑

i=1

fi(x, t)
∂

∂xi
+

1
2

d∑

i,j=1

[
gT (x, t)g(x, t)

]

ij
∂2

∂xi∂xj
.

If L acts on a function V ∈ C2,1(Rd × [t0,∞],R+), then

LV (x, t) = Vt(x, t) + Vx(x, t)f (x, t) +
1
2

trace
[
gT (x, t)Vxx(x, t)g(x, t)

]
,

where Vt(x, t) = ∂V
∂t , Vx(x, t) = ( ∂V

∂xi
, . . . , ∂V

∂xd
), Vxx(x, t) = ( ∂2V

∂xi∂xj
)d×d .

From Itô’s formula, if x(t) ∈R
d , then

dV (x, t) = LV (x, t) dt + Vx(x, t)g(x, t) dBt .
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2 Existence and uniqueness of positive solution
Theorem 2.1 There is a unique solution (S(t), I(t), C(t), A(t)) of system (1.2) on t ≥ 0 for
any initial value (S(0), I(0), C(0), A(0)) ∈R

4
+, and the solution will remain in R

4
+ with prob-

ability one, namely (S(t), I(t), C(t), A(t)) ∈R
4
+ for all t ≥ 0 almost surely. Moreover,

λ

(μ + d)
< lim

t→∞ N(t) =
λ

μ
, (2.1)

where N(t) = S(t) + I(t) + C(t) + A(t).

Proof We can easily know that the coefficients of system (1.2) are locally Lipschitz con-
tinuous, then for any given initial value (S(0), I(0), C(0), A(0)) ∈R

4
+, there is a unique local

solution (S(t), I(t), C(t), A(t)) on t ∈ [0, τe), where τe is the explosion time (see [17]). To
show that this solution is global, we only need to prove that τe = ∞ almost surely. Let
k0 ≥ 0 be sufficiently large so that (S(0), I(0), C(0), A(0)) all lie within the interval [ 1

k0
, k0].

For each integer k ≥ k0, define the following stopping time:

τk = inf

{

t ∈ [0, τe) : min
{(

S(t), I(t), C(t), A(t)
)} ≤ 1

k

or max
{(

S(t), I(t), C(t), A(t)
)} ≥ k

}

,

where throughout this paper, we set inf∅ = ∞ (as usual ∅ denotes the empty set). Accord-
ing to the definition of the stopping time, τk is increasing as k → ∞. Set τ∞= limk→∞ τk ,
whence τ∞ ≤ τe almost surely. Namely, we need to show that τ∞=∞ almost surely. We
assumed that there exists a pair of constants T > 0 and ε ∈ (0, 1) such that

P{τ∞ ≤ T} > ε.

As a result, there is an integer k1 ≥ k0 such that

P{τk ≤ T} > ε for all k ≥ k1. (2.2)

Now define a C2-function V : R4
+ →R+ by

V (t) =
(
S(t) – 1 – ln S(t)

)
+

(
I(t) – 1 – ln I(t)

)
+

(
C(t) – 1 – ln C(t)

)
+

(
A(t) – 1 – ln A(t)

)
.

Applying Itô’s formula, we obtain

dV (t) = LV (t) dt –
[

σ (S(t) – 1)I(t)
N(t)

–
σ (I(t) – 1)S(t)

N(t)

]

dB(t),

where

LV (t) =
(

1 –
1

S(t)

)(

λ – μS(t) –
βS(t)I(t)

N(t)

)

+
1

2S2(t)
σ 2S2(t)I2(t)

N2(t)

+
(

1 –
1

I(t)

)(
βS(t)I(t)

N(t)
– (μ + γ + ρ)I(t) + αA(t) + ωC(t)

)
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+
1

2I2(t)
σ 2S2(t)I2(t)

N2(t)
+

(

1 –
1

C(t)

)
[
γ I(t) – (μ + ω)C(t)

]

+
(

1 –
1

A(t)

)
[
ρI(t) – (α + μ + d)A(t)

]

= λ + 4μ + γ + ρ + α + ω + d +
βI(t)
N(t)

+
σ 2I2(t)
2N2(t)

+
σ 2S2(t)
2N2(t)

– μN(t) – dA(t)

–
λ

S(t)
–

βS(t)
N(t)

–
αA(t) + ωC(t)

I(t)
–

γ I(t)
C(t)

–
ρI(t)
A(t)

≤ λ + 4μ + γ + ρ + α + ω + d + β + σ 2 .= K .

Thus

dV (t) = K dt –
[

σ (S(t) – 1)I(t)
N(t)

–
σ (I(t) – 1)S(t)

N(t)

]

dB(t). (2.3)

Integrating both sides of (2.3) from 0 to T ∧ τk and taking expectations, we can obtain

EV
(
S(T ∧ τk), I(T ∧ τk), C(T ∧ τk), A(T ∧ τk)

)

≤ V
(
S(0), I(0), C(0), A(0)

)
+ KT < ∞. (2.4)

Set 	k = {τk ≤ t} for k ≥ k1 by (2.2), P(	k) ≥ ε. Notice that, for every ω ∈ 	k , there is at
least one of (S(τk ,ω), I(τk ,ω), C(τk ,ω), A(τk ,ω)) that equals to k or 1

k . Consequently,

V
(
S(τk ,ω), I(τk ,ω), C(τk ,ω), A(τk ,ω)

) ≥ (k – 1 – log k) ∧
(

1
k

– 1 + log k
)

, (2.5)

where a ∧ b denotes the minimum of a and b. In view of (2.4) and (2.5), we have

V
(
S(0), I(0), C(0), A(0)

)
+ KT ≥ E

[
1	k V

(
S(τk ,ω), I(τk ,ω), C(τk ,ω), A(τk ,ω)

)]

≥ ε

[

(k – 1 – log k) ∧
(

1
k

– 1 + log k
)]

,

where 1	k is the indicator function of 	k . Let k → ∞ lead to the contradiction

∞ > V
(
S(0), I(0), C(0), A(0)

)
+ KT = ∞.

Therefore, we must have τ∞ = ∞ almost surely.
In view of system (1.2), we have

dN(t)
dt

= λ – μN(t) – dA(t).

Solving this equation, we obtain that

N(t) =
λ

μ
+

(

N(0) –
λ

μ

)

e–μt – d
∫ t

0
A(s)e–μ(t–s) ds,
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which implies that

lim
t→∞ N(t) =

λ

μ
almost surely.

On the other hand, we have

dN(t)
dt

> λ – (μ + d)N(t).

Then we can obtain

N(t) >
λ

μ + d
+ e–(μ+d)t

(

N(0) –
λ

μ + d

)

,

which implies that

lim
t→∞ N(t) >

λ

μ + d
almost surely.

The proof of Theorem 2.1 is complete. �

3 Extinction and persistence in mean
In this section, we discuss under what conditions the disease will be extinct and the per-
sistence of the disease, namely, under what condition the disease will prevail. For conve-
nience, firstly, we define 〈X(t)〉 = 1

t
∫ t

0 X(s) ds.

Theorem 3.1 If R1 < 1 or σ 2 ≤ β and R2 < 1 hold, then the disease I(t) will die out expo-
nentially with probability one, that is,

I(t), C(t), A(t) → 0 as t → +∞ and S(t) → λ

μ
as t → +∞,

where

R1 =
β2

2σ 2μ
, R2 =

β

(μ + σ 2
2 )

.

Proof Let Q(t) = I(t) + C(t) + A(t). Making use of Itô’s formula, we can have

d ln Q(t) =
1

I(t) + C(t) + A(t)

[
βS(t)I(t)

N(t)
– μI(t) – μC(t) – (μ + d)A(t)

]

dt

–
σ 2S2(t)I2(t)

2N2(I(t) + C(t) + A(t))2 dt +
σS(t)I(t)

N(t)(I(t) + C(t) + A(t))
dB(t)

≤
[

βS(t)I(t)
N(t)(I(t) + C(t) + A(t))

– μ –
σ 2S2(t)I2(t)

2N2(t)(I(t) + C(t) + A(t))2

]

dt

+
σS(t)I(t)

N(t)(I(t) + C(t) + A(t))
dB(t)

=
[

–
(

σS(t)I(t)√
2N(t)(I(t) + C(t) + A(t))

–
β
√

2
2σ

)2

+
β2

2σ 2 – μ

]

dt
(3.1)
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+
σS(t)I(t)

N(t)(I(t) + C(t) + A(t))
dB(t)

≤
[

β2

2σ 2 – μ

]

dt +
σS(t)I(t)

N(t)(I(t) + C(t) + A(t))
dB(t)

=
[
μ(R1 – 1)

]
dt +

σS(t)I(t)
N(t)(I(t) + C(t) + A(t))

dB(t).

Integrating on both sides of equation (3.1) from 0 to t, and then dividing by t, we can
obtain

ln Q(t)
t

≤ ln Q(0)
t

+ μ(R1 – 1) +
M(t)

t
, (3.2)

where

M(t) =
∫ t

0

σS(s)I(s)
N(s)(I(s) + C(s) + A(s))

dB(s).

By the large number theorem for martingale (see [17]), we can get

lim
t→+∞

M(t)
t

= 0, almost surely. (3.3)

In the light of (3.2) and (3.3), if R1 < 1, then

lim sup
t→+∞

ln Q(t)
t

≤ μ(R1 – 1) < 0, almost surely,

which implies that

lim
t→+∞ I(t) = 0, lim

t→+∞ C(t) = 0, lim
t→+∞ A(t) = 0, almost surely.

On the other hand, we consider the function f (x) = βx – σ 2x2

2 , where x ∈ (0, 1]. One can
obtain that if σ√

2 ≤ β
√

2
2σ

, that is, σ 2 ≤ β , f (x) has the max value f (1) = β – σ 2

2 . Let x =
S(t)I(t)

N(t)(I(t)+C(t)+A(t)) , we have

f (x) = –
(

σS(t)I(t)√
2N(t)(I(t) + C(t) + A(t))

–
β
√

2
2σ

)2

+
β2

2σ 2 ≤ β –
σ 2

2
.

Therefore,

d ln Q(t) =
1

I(t) + C(t) + A(t)

[
βS(t)I(t)

N(t)
– μI(t) – μC(t) – (μ + d)A(t)

]

dt

–
σ 2S2(t)I2(t)

2N2(I(t) + C(t) + A(t))2 dt +
σS(t)I(t)

N(t)(I(t) + C(t) + A(t))
dB(t)

≤
[

βS(t)I(t)
N(t)(I(t) + C(t) + A(t))

– μ –
σ 2S2(t)I2(t)

2N2(t)(I(t) + C(t) + A(t))2

]

dt

+
σS(t)I(t)

N(t)(I(t) + C(t) + A(t))
dB(t)

=
[

–
(

σS(t)I(t)√
2N(t)(I(t) + C(t) + A(t))

–
β
√

2
2σ

)2

+
β2

2σ 2 – μ

]

dt
(3.4)



Wang et al. Advances in Difference Equations        (2021) 2021:260 Page 8 of 17

+
σS(t)I(t)

N(t)(I(t) + C(t) + A(t))
dB(t)

≤
[

β –
σ 2

2
– μ

]

dt +
σS(t)I(t)

N(t)(I(t) + C(t) + A(t))
dB(t)

=
[(

μ +
σ 2

2

)

(R2 – 1)
]

dt +
σS(t)I(t)

N(t)(I(t) + C(t) + A(t))
dB(t).

Hence, if R2 < 1, we obtain

lim sup
t→+∞

ln Q(t)
t

≤
(

μ +
σ 2

2

)

(R2 – 1) < 0, almost surely,

which implies that

lim
t→+∞ I(t) = 0, lim

t→+∞ C(t) = 0, lim
t→+∞ A(t) = 0 almost surely.

Based on the above analysis, in view of (2.1), if R1 < 1 or σ 2 ≤ β and R2 < 1, we have

lim
t→+∞ S(t) =

λ

μ
almost surely.

The proof is completed. �

Theorem 3.2 For any initial value (S(0), I(0), C(0), A(0)) ∈R
4
+, if R3 > 1, the disease is per-

sistence in mean. Furthermore,

lim inf
t→+∞

〈
I(t)

〉 ≥ λ(ω + μ)(α + μ + d)(μ + γ + ρ + σ 2

2 )
β(μ + d)[(ω + μ)(α + μ + d + ρ) + γ (α + μ + d)]

(R3 – 1)

> 0 almost surely,

where

R3 =
β

μ + γ + ρ + σ 2
2

.

Proof Integrating system (1.2) from 0 to t, we can obtain

S(t) – S(0)
t

+
I(t) – I(0)

t
+

α

μ + α + d
A(t) – A(0)

t
+

ω

ω + μ

C(t) – C(0)
t

= λ – μ
〈
S(t)

〉
+

[
αρ

μ + α + d
+

ωγ

ω + μ
– (μ + γ + ρ)

]
〈
I(t)

〉
.

Then

〈
S(t)

〉
=

λ

μ
+

1
μ

[
αρ

μ + α + d
+

ωγ

ω + μ
– (μ + γ + ρ)

]
〈
I(t)

〉
–

H(t)
μ

, (3.5)

where

H(t) =
S(t) – S(0)

t
+

I(t) – I(0)
t

+
α

μ + α + d
A(t) – A(0)

t
+

ω

ω + μ

C(t) – C(0)
t

.
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In addition,

C(t) – C(0)
t

= γ
〈
I(t)

〉
– (ω + μ)

〈
C(t)

〉
,

then

〈
C(t)

〉
= –

C(t) – C(0)
(ω + μ)t

+
γ

ω + μ

〈
I(t)

〉
. (3.6)

Furthermore,

A(t) – A(0)
t

= ρ
〈
I(t)

〉
– (α + μ + d)

〈
A(t)

〉
,

then

〈
A(t)

〉
= –

A(t) – A(0)
(α + μ + d)t

+
ρ

α + μ + d
〈
I(t)

〉
. (3.7)

Define

V (t) = – ln I(t) + e,

where e is a constant. e = – min{– ln I(t)} to keep the nonnegativity of V (t). Applying Itô’s
formula, we obtain

d
(
V (t)

)
= –

1
I(t)

[
βS(t)I(t)

N(t)
– (μ + γ + ρ)I(t) + αA(t) + ωC(t)

]

dt

–
σS(t)
N(t)

dB(t) +
σ 2S2(t)
2N2(t)

dt

=
[

–
βS(t)
N(t)

+ (μ + γ + ρ) –
αA(t) + ωC(t)

I(t)
+

σ 2S2(t)
2N2(t)

]

dt –
σS(t)
N(t)

dB(t)

≤
[

–
β(N(t) – I(t) – C(t) – A(t))

N(t)
+ μ + γ + ρ +

σ 2

2

]

dt –
σS(t)
N(t)

dB(t)

=
[

–β + μ + γ + ρ +
σ 2

2
+

βI(t)
N(t)

+
βC(t)
N(t)

+
βA(t)
N(t)

]

dt –
σS(t)
N(t)

dB(t).

According to N(t) > λ
μ+d , we have

d
(
V (t)

) ≤
[

–β + μ + γ + ρ +
σ 2

2
+

βI(t)
N(t)

+
βC(t)
N(t)

+
βA(t)
N(t)

]

dt –
σS(t)
N(t)

dB(t)

≤
[

–β + μ + γ + ρ +
σ 2

2
+

β(μ + d)
λ

(
I(t) + C(t) + A(t)

)
]

dt

–
σS(t)
N(t)

dB(t).
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Hence

ln I(0)
t

–
ln I(t)

t
≤ – β + μ + γ + ρ +

σ 2

2
+

β(μ + d)
λ

(〈
I(t)

〉
+

〈
C(t)

〉
+

〈
A(t)

〉)

–
1
t

∫ t

0

σS(s)
N(s)

dB(s).

In the light of (3.6) and (3.7), we have

〈
I(t)

〉 ≥ λ

β(μ + d)

[

β –
(

μ + γ + ρ +
σ 2

2

)

+
ln I(0)

t
–

ln I(t)
t

+
1
t

∫ t

0

σS(s)
N(s)

dB(s)
]

–
〈
C(t)

〉
–

〈
A(t)

〉

=
λ

β(μ + d)

[

β –
(

μ + γ + ρ +
σ 2

2

)

+
ln I(0)

t
–

ln I(t)
t

+
1
t

∫ t

0

σS(s)
N(s)

dB(s)
]

+
C(t) – C(0)

(ω + μ)t
–

γ

ω + μ

〈
I(t)

〉
+

A(t) – A(0)
(α + μ + d)t

–
ρ

α + μ + d
〈
I(t)

〉
.

Furthermore,

〈
I(t)

〉 ≥ λ(ω + μ)(α + μ + d)(μ + γ + ρ + σ 2

2 )
β(μ + d)[(ω + μ)(α + μ + d + ρ) + γ (α + μ + d)]

(R3 – 1) + F(t),

where

F(t) =
(ω + μ)(α + μ + d)

(ω + μ)(α + μ + d + ρ) + γ (α + μ + d)

×
{

λ

β(μ + d)

(
ln I(0)

t
–

ln I(t)
t

+
1
t

∫ t

0

σS(s)
N(s)

dB(s)
)

+
C(t) – C(0)

(ω + μ)t
+

A(t) – A(0)
(α + μ + d)t

}

.

If R3 > 1, then

lim inf
t→+∞

〈
I(t)

〉 ≥ λ(ω + μ)(α + μ + d)(μ + γ + ρ + σ 2

2 )
β(μ + d)[(ω + μ)(α + μ + d + ρ) + γ (α + μ + d)]

(R3 – 1)

> 0 almost surely. �

4 Numerical simulations
In this section, we use Milstein’s method [18] to simulate stochastic model (1.2) with a
numerical scheme for stochastic model (1.2) given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sk+1 = Sk + [λ – μSk – βSk Ik
Sk +Ik +Ck +Ak

]
t

– σSk Ik
Sk +Ik +Ck +Ak

√

tξk – σ 2

2 ( Sk Ik
Sk +Ik +Ck +Ak

)2(ξ 2
k – 1)
t,

Ik+1 = Ik + [ βSk Ik
Sk +Ik +Ck +Ak

– (μ + γ + ρ)Ik + αAk + ωCk]
t

+ σSk Ik
Sk +Ik +Ck +Ak

√

tξk + σ 2

2 ( Sk Ik
Sk +Ik +Ck +Ak

)2(ξ 2
k – 1)
t,

Ck+1 = Ck + [γ Ik – (μ + ω)Ck]
t,

Ak+1 = Ak + [ρIk – (α + μ + d)Ak]
t,

where ξk , k = 1, 2, . . . , n, are independent Gaussian random variables N(0, 1).
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Table 1 Parameters of the HIV/AIDS model (1.2)

Symbol Description Value References

λ Recruitment rate 10,724 [19]
μ Natural death rate 0.3 Assumed
β HIV transmission rate 0.5 Assumed
γ HIV treatment rate for I [0.01, 0.05, 0.07] Assumed
ρ Default treatment rate for I 0.1 [20]
α AIDS treatment rate 0.33 [21]
ω Default treatment rate for C [0.9, 0.8, 0.1] Assumed
d AIDS induced death rate 1 [22]

Figure 1 The path S(t), I(t), C(t), and A(t) for models (1.1) and (1.2), when R1 = 0.651 < 1 and R0 = 1.259 > 1

Firstly, we choose σ = 0.8, γ = 0.07, ω = 0.9, and other parameter values given by Table 1.
In this case, we have

R1 =
β2

2σ 2μ
= 0.651 < 1,

R2 =
β

(μ + σ 2
2 )

= 0.806 < 1, σ 2 – β = 0.14 > 0,

R3 =
β

μ + γ + ρ + σ 2
2

= 0.633 < 1,

then the disease I(t) will die out (see Theorem 3.1 and Fig. 1(b)). In addition, the basic
reproduction number of the corresponding deterministic model R0 = 1.259 > 1, this means
that the corresponding deterministic model (1.1) has an endemic equilibrium which is
globally asymptotically stable, as shown in Fig. 1(a)–(d).
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Secondly, we choose σ = 0.645, γ = 0.05, ω = 0.8, and other parameter values given by
Table 1. In this case, we have

R1 =
β2

2σ 2μ
= 1.002 > 1,

R2 =
β

(μ + σ 2
2 )

= 0.9842 < 1, σ 2 – β = –0.084 < 0,

R3 =
β

μ + γ + ρ + σ 2
2

= 0.7599 < 1,

then the disease I(t) will die out (see Theorem 3.1 and Fig. 2(b)). In addition, the basic
reproduction number of the corresponding deterministic model R0 = 1.271 > 1, this means
that the corresponding deterministic model (1.1) also has an endemic equilibrium which
is globally asymptotically stable, as shown in Fig. 2. Furthermore, we choose γ = 0.07,
ω = 0.9, and σ = 0.8, 1, 1.2, 1.4, and other parameter values given by Table 1 to study the
impact of σ on the dynamics for the SDE SICA model (1.2). In this case, we can obtain the
values given in Table 2. Theorem 3.1 reveals the numerical results shown in Fig. 3.

Our results reveal that random perturbations in the environment can restrain the spread
of the disease (see Fig. 2), and the bigger the intensity of the random perturbation, the

Figure 2 The path S(t), I(t), C(t), and A(t) for model (1.1) and (1.2), when R2 = 0.9842 < 1, σ 2 – β = –0.084 < 0,
and R0 = 1.271 > 1

Table 2 The values with σ = 0.8, 1, 1.2, 1.4

σ 0.8 1 1.2 1.4

R1 0.4156 0.266 0.1847 0.1357
R2 0.6329 0.5155 0.4202 0.3448
σ 2 – β 0.14 0.5 0.94 1.46
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Figure 3 The path of (S(t), I(t),C(t),A(t)) for stochastic model (1.2) when σ = 0.8, 1, 1.2, 1.4

Table 3 The values with β = 0.2, 0.4, 0.6, 0.8, 1, 1.2

β 0.2 0.4 0.6 0.8 1 1.2

R1 0.104 0.417 0.937 1.667 2.604 3.75
R2 0.323 0.645 0.968 1.290 1.613 1.935
σ 2 – β 0.44 0.24 0.04 –0.16 –0.36 –0.56
R3 0.253 0.506 0.759 1.013 1.266 1.519

faster the disease dies out (see Fig. 3). However, deterministic models ignore this, so it is
essential to introduce stochastic perturbations into deterministic models.

Thirdly, we fix σ = 0.8 and choose β = 0.2, 0.4, 0.6, 0.8, 1, 1.2 and other parameters taken
as in Table 1 to study the impact of β on the dynamics for the SDE SICA model (1.2). In
this case, we can obtain the values given in Table 3, and the numerical results show that
the smaller the transmission rate, the faster the disease dies out (see Fig. 4).

Finally, we choose σ = 0.2, γ = 0.01, ω = 0.1 and other parameter values given by Table 1.
In this case, we have

R1 =
β2

2σ 2μ
= 10.417,

R2 =
β

(μ + σ 2
2 )

= 1.563 > 1, σ 2 – β = –0.46 < 0,

R3 =
β

μ + γ + ρ + σ 2
2

= 1.163 > 1,

then the disease I(t) will be persistence in mean, namely, the disease will prevail (see The-
orem 3.2 and Fig. 5(b)).



Wang et al. Advances in Difference Equations        (2021) 2021:260 Page 14 of 17

Figure 4 The path of (S(t), I(t),C(t),A(t)) for stochastic model (1.2) when σ = 0.8

By numerical simulation, the results of numerical simulations show that HIV can be
controlled by increasing the intensity of interference and reducing the transmission rates
shown in Fig. 6 (e.g., increased HIV prevention campaigns, condom use, etc.)

5 Conclusion
This paper studied the extinction and persistence of a stochastic SICA epidemic model
with standard incidence rate for HIV transmission. Firstly, we analyze that model (1.2) has
a unique global positive solution for any initial value. Secondly, by Theorem 3.1, we can
find that when R1 = β2

2σ 2μ
< 1 or σ 2 < β and R2 = β

(μ+ σ2
2 )

< 1, disease will die out (see The-
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Figure 5 The path S(t), I(t), C(t), and A(t) for models (1.1) and (1.2), when R3 = 1.163 > 1 and R0 = 1.291 > 1

Figure 6 The path of (S(t), I(t),C(t),A(t)) for stochastic model (1.2) when σ = 0.8, 1, 1.2, 1.4 and
β = 0.5, 0.4, 0.3, 0.2

orem 3.1 and Fig. 1 and Fig. 2). Furthermore, limt→+∞ S(t) = λ
μ

(see Theorem 3.1), but for
the corresponding deterministic model (1.2), R0 > 1, there exists an endemic equilibrium,
which means that a stochastic perturbation can suppress the outbreak of the disease (see
Fig. 1 and Fig. 2), and the bigger the intensity of the random perturbation, the faster the
disease dies out (see Fig. 3). However, deterministic models do not take this into account,
so it is essential to include a stochastic element in deterministic models. In addition, we fix
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σ to study the impact of β on the dynamics for the SDE SICA model (1.2). In this case, we
can find that the greater the rate of transmission, the higher the number of people infected
(see Fig. 4).

Finally, if R3 = β

μ+γ +ρ+ σ2
2

> 1, the disease will be persistence in mean, namely, the disease

will prevail (see Theorem 3.2 and Fig. 5).
Through numerical simulations, we can conclude that it is possible to reduce the trans-

mission coefficient of HIV while increasing the strength of the stochastic perturbation to
reduce the risk of HIV transmission, the simulation results are shown in Fig. 6.

On the other hand, in this paper, we only consider the effect of random perturbations on
HIV transmission rate β , we can also study the effect of random perturbations on another
parameter such as natural death rate, HIV treatment rate, AIDS induced death rate, and so
on. In addition, in this paper, we only consider the effect of white noise. In fact, there are
some random perturbations which cannot be modeled by white noises, for example, the
telephone and Lévy noise, see [23–26] and the references therein. On the other hand, there
have also been extensive numerical works to establish the positive property of numerical
solutions for certain physical models (see [27–29]). We leave these investigations for future
work.
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