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Abstract
In this paper, we extend existing population growth models and propose a model
based on a nonlinear cubic differential equation that reveals itself as a special subclass
of Abel differential equations of first kind. We first summarize properties of the
time-continuous problem formulation. We state the boundedness, global existence,
and uniqueness of solutions for all times. Proofs of these properties are thoroughly
given in the Appendix to this paper. Subsequently, we develop an explicit–implicit
time-discrete numerical solution algorithm for our time-continuous population
growth model and show that many properties of the time-continuous case transfer
to our numerical explicit–implicit time-discrete solution scheme. We provide
numerical examples to illustrate different behaviors of our proposed model.
Furthermore, we compare our explicit–implicit discretization scheme to the classical
Eulerian discretization. The latter violates the nonnegativity constraints on population
sizes, whereas we prove and illustrate that our explicit–implicit discretization
algorithm preserves this constraint. Finally, we describe a parameter estimation
approach to apply our algorithm to two different real-world data sets.
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1 Introduction
1.1 Motivation
Differential equations play a vital role in many sciences. Especially, time development
of populations within different time frames is of big interest to fields such as biology
[13, 31, 37] and, more specifically, epidemiology [1–4, 9–11, 40, 45, 46] and population
dynamics [7, 10, 14–16, 24, 26, 30, 48]. The temporal change of population sizes is not
only of scientific interest, but different possibilities of this evolution impact the life of all
humans.

Regarding Verhulst’s famous logistic model in 1838 [43], we shortly summarize different
models often discussed in the literature [20].
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1) Let us begin with a simple linear ordinary differential equation

N ′
1(t) = A · N1(t), N1(0) = N1,0 > 0, (1)

for the total population size N1 for all t ≥ 0. Here N ′
1(t) is the first derivative of the pop-

ulation size N1 with respect to time. Separation of variables under the assumption A > 0
leads to the exponentially increasing solution

N1(t) = N1,0 · exp(A · t) (2)

for all t ≥ 0. For A > 0, we obtain

lim
t→∞ N1(t) = +∞.

This is why other models should be sought for population dynamics.
2) A quadratic model could be proposed as an alternative. This model reads

N ′
2(t) = A · N2

2 (t), N2(0) = N2,0 > 0, (3)

for the total population size N2 for all t ≥ 0. The solution is given by

N2(t) =
N2,0

1 – A · N2,0 · t
(4)

for all t < 1
A·N2,0

. This model includes one blowup at tb = 1
A·N2,0

, that is,

lim
t→tb

N2(t) = +∞.

Since it does not seem realistic that population sizes infinitely increase and since there are
only limited materials on Earth, we expect that this model needs further modification.

3) Verhulst proposed his logistic model in 1838, which reads

N ′
3(t) = A · N3(t) – B · N2

3 (t), N3(0) = N3,0 > 0, (5)

for the total population size N3 for all t ≥ 0. Mathematica yields

N3(t) =
A · N3,0 · eA·t

A – B · N3,0 + B · N3,0 · eA·t

as the solution which can be also obtained by a partial fraction decomposition. We obtain

lim
t→∞ N3(t) =

A
B

for the limiting behavior, where the result corresponds to the carrying capacity. This model
has been successfully applied in many situations. However, it does not account for phe-
nomena such as oscillations due to competition between different species [10].
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4) Another possibility might be the application of delay-differential equations such as
Hutchinson model

N ′
4(t) = A · N4(t) – B · N4(t) · N4(t – τ )

with time delay τ > 0 and its variants as proposed in [49]. Although this model accounts
for various different dynamics depending on the time delay, we might have to deal with
the time delay τ > 0 for numerical simulations.

5) Abel differential equations of first kind

N ′
5(t) = a1(t) · N5(t) + a2(t) · N2

5 (t) + a3(t) · N3
5 (t) (6)

have been widely investigated [5, 8, 21]. Even some closed-form solutions for special
classes of Abel differential equations of first kind are known [17, 28, 29]. These equations
have been used in many different areas of science [41]. However, these types of differential
equations are rarely applied to population dynamics of single species.

This explains our motivation for this paper, where we expand Verhulst’s logistic model
by two modifications. First, we multiply the quadratic term with a time-dependent tuning
function and extend Verhulst’s logistic model by an additional cubic term, which leads us
to a specific class of Abel differential equations of first kind. Our model reads

N ′(t) = A · N(t) + B · f (t) · N2(t) – C · N3(t)

under appropriate conditions to be specified.

1.2 Contributions and outline
Based on the aforementioned disadvantages of the presented models, we propose a nonau-
tonomous nonlinear first-order differential equation, which uses an expansion of Ver-
hulst’s model by a cubic term and introduces multiplication of the quadratic term by a
time-dependent tuning function. Our contributions can be summarized as follows:

1) We state our time-continuous problem formulation in Sect. 2.2;
2) Afterward, we analyze this time-continuous problem formulation and show the

nonnegativity and boundedness of possible solutions, global uniqueness in time, and
global existence in time based on an inductive usage of Banach’s fixed-point theorem
in Sect. 2. The proofs can be found in the Appendix;

3) As our last contribution regarding our time-continuous problem formulation, we
show a stability bound with respect to initial conditions and data. Hence, we
conclude that our problem formulation is well posed on compact time intervals
[0, T] for T > 0. The proof of this statement is thoroughly described in the Appendix;

4) As our first major contribution, we introduce an explicit–implicit numerical solution
algorithm in Sect. 3 and prove that many properties of the time-continuous case
transfer to its time-discrete variant. Additionally, we thoroughly prove that it
converges linearly toward the solution of our time-continuous problem;

5) Finally, as our second and final major contribution, we first provide one numerical
example to compare the classical explicit Eulerian discretization scheme to our
proposed explicit–implicit numerical solution algorithm. In addition, we give further
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numerical examples for different behaviors of solutions in Sect. 4. Afterward, we
describe a parameter estimation approach and conclusively present two examples on
real-world data with user-chosen time-dependent functions to illustrate usefulness
of our proposed model with respect to real-world applications in Sect. 5.

In Sect. 6, we sum up our results and look out on possible future research directions.

2 Time-continuous problem formulation
In this section, we first sum up some mathematical background material for our analysis.
After that, we describe our time-continuous problem formulation for population dynam-
ics in one species. Conclusively, we analyze certain properties of our proposed model in
detail. Detailed proofs of these statements can be found in the Appendix.

2.1 Mathematical background material
To especially state the global existence and global uniqueness of the solution of our nonau-
tonomous first-order nonlinear population model, we need to introduce some theoretical
background material regarding nonlinear ordinary differential equations. This subsection
heavily relies on the structure of [45], which is based on [34, 35, 39]. Let us first recall the
Lipschitz continuity of a function on Euclidean spaces.

Definition 2.1 ([39, Sect. 3.2]) Let m, n ∈ N. If S ⊂ R
m, a function F : S −→ R

n is called
Lipschitz continuous on S if there exists a constant L ≥ 0 such that

∥
∥F(x) – F(y)

∥
∥
Rn ≤ L · ‖x – y‖Rm (7)

for all x, y ∈ S. Here, ‖·‖ denotes a suitable norm on the corresponding Euclidean space.
Let U ⊂ R

m be open, and let F : U −→ R
n. We call F locally Lipschitz continuous if for

every point x0 ∈ U , there exists a neighborhood V of x0 such that the restriction of F to
V is Lipschitz continuous on V .

We consider the initial-value problem

⎧

⎨

⎩

z′(t) = G
(

t, z(t)
)

,

z(0) = z0,
(8)

where z(t) = (x1(t), . . . , xn(t)) denotes our solution vector. Our vectorial function is repre-
sented by G(t, z(t)) = (g1(t, z(t)), . . . , gn(t, z(t))), and z0 ∈R

n are given initial conditions. To
conclude the global existence, we can apply the following theorem, which is a consequence
of Grönwall’s lemma.

Theorem 2.2 ([39, Theorem 4.7.1]) If G : [0,∞) × R
n −→ R

n is locally Lipschitz con-
tinuous in both time and state variables and if there exist nonnegative real functions
D : [0,∞) −→ [0,∞) and K : [0,∞) −→ [0,∞) such that

∥
∥G

(

t, z(t)
)∥
∥
Rn ≤ K(t) · ∥∥z(t)

∥
∥
Rn + D(t) (9)
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for all z(t) ∈ R
n, then the solution of the initial value problem (8) exists for all t ∈ [0,∞).

Moreover, for every finite T ≥ 0, we have

∥
∥z(t)

∥
∥
Rn ≤ ‖z0‖Rn · exp

(

Kmax · |t|) +
Dmax

Kmax
· (exp

(

Kmax · |t|) – 1
)

(10)

for all t ∈ [0, T], where

Dmax = max
0≤s≤T

∣
∣D(s)

∣
∣ and Kmax = max

0≤s≤T

∣
∣K(s)

∣
∣.

Additionally, we need Banach’s fixed point theorem to derive the global uniqueness.

Theorem 2.3 ([35, Theorem V.18]) Let (X,�) be a complete metric space with metric
� : X × X −→ [0,∞). Let T : X −→ X be a strict contraction, that is, there exists a con-
stant K ∈ [0, 1) such that �(Tx, Ty) ≤ K · �(x, y) for all x, y ∈ X. Then the map T has a
unique fixed point.

Finally, we need a modification of Grönwall’s lemma for continuous dependence on per-
turbations of initial values and data. This might be also known to readers by stability anal-
ysis.

Theorem 2.4 ([34, Theorem 1.3.1]) Let I := [a, b]. Let u, f : I −→ [0,∞) be continuous non-
negative functions. Let g : I −→ (0,∞) be a continuous positive nondecreasing function. If

u(t) ≤ g(t) +
∫ t

a
f (s) · u(s) ds (11)

for all t ∈ I , then

u(t) ≤ g(t) · exp

(∫ t

a
f (s) ds

)

(12)

for all t ∈ I .

2.2 Formulation
First, we state the following assumptions on the model:

• A > 0, B ≥ 0, C > 0;
• f : [0,∞) −→ (0,∞) is a bounded function, that is, there exist positive constants mf

and Mf such that mf ≤ f (t) ≤ Mf for all t ≥ 0.
Hence our nonlinear initial value problem for our population model reads

N ′(t) = A · N(t) + B · f (t) · N2(t) – C · N3(t), N(0) = N0 > 0, (13)

for t ≥ 0. In the rest of this section, we want to prove some important properties of our
model.
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2.3 Boundedness
As one important consequence, we obtain the boundedness and positivity of solutions to
the initial value problem (13).

Lemma 2.5 Solutions of our model (13) are bounded, that is, there exist constants Nmin

and Nmax such that Nmin ≤ N(t) ≤ Nmax for all t ≥ 0. In particular, solutions to positive
initial values remain positive for all t ≥ 0.

2.4 Global existence
In addition to the boundedness, we conclude the existence of solutions to the initial value
problem (13) for all t ≥ 0.

Theorem 2.6 Solutions to our population growth model (13) exist for all t ≥ 0.

2.5 Global uniqueness
As already stated, our proof of global uniqueness in time is heavily based on Banach’s
fixed-point theorem, which has proven a valuable tool in different mathematical problem
settings [44, 45, 50].

Theorem 2.7 The initial value problem (13) possesses a unique solution for all t ≥ 0.

2.6 Continuous dependence on initial conditions and data
Let us first provide a simple stability bound, where only perturbations of initial conditions
are considered. In the following, ‖·‖∞ denotes the maximum norm on a finite-dimensional
Euclidean space.

Theorem 2.8 Let Na : [0, T] −→ [0,∞) be a solution of (13) with initial value Na(0) =
Na,0 > 0, and let Nb : [0, T] −→ [0,∞) be solution of (13) with initial value Nb(0) = Nb,0 > 0
with finite time T > 0. We have the stability bound

∥
∥Na(t) – Nb(t)

∥
∥∞ ≤ α1 · exp(α2 · t) (14)

for all t ∈ [0, T], where

α1 := |Na,0 – Nb,0|

and

α2 := A + 2 · B · Mf · (max{Na,max; Nb,max}
)

+ 3 · C · (max{Na,max; Nb,max}
)2.

Now, we want to extend this stability by additionally assuming perturbations with re-
spect to our prescribed data.

Theorem 2.9 Let Aa, Ab > 0, Ba, Bb ≥ 0, Ca, Cb > 0, and let fa, fb : [0, T] −→ (0,∞) be con-
tinuous bounded functions, that is, there exist positive constants mf ,a, mf ,b, Mf ,a, and Mf ,b
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such that mf ,a ≤ fa(t) ≤ Mf ,a and mf ,b ≤ fb(t) ≤ Mf ,b for all t ∈ [0, T]. Additionally, assume
that Na : [0, T] −→ [0,∞) solves

N ′
a(t) = Aa · Na(t) + Ba · fa(t) · N2

a (t) – Ca · N3
a (t); Na(0) = Na,0 > 0

for all t ∈ [0, T] and that Nb : [0, T] −→ [0,∞) solves

N ′
b(t) = Ab · Nb(t) + Bb · fb(t) · N2

b (t) – Cb · N3
b (t); Nb(0) = Nb,0 > 0

for all t ∈ [0, T]. Then we have the stability bound

∥
∥Na(t) – Nb(t)

∥
∥∞ ≤ β1(t) · exp(β2 · t) (15)

for all t ∈ [0, T], where

β1(t) := |Na,0 – Nb,0| +
(

max{Na,max; Nb,max}
) · t · |Aa – Ab|

+ Ba · (max{Na,max; Nb,max}
)2 · t · ∥∥fa(t) – fb(t)

∥
∥∞

+ max{Mf ,a; Mf ,b} · (max{Na,max; Nb,max}
)2 · t · |Ba – Bb|

+
(

max{Na,max; Nb,max}
)3 · t · |Ca – Cb|

is a time-dependent coefficient, and

β2 := max{Aa; Ab} + 2 · Ba · max{Mf ,a; Mf ,b} · max{Na,max; Nb,max}
+ 3 · Ca · max

({Na,max; Nb,max}
)2.

3 Explicit–implicit time-discrete problem formulation
In this section, we propose an explicit–implicit time-discrete solution algorithm for (13).
We show unique solvability and demonstrate that many properties of the time-continuous
case transfer to our time-discrete scheme.

3.1 Time-discrete problem formulation
Let [0, T] be the time interval for model simulations. Let {tj}M

j=1 be a strictly increasing se-
quence of time points, that is, t1 = 0 < t2 < · · · < tM–1 < tM = T . Our time-discrete problem
formulation reads

Nn+1 – Nn

�n+1
= A · Nn + B · fn+1 · N2

n – C · Nn+1 · N2
n , N1 = N0 > 0, (16)

with �n+1 = tn+1 – tn for all n ∈ {1, . . . , M – 1} and given initial population size N0. Here fn+1

is an abbreviation for fn+1 = f (tn+1). The term of explicit–implicit solution algorithm refers
to the right-hand-side of (16). Whereas the first two summands are treated explicitly, the
last summand is a mixture of Nn and Nn+1. Hence, the proposed solution algorithm lies
somewhere between fully explicit and fully implicit numerical solution schemes. Thus,
these algorithms are called explicit–implicit solution algorithms [18, 45].
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3.2 Solvability
Now, we can prove that our time-discrete model (16) is uniquely solvable.

Theorem 3.1 The time-discrete explicit–implicit population growth model (16) is
uniquely solvable.

Proof We first observe from (16) that

Nn+1 = Nn + A · �n+1 · Nn + B · �n+1 · fn+1 · N2
n – C · �n+1 · N2

n · Nn+1.

Rearranging yields

Nn+1 · {1 + C · �n+1 · N2
n
}

= Nn · {1 + A · �n+1 + B · �n+1 · fn+1 · Nn}.

This implies

Nn+1 = Nn · 1 + A · �n+1 + B · �n+1 · fn+1 · Nn

1 + C · �n+1 · N2
n

. (17)

We conclude unique solvability for all n ∈ {1, . . . , M – 1}. �

3.3 Boundedness
Theorem 3.2 The unique solution of our time-discrete population growth model (16) is
bounded, that is, there exist constants Nnum,min and Nnum,max such that

Nnum,min ≤ Nn ≤ Nnum,max (18)

for all n ∈ {1, . . . , M}.

Proof 1) We first show that Nnum,min > 0. By (17), we observe by induction that

Nn+1 = Nn · 1 + A · �n+1 + B · �n+1 · fn+1 · Nn

1 + C · �n+1 · N2
n

> 0

for all n ∈ {1, . . . , M – 1} because of N1 = N0 > 0. Hence we obtain Nnum,min > 0. This means
that our time-discrete solution is nonnegative for all n ∈ {1, . . . , M}.

Additionally, we see that our solution sequence is monotonically decreasing if and only
if

1 + A · �n+1 + B · �n+1 · fn+1 · Nn

1 + C · �n+1 · N2
n

≤ 1. (19)

This yields

A + B · fn+1 · Nn ≤ C · N2
n .

Square addition as in the time-continuous case results in

(

Nn –
B · fn+1

2 · C

)2

≥ 4 · A · C + B2 · f 2
n+1

4 · C2 . (20)
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From (20) and the nonnegativity, we see that our time-discrete solution is monotonically
decreasing if and only if

Nn ≥ B · fn+1

2 · C
+

√

4 · A · C + B2 · f 2
n+1

4 · C2 (21)

as in the time-continuous case. Since the function f is bounded below by zero, this implies

Nnum,min = min

{

N1,
√

A
C

,
B · mf

2 · C

}

(22)

for our lower bound.
2) Similarly, we can conclude

Nnum,max = max

{

N1,
B · Mf

2 · C
+

√

4 · A · C + B2 · M2
f

4 · C2

}

(23)

for our upper bound. This provides both bounds, and the proof is finished. �

The result of Theorem 3.2 implies that our time-discrete population growth model (16)
is unconditionally stable and preserves the nonnegativity of population sizes N .

3.4 Convergence
Theorem 3.3 Let us assume that the solution of our time-continuous population growth
model (13) is twice continuously differentiable and that the function f is continuously dif-
ferentiable. Additionally, we assume that �p ≤ 1 for all p ∈ N and limp→∞ �p+1 = 0. This
implies that the solution of our time-discrete population growth model (16) converges lin-
early toward the solution of the time-continuous population growth model on a time inter-
val [0, T] for arbitrary T > 0.

Proof Since this proof is relatively technical, we briefly describe our strategy. We start
with consideration of local errors between time-continuous and time-discrete solutions.
Afterward, we have to take into account that errors propagate in time. Finally, we need to
accumulate these errors.

1) For our investigation of local errors, we assume that (tp, Np) = (tp, N(tp)) and consider
the time interval [tp, tp+1] for arbitrary p ∈ {1, . . . , M – 1}. Here, we only consider one time
step and denote the time-discrete solution at tp+1 by Ñp+1. By (17), we have

Np+1 = N(tp) · 1 + A · �p+1 + B · �p+1 · fp+1 · N(tp)
1 + C · �p+1 · (N(tp))2 .

Application of the triangle inequality yields

∣
∣N(tp+1) – Ñp+1

∣
∣

=
∣
∣
∣
∣
N(tp+1) – N(tp) · 1 + A · �p+1 + B · �p+1 · fp+1 · N(tp)

1 + C · �p+1 · (N(tp))2

∣
∣
∣
∣
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=
∣
∣
∣
∣
N(tp+1) – N(tp) · 1 + C · �p+1 · (N(tp))2 + A · �p+1

1 + C · �p+1 · (N(tp))2

– N(tp) · B · �p+1 · fp+1 · N(tp) – C · �p+1 · (N(tp))2

1 + C · �p+1 · (N(tp))2

∣
∣
∣
∣

=
∣
∣
∣
∣
N(tp+1) – N(tp) – N(tp) · A · �p+1 + B · �p+1 · fp+1 · N(tp) – C · �p+1 · (N(tp))2

1 + C · �p+1 · (N(tp))2

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ tp+1

tp

N ′(τ ) dτ – �p+1 · A · N(tp) + B · fp+1 · (N(tp))2 – C · (N(tp))3

1 + C · �p+1 · (N(tp))2

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ tp+1

tp

N ′(τ ) dτ – �p+1 · A · N(tp) + B · (fp + fp+1 – fp) · (N(tp))2

1 + C · �p+1 · (N(tp))2

– �p+1 · –C · (N(tp))3

1 + C · �p+1 · (N(tp))2

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ tp+1

tp

N ′(τ ) dτ – �p+1 · A · N(tp) + B · fp · (N(tp))2 – C · (N(tp))3

1 + C · �p+1 · (N(tp))2

– �p+1 · B · (fp+1 – fp) · (N(tp))2

1 + C · �p+1 · (N(tp))2

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ tp+1

tp

N ′(τ ) dτ – �p+1 · N ′(tp)
1 + C · �p+1 · (N(tp))2

– �p+1 · B · (fp+1 – fp) · (N(tp))2

1 + C · �p+1 · (N(tp))2

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ tp+1

tp

N ′(τ ) dτ – �p+1 · N ′(tp) + B · (fp+1 – fp) · (N(tp))2

1 + C · �p+1 · (N(tp))2

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ tp+1

tp

N ′(τ ) dτ – �p+1 · N ′(tp)

– �p+1 · B(fp+1 – fp) · (N(tp))2 – C · �p+1(N(tp))2 · N ′(tp)
1 + C · �p+1 · (N(tp))2

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ tp+1

tp

(

N ′(τ ) – N ′(tp)
)

dτ

∣
∣
∣
∣

+ �2
p+1 · N2

max ·
∣
∣
∣
∣
B · fp+1 – fp

tp+1 – tp
– C · N ′(tp)

∣
∣
∣
∣

after some manipulations. By the mean value theorem of calculus, there are τ1, ξ1 ∈
(tp, tp+1) such that

N ′′(τ1) =
N ′(τ ) – N ′(tp)

τ – tp
and f ′(ξ1) =

fp+1 – fp

tp+1 – tp
.

These equations yield

∣
∣N(tp+1) – Ñp+1

∣
∣ ≤

∣
∣
∣
∣

∫ tp+1

tp

(τ – tp) · N ′′(τ1) dτ

∣
∣
∣
∣

+ �2
p+1 · N2

max · ∣∣B · f ′(ξ1) – C · N ′(tp)
∣
∣

≤ 1
2

· �2
p+1 · ∥∥N ′′(t)

∥
∥∞ + �2

p+1 · N2
max · (B · ∥∥f ′(t)

∥
∥∞ + C · ∣∣N ′(tp)

∣
∣
)

≤ �2
p+1 · Cloc,
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where we set

Cloc :=
1
2

· ∥∥N ′′(t)
∥
∥∞ + B · N2

max · ∥∥f ′(t)
∥
∥∞

+ C · N2
max · {A · Nmax + B · Mf · N2

max + C · N3
max

}

.

We finally obtain

∣
∣N(tp+1) – Ñp+1

∣
∣ ≤ Cloc · �2

p+1 (24)

for local errors.
2) In reality, (tp, Np) does not lie on the time-continuous solution exactly. For that reason,

we must investigate how the procedural error Np – N(tp) propagates to the (p + 1)th time
step. These estimates are carried out in this and the following steps.

We have to consider |Np+1 – Ñp+1|. We observe that

Np+1 = Np · 1 + A · �p+1 + B · �p+1 · fp+1 · Np

1 + C · �p+1 · N2
p

= Np + Np · A · �p+1 + B · �p+1 · fp+1 · Np – C · �p+1 · N2
p

1 + C · �p+1 · N2
p

and

Ñp+1 = N(tp) · 1 + A · �p+1 + B · �p+1 · fp+1 · N(tp)
1 + C · �p+1 · (N(tp))2

= N(tp) + N(tp) · A · �p+1 + B · �p+1 · fp+1 · N(tp)
1 + C · �p+1 · (N(tp))2

– N(tp) · C · �p+1 · (N(tp))2

1 + C · �p+1 · (N(tp))2 .

By the triangle inequality, we obtain

|Np+1 – Ñp+1|

≤ ∣
∣Np – N(tp)

∣
∣ +

∣
∣
∣
∣
Np · A · �p+1 + B · �p+1 · fp+1 · Np – C · �p+1 · N2

p

1 + C · �p+1 · N2
p

– N(tp) · A · �p+1 + B · �p+1 · fp+1 · N(tp) – C · �p+1 · (N(tp))2

1 + C · �p+1 · (N(tp))2

∣
∣
∣
∣

≤ ∣
∣Np – N(tp)

∣
∣

+
∣
∣
∣
∣

A · �p+1 · {Np · (1 + C · �p+1 · (N(tp))2)}
(1 + C · �p+1 · N2

p ) · (1 + C · �p+1 · (N(tp))2)

–
A · �p+1 · {N(tp) · (1 + C · �p+1 · N2

p )}
(1 + C · �p+1 · N2

p ) · (1 + C · �p+1 · (N(tp))2)

∣
∣
∣
∣

+
∣
∣
∣
∣

B · �p+1 · fp+1 · {N2
p · (1 + C · �p+1 · (N(tp))2)}

(1 + C · �p+1 · N2
p ) · (1 + C · �p+1 · (N(tp))2)
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–
B · �p+1 · fp+1 · {(N(tp))2 · (1 + C · �p+1 · N2

p )}
(1 + C · �p+1 · N2

p ) · (1 + C · �p+1 · (N(tp))2)

∣
∣
∣
∣

+
∣
∣
∣
∣

C · �p+1 · {N3
p · (1 + C · �p+1 · (N(tp))2)}

(1 + C · �p+1 · N2
p ) · (1 + C · �p+1 · (N(tp))2)

–
C · �p+1 · {(N(tp))3 · (1 + C · �p+1 · N2

p )}
(1 + C · �p+1 · N2

p ) · (1 + C · �p+1 · (N(tp))2)

∣
∣
∣
∣

≤ ∣
∣Np – N(tp)

∣
∣ + A · �p+1 · ∣∣Np – N(tp)

∣
∣

+ A · C · �2
p+1 · Nmax · Nnum,max · ∣∣Np – N(tp)

∣
∣

+ B · �p+1 · ∥∥f (t)
∥
∥∞ · ∣∣Np – N(tp)

∣
∣ · ∣∣Np + N(tp)

∣
∣

+ C · �p+1 · ∣∣N3
p –

(

N(tp)
)3∣
∣ + C2 · �2

p+1 · N2
max · N2

num,max · ∣∣Np – N(tp)
∣
∣.

Since

∣
∣N3

p –
(

N(tp)
)3∣
∣ =

∣
∣N2

p + Np · N(tp) +
(

N(tp)
)2∣
∣ · ∣∣Np – N(tp)

∣
∣

≤ (

N2
max + Nmax · Nnum,max + N2

num,max

) · ∣∣Np – N(tp)
∣
∣

and �p+1 ≤ 1, we can conclude that

|Np+1 – Ñp+1| ≤ ∣
∣Np – N(tp)

∣
∣ + A · �p+1 · ∣∣Np – N(tp)

∣
∣

+ A · C · �p+1 · Nmax · Nnum,max

∣
∣Np – N(tp)

∣
∣

+ B · �p+1 · ∥∥f (t)
∥
∥∞ · Nnum,max · Nmax · ∣∣Np – N(tp)

∣
∣

+ C · �p+1 · (N2
max + Nmax · Nnum,max + N2

num,max

) · ∣∣Np – N(tp)
∣
∣

+ C2 · �p+1 · N2
max · N2

num,max · ∣∣Np – N(tp)
∣
∣.

Let us define

Cprop :=
{

A + A · C + Nmax · Nnum,max + B · ∥∥f (t)
∥
∥∞ · Nnum,max · Nmax

+ C · (N2
max + Nmax · Nnum,max + N2

num,max

)

+ C2 · N2
max · N2

num,max

}

.

This yields

|Np+1 – Ñp+1| ≤ (1 + Cprop · �p+1) · ∣∣Np – N(tp)
∣
∣ (25)

for error propagation in time from the pth time step to the (p + 1)th time step.
3) Our proof is based on the inequality 1 + x ≤ exp(x) for x ≥ 0. Note that t1 = 0 < t2 . . . <

tM–1 < tM = T .
3.1) First, we want to prove inductively that

∣
∣Np+1 – N(tp+1)

∣
∣ ≤ ∣

∣N1 – N(t1)
∣
∣ · exp

(

Cprop · {tp+1 – t1}
)

+ Cloc ·
p+1
∑

k=2

�2
k · exp

(

Cprop · {tp+1 – tk}
)

(26)
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for all p ∈ {0, . . . , M – 1}. Let p = 0. Inequality (26) is obviously fulfilled. Let p = 1 to under-
stand the concept. By application of the triangle inequality and inequalities (24) and (25)
we observe that

∣
∣N2 – N(t2)

∣
∣

=
∣
∣N2 – Ñ2 + Ñ2 – N(t2)

∣
∣

≤ |N2 – Ñ2| +
∣
∣Ñ2 – N(t2)

∣
∣

≤ (1 + Cprop · �2) · ∣∣N1 – N(t1)
∣
∣ + Cloc · �2

2

≤ ∣
∣N1 – N(t1)

∣
∣ · exp

(

Cprop · {t2 – t1}
)

+ Cloc ·
2

∑

k=2

�2
k · exp

(

Cprop · {t2 – tk}
)

,

We now assume that

∣
∣Np – N(tp)

∣
∣ ≤ ∣

∣N1 – N(t1)
∣
∣ · exp

(

Cprop · {tp – t1}
)

+ Cloc ·
p

∑

k=2

�2
k · exp

(

Cprop · {tp – tk}
)

.

We now want to show (26). We obtain

∣
∣Np+1 – N(tp+1)

∣
∣

=
∣
∣Np+1 – Ñp+1 + Ñp+1 – N(tp+1)

∣
∣

≤ |Np+1 – Ñp+1| +
∣
∣Ñp+1 – N(tp+1)

∣
∣

≤ (1 + Cprop · �p+1) · ∣∣Np – N(tp)
∣
∣ + Cloc · �2

p+1

≤ exp(Cprop · �p+1) · ∣∣Np – N(tp)
∣
∣ + Cloc · �2

p+1

≤ exp(Cprop · �p+1) ·
{

∣
∣N1 – N(t1)

∣
∣ · exp

(

Cprop · {tp – t1}
)

+ Cloc ·
p

∑

k=2

�2
k · exp

(

Cprop · {tp – tk}
)

}

+ Cloc · �2
p+1

=
∣
∣N1 – N(t1)

∣
∣ · exp

(

Cprop · {tp+1 – t1}
)

+ Cloc ·
p

∑

k=2

�2
k · exp

(

Cprop · {tp+1 – tk}
)

+ Cloc · �2
p+1

=
∣
∣N1 – N(t1)

∣
∣ · exp

(

Cprop · {tp+1 – t1}
)

+ Cloc ·
p+1
∑

k=2

�2
k · exp

(

Cprop · {tp+1 – tk}
)

,

and this finishes our inductive proof.
3.2) We define � := maxp∈N �p. We infer that

∣
∣Np+1 – N(tp+1)

∣
∣

≤ ∣
∣N1 – N(t1)

∣
∣ · exp

(

Cprop · {tp+1 – t1}
)
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Table 1 Algorithmic summary of our explicit–implicit time-discretion population growth model

Inputs: - Increasing time sequence t1 = 0 < t2 < · · · < tM–1 < tM = T
- Initial population size N1 = N0 > 0
- Given bounded function f : [0,∞) −→ [0,∞)

Steps: - For all n ∈ {1, . . . ,M – 1}, compute Nn+1 = Nn · 1+A·�n+1+B·�n+1 ·fn+1 ·Nn
1+C·�n+1·N2n

by (17)

Outputs: - Population size sequence {Nn}Mn=1

+ Cloc ·
p+1
∑

k=2

�2
k · exp

(

Cprop · {tp+1 – tk}
)

≤ ∣
∣N1 – N(t1)

∣
∣ · exp(Cprop · T) + Cloc · � ·

p+1
∑

k=2

�k · exp(Cprop · T)

=
∣
∣N1 – N(t1)

∣
∣ · exp(Cprop · T) + Cloc · � · T · exp(Cprop · T).

If the initial conditions of our time-continuous and time-discrete models coincide and
� → 0, then the time-discrete solution converges linearly toward the time-continuous
solution of the time-continuous population growth model. Finally, our statement is
proven. �

3.5 Algorithmic summary
We summarize our algorithmic approach in Table 1.

4 Numerical examples
Here, we present four examples. In our first example, we compare the classical explicit
Eulerian discretization to our proposed explicit–implicit numerical solution algorithm.
Three synthetic examples show that different behaviors are possible.

4.1 Example 1: comparison of time discretization algorithms
First, we compare the classical explicit Eulerian time discretization algorithm

Nn+1 – Nn

�n+1
= A · Nn + B · fn+1 · N2

n – C · N3
n , N1 = N0 > 0, (27)

to our explicit–implicit numerical solution algorithm

Nn+1 – Nn

�n+1
= A · Nn + B · fn+1 · N2

n – C · N2
n · Nn+1, N1 = N0 > 0, (28)

by (16) for all n ∈ {1, 2, . . . , M – 2, M – 1}. We consider the following inputs:
• A = 1, B = 0.01, and C = 0.00001;
• Time step size � = 1.0;
• Initial population size N1 = 10;
• Simulation time T = 6;
• Function f (t) ≡ 1.
In Fig. 1, we can clearly see that the classical Eulerian time discretization scheme be-

comes unstable and we obtain negative population sizes, whereas our proposed explicit–
implicit numerical solution algorithm remains stable and provides positive population
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Figure 1 Results of our first example from Sect. 4.1

sizes for all times. It is well known in numerical analysis that explicit time-stepping meth-
ods are always conditionally stable [22, 23, 25]. Hence, we have to carefully select possible
time-discretization schemes with respect to equations we want to solve.

4.2 Example 2: monotonically increasing solution
We present an example that is monotonically increasing. We consider the following inputs:

• A = 0.1, B = 0.02, and C = 0.00002;
• Time step size � = 1.0;
• Initial population size N1 = 100;
• Simulation time T = 1000;
• Function f (t) = 0.05 · 0.001+exp(–0.1·t)

0.0009+exp(–0.1·t) ;
• Lower bound mf = 0.05 and upper bound Mf = 5

90 of f .
In Fig. 2, we see that we can get results that look similar to monotonically increasing

solutions from Verhulst’s logistic model.

4.3 Example 3: solution with changing sign in derivative
We give an example where the derivative of our population model changes its sign in time.
For that purpose, we propose the following input parameters:

• A = 0.1, B = 0.04, and C = 0.00002;
• Time step size � = 1.0;
• Initial population size N1 = 100;
• Simulation time T = 1000;
• Function f (t) = 0.1 + (0.01·t2+0.1·t+1)·exp(–0.02·t)

10+exp(–0.02·t) ;
• Lower bound mf = 0.1 and upper bound Mf = 1.585 of f .



Wacker and Schlüter Advances in Difference Equations        (2021) 2021:236 Page 16 of 29

Figure 2 Results of our second example from Sect. 4.2

Figure 3 Results of our third example from Sect. 4.3

We observe from Fig. 3 that it is possible to obtain solutions that first monotonically
increase and later monotonically decrease in time.
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Figure 4 Results of our fourth example from Sect. 4.4

4.4 Example 4: oscillating solution
We want to construct an oscillating example where the following parameters are taken
into account:

• A = 0.1, B = 0.02, and C = 0.00002;
• Time step size � = 1.0;
• Initial population size N1 = 100;
• Simulation time T = 1000;
• Function f (t) = 0.05 + 0.02 · sin( t

10 );
• Lower bound mf = 0.03 and upper bound Mf = 0.07 for f .
The results for this example with an oscillating solution are shown in Fig. 4.

5 Parameter estimation and real-world applications
For real-world applications, we need to present a parameter estimation approach. We first
describe our method and apply it to two real-world data sets from Human World and
Japanese populations. From our observations, we especially derive our time-dependent
coefficient functions we later apply to both data sets.

5.1 Parameter estimation
We consider the proposed explicit–implicit time discretization method

Nn+1 – Nn

�n+1
= A · Nn + f̃n+1 · N2

n – C · N2
n · Nn+1 (29)

for all n ∈ {1, 2, . . . , M – 2, M – 1}, where f̃n+1 = B · fn+1. Here, we assume that time points

(t1, N1), . . . , (tM, NM)
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are given and, for simplicity and due to real-life data, �n+1 ≡ 1. Finding the nonnegative
coefficients

A, f̃2, . . . , f̃M, C

is our main goal. Hence, we want to solve the optimization problem

min
A,f̃2,...,f̃M ,C

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

Z ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A
f̃2
...

f̃M

C

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

–

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

N2 – N1

N3 – N2
...

NM–1 – NM–2

NM – NM–1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

, (30)

where we set

Z :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

N1

N2
...

NM–2

NM–1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

N2
1 0 . . . . . . 0

0 N2
2 0 . . . 0

...
. . . . . . . . .

...
...

. . . N2
M–2 0

0 . . . . . . 0 N2
M–1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

–N2
1 · N2

–N2
2 · N3
...

–N2
M–2 · NM–1

–N2
M–1 · NM

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

with respect to the nonnegativity constraints on the sought parameters, where ‖·‖2 is the
Euclidean norm. We apply the function lsqnonneg of GNU Octave to solve this nonnega-
tive linear least-squares problem [19]. For further details on numerical optimization, we
refer the interested readers to [33].

5.2 Example 5: human world population
The data are taken from the United Nations [42] for the human total population size in-
cluding both sexes. We investigate three different settings where parameters and given
functions are user-chosen or, in one case, are estimated. For more sophisticated parame-
ter estimation techniques, which are outside the scope of our paper, we refer the interested
readers to further works [1, 11, 12, 47], as these techniques might be an interesting exten-
sion of this paper.

The following parameters are applied in our first user-chosen setting:
• A1 = 0.0225, B1 = 0.005, and C1 = 0.00025;
• Time step size � = 1.0 year;
• Initial population size N1 = 2.536431 billion people;
• Simulation time T1 = 500 years;
• Function f1(t) = 0.02·(0.01+exp(–0.02·t))

0.05+exp(–0.02·t) ;
• Lower bound mf1 = 0.004 and upper bound Mf1 = 0.02 of f .
We use the following parameters in our second user-chosen setting:
• A2 = 0.0180, B2 = 0.0009, and C2 = 0.0002;
• Time step size � = 1.0 year;
• Initial population size N1 = 2.536431 billion people;
• Simulation time T2 = 500 years;



Wacker and Schlüter Advances in Difference Equations        (2021) 2021:236 Page 19 of 29

Figure 5 The results of our nonnegative linear least-squares optimization can be seen as the blue graph. All
three different settings are depicted in different colors as given in the legend

• Function f2(t) = (0.2·t3+15.0·t2+50.0·t)·exp(–0.01·t)
20.0·t2+1.0 + 0.01;

• Lower bound mf2 = 0.01 and upper bound Mf2 = 5.975 of f .
In our third setting, we apply the following parameters, where A3 and C3 were estimated

by our least-squares approach, and B3 is the arithmetic mean of the depicted data points
in Fig. 5:

• A3 = 0.018758, B3 = 0.000632, and C3 = 0.000154;
• Time step size � = 1.0 year;
• Initial population size N1 = 2.536431 billion people;
• Function f3(t) = 1.
All chosen functions gj(t) = Bj · fj(t) for j ∈ {1, 2, 3} are shown in Fig. 5.
The results of all three settings are depicted in Fig. 6. We clearly observe that it is possible

to construct fits with different monotonicity assumption regarding future predictions.
The errors between known real-world data and our portrayed settings are portrayed in

Fig. 7. All graphs well describe the given data. However, as observed in Fig. 6, all three
predictions provide different long-time behaviors.

5.3 Example 6: Japanese population
Data for our last example are again taken from the United Nations [42] for human total
population size including both sexes in Japan. The following inputs are considered for this
example, where a simplified function f is user-chosen by the results of our least-squares
estimation approach as depicted in Fig. 8:

• A = 0.0000001 (since our approach states A ≈ 0, we stay with a small positive chosen
number), B = 0.0002050, and C = 0.00000019;

• Time step size � = 1.0 year;
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Figure 6 Results for all three settings of total world population size. Here t = 0 corresponds to the year 1950,
and t = 69 corresponds to the year 2019. This is the time frame for our data points

Figure 7 Results for all three settings of total world population size. Here t = 0 corresponds to the year 1950,
and t = 69 corresponds to the year 2019. This is the time frame for our data points

• Initial population size N1 = 82.802 million people;
• Simulation time T = 200 years;
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Figure 8 The results of our nonnegative linear least-squares optimization can be seen as the blue graph. Our
user-chosen simplified time-dependent coefficient function is given by the black graph

• Function f (t) = exp(–0.03 · t).
As already mentioned, our estimation results for our time-dependent coefficient func-

tion can be seen in Fig. 8.
The results of this setting are portrayed in Fig. 9, which depicts a rapidly decaying pop-

ulation size in Japan. In contrast to the traditional Verhulst model, which only accounts
for monotone behavior, our model is able to capture different intervals of monotonicity in
our given data.

6 Conclusion and outlook
In this work, we proposed an extended population growth model based on a nonlinear
first-order differential equation with quadratic and cubic terms of population size. At the
beginning, we proved the nonnegativity and boundedness globally in time. After that,
we established the global existence and uniqueness of the solution of our model in time.
Subsequently, we discretized our model and provided an explicit–implicit solution algo-
rithm. We showed that many properties of our time-continuous model transfer to our
time-discrete variant. Finally, we applied our results to four synthetic and two real-world
examples to demonstrate usefulness and variability of our presented model. As a conclu-
sion, we saw that explicit time-stepping methods suffer from time restrictions and may
violate the nonnegativity constraints on populations size, whereas our proposed explicit–
implicit numerical solution algorithm preserves the nonnegativity.

Our model seems to be flexible. This flexibility might be extended in future work by
multiplication of all terms on the right-hand side by time-dependent tuning functions.
Compare, for example, [27, 32, 36, 38]. Additionally, parameter estimation for models in
mathematical biology could be regarded as further work because its manual choosing is
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Figure 9 Results for our prediction of the Japanese population size. Here t = 0 corresponds to the year 1950,
and t = 69 corresponds to the year 2019. This is the time frame for our data points

a delicate task [1, 11, 12, 47]. However, more sophisticated techniques for solving inverse
problems are out of the scope of this paper.

As a final extension, our model can be modified by application of fractional differential
operators [6].

Appendix
Proof of Lemma 2.5
First, we see that

N ′(t) = A · N(t) + B · f (t) · N2(t) – C · N3(t)

= C · N(t) ·
{

A
C

+
B
C

· f (t) · N(t) – N2(t)
}

≥ C · N(t) ·
{

A
C

+
B
C

· mf · N(t) – N2(t)
}

(31)

for all t ≥ 0. Pick arbitrary t0 ∈ [0,∞) such that

0 < N(t0) ≤ min

{

N0,
√

A
C

,
B · mf

2 · C

}

.

Then

N ′(t0) ≥ C · N(t0) ·
{

A
C

+
B
C

· mf · N(t0) – N2(t0)
}

≥ 0.
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Hence, we choose Nmin := min{N0,
√

A
C } > 0 as a lower bound for the total population size.

Second, we further notice that

N ′(t) = A · N(t) + B · f (t) · N2(t) – C · N3(t)

= –C · N(t) ·
{

–
A
C

–
B
C

· f (t) · N(t) + N2(t)
}

= –C · N(t) ·
{(

N(t) –
B · f (t)
2 · C

)2

–
4 · A · C + B2 · f 2(t)

4 · C2

}

. (32)

Examining N ′(t) = 0 from (32) yields

N(t) =
B · f (t)
2 · C

+
√

4 · A · C + B2 · f 2(t)
4 · C2

for arbitrary t ≥ 0 where N ′(t) = 0. Thus we can choose the constant Nmax := max{N0,
B·Mf
2·C +

√

4·A·C+B2·M2
f

4·C2 } as an upper bound for the total population size due to the fact that

N ′(t0) = –C · N(t0) ·
{(

N(t0) –
B · f (t0)

2 · C

)2

–
4 · A · C + B2 · f 2(t0)

4 · C2

}

≤ 0

would hold for an arbitrary t0 ≥ 0 where N(t0) ≥ Nmax.
Finally, the two previous steps of our proof imply that the solutions of our population

growth model (13) stay bounded and positive.

Proof of Theorem 2.6
We apply Theorem 2.2. Applying the maximum norm and triangle inequality and using
the boundedness of the function f and the solution by Lemma 2.5, we obtain

∥
∥N ′(t)

∥
∥∞ =

∥
∥A · N(t) + B · f (t) · N2(t) – C · N3(t)

∥
∥∞

≤ A · ∥∥N(t)
∥
∥∞ + B · Mf · Nmax · ∥∥N(t)

∥
∥∞ + C · N2

max · ∥∥N(t)
∥
∥∞

=
(

A + B · Mf · Nmax + C · N2
max

) · ∥∥N(t)
∥
∥∞,

and Theorem 2.2 proves our statement.

Proof of Theorem 2.7
Let t ∈ [0, τ ] be arbitrary for a chosen τ > 0. Let us assume that both functions N :
[0,∞) −→ [0,∞) and Ñ : [0,∞) −→ [0,∞) solve our population growth model (13). We
see that

N(t) – Ñ(t) = N(0) – Ñ(0)
︸ ︷︷ ︸

=0

+
∫ t

0
A · (N(s) – Ñ(s)

)

ds

+ B ·
∫ t

0
f (s) · ((N(s)

)2 –
(

Ñ(s)
)2)ds

– C ·
∫ t

0

((

N(s)
)3 –

(

Ñ(s)
)3)ds,
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which implies

∥
∥N(t) – Ñ(t)

∥
∥∞ ≤ A · τ · ∥∥N(t) – Ñ(t)

∥
∥∞

+ B · Mf ·
t∫

0

∣
∣N(s) – Ñ(s)

∣
∣ · ∣∣N(s) + Ñ(s)

∣
∣ds

+ C ·
t∫

0

∣
∣N(s) – Ñ(s)

∣
∣ · ∣∣(N(s)

)2 + N(s) · Ñ(s) +
(

Ñ(s)
)2∣
∣ds.

By the boundedness of the solution from Lemma 2.5, we obtain

∥
∥N(t) – Ñ(t)

∥
∥∞ ≤ A · τ · ∥∥N(t) – Ñ(t)

∥
∥∞

+ 2 · B · Mf · Nmax · τ · ∥∥N(t) – Ñ(t)
∥
∥∞

+ 3 · C · N2
max · τ · ∥∥N(t) – Ñ(t)

∥
∥∞

=
(

A + 2 · B · Mf · Nmax + 3 · C · N2
max

) · τ · ∥∥N(t) – Ñ(t)
∥
∥∞.

Choosing τ := 1
2·(A+2·B·Mf ·Nmax+3·C·N2

max) , we observe that

∥
∥N(t) – Ñ(t)

∥
∥∞ ≤ 1

2
· ∥∥N(t) – Ñ(t)

∥
∥∞

for all t ∈ [0, τ ]. This yields the uniqueness on the time interval [0, τ ] by Banach’s fixed-
point theorem.

Inductively, we can apply a similar argument as in our first step to obtain the uniqueness
on time intervals [k · τ , (k + 1) · τ ] for all k ∈N0. Here t0 = k · τ is our new initial time point.
This completes the proof of global uniqueness in time.

Proof of Theorem 2.8
We first observe that

Na(t) = Na,0 +
∫ t

0

{

A · Na(τ ) + B · f (τ ) · N2
a (τ ) – C · N3

a (τ )
}

dτ

and

Nb(t) = Nb,0 +
∫ t

0

{

A · Nb(τ ) + B · f (τ ) · N2
b (τ ) – C · N3

b (τ )
}

dτ .

This implies

∣
∣Na(t) – Nb(t)

∣
∣

≤ |Na,0 – Nb,0| +
∣
∣
∣
∣

∫ t

0
A · (Na(τ ) – Nb(τ )

)

dτ

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ t

0
B · f (τ ) · (N2

a (τ ) – N2
b (τ )

)

dτ

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ t

0
C · (N3

a (τ ) – N3
b (τ )

)

dτ

∣
∣
∣
∣
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≤ |Na,0 – Nb,0| +
∫ t

0
A · ∣∣Na(τ ) – Nb(τ )

∣
∣dτ

+
∫ t

0
B · Mf · ∣∣Na(τ ) + Nb(τ )

∣
∣ · ∣∣Na(τ ) – Na(τ )

∣
∣dτ

+
∫ t

0
C · ∣∣N2

a (τ ) + Na(τ ) · Nb(τ ) + N2
b (τ )

∣
∣ · ∣∣Na(τ ) – Nb(τ )

∣
∣dτ

≤ |Na,0 – Nb,0| +
∫ t

0
A · ∣∣Na(τ ) – Nb(τ )

∣
∣dτ

+
∫ t

0
2 · B · Mf · (max{Na,max; Nb,max}

) · ∣∣Na(τ ) – Nb(τ )
∣
∣dτ

+
∫ t

0
3 · C · (max{Na,max; Nb,max}

)2 · ∣∣Na(τ ) – Nb(τ )
∣
∣dτ

for all t ∈ [0, T]. Defining α1 and α2 as stated in our claim of Theorem 2.8, we obtain

∣
∣Na(t) – Nb(t)

∣
∣ ≤ α1 +

∫ t

0
α2 · ∣∣Na(τ ) – Nb(τ )

∣
∣dτ ,

and hence, as both α1 and α2 are constant in time, (14) holds after application of Theorem
2.4, which proves our statement.

Proof of Theorem 2.9
Let us first prove that

|x1 · y1 – x2 · y2| ≤ |x1| · |y1 – y2| + |y2| · |x1 – x2|

for arbitrary x1, x2, y1, y2 ∈R. Application of zero addition and the triangle inequality yields

|x1 · y1 – x2 · y2| = |x1 · y1 – x1 · y2 + x1 · y2 – x2 · y2|
≤ |x1| · |y1 – y2| + |y2| · |x1 – x2|.

Again, we observe that

Na(t) = Na,0 +
∫ t

0

{

Aa · Na(τ ) + Ba · fa(τ ) · N2
a (τ ) – Ca · N3

a (τ )
}

dτ

and

Nb(t) = Nb,0 +
∫ t

0

{

Ab · Nb(τ ) + Bb · fb(τ ) · N2
b (τ ) – Cb · N3

b (τ )
}

dτ .

This implies

∣
∣Na(t) – Nb(t)

∣
∣

≤ |Na,0 – Nb,0| +
∫ t

0

∣
∣Aa · Na(τ ) – Ab · Nb(τ )

∣
∣dτ

︸ ︷︷ ︸

=:I
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+
∫ t

0

∣
∣Ba · fa(τ ) · N2

a (τ ) – Bb · fb(τ ) · N2
b (τ )

∣
∣dτ

︸ ︷︷ ︸

=:II

+
∫ t

0

∣
∣Ca · N3

a (τ ) – Cb · N3
b (τ )

∣
∣dτ

︸ ︷︷ ︸

=:III

.

We will estimate all terms I , II , and III .
By the inequality of our first step, we conclude that

I :=
∫ t

0

∣
∣Aa · Na(τ ) – Ab · Nb(τ )

∣
∣dτ

≤
∫ t

0

{|Aa| ·
∣
∣Na(τ ) – Nb(τ )

∣
∣ +

∣
∣Nb(τ )

∣
∣ · |Aa – Ab|

}

dτ

≤
∫ t

0
|Aa| ·

∣
∣Na(τ ) – Nb(τ )

∣
∣dτ +

(

max{Na,max; Nb,max}
) · t · |Aa – Ab|

≤ (

max{Na,max; Nb,max}
) · t · |Aa – Ab|

+
∫ t

0
max{Aa; Ab} · ∣∣Na(τ ) – Nb(τ )

∣
∣dτ .

By multiple application of the inequality of our first step, we infer that

II :=
∫ t

0

∣
∣Ba · fa(τ ) · N2

a (τ ) – Bb · fb(τ ) · N2
b (τ )

∣
∣dτ

≤
∫ t

0
|Ba| ·

∣
∣fa(τ ) · N2

a (τ ) – fb(τ ) · N2
b (τ )

∣
∣dτ

+
∫ t

0

∣
∣fb(τ ) · N2

b (τ )
∣
∣ · |Ba – Bb|dτ

≤
∫ t

0
Ba · {∣∣fa(τ )

∣
∣ · ∣∣N2

a (τ ) – N2
b (τ )

∣
∣
}

dτ

+
∫ t

0
Ba · {N2

b (τ ) · ∣∣fa(τ ) – fb(τ )
∣
∣
}

dτ

+
∫ t

0
max{Mf ,a; Mf ,b} · (max{Na,max; Nb,max}

)2 · |Ba – Bb|dτ

≤
∫ t

0
Ba · max{Mf ,a; Mf ,b} · ∣∣Na(τ ) + Nb(τ )

∣
∣ · ∣∣Na(τ ) – Nb(τ )

∣
∣dτ

+ Ba · (max{Na,max; Nb,max}
)2 · t · ∥∥fa(t) – fb(t)

∥
∥∞

+ max{Mf ,a; Mf ,b} · (max{Na,max; Nb,max}
)2 · t · |Ba – Bb|

≤ Ba · (max{Na,max; Nb,max}
)2 · t · ∥∥fa(t) – fb(t)

∥
∥∞

+ max{Mf ,a; Mf ,b} · (max{Na,max; Nb,max}
)2 · t · |Ba – Bb|

+
∫ t

0
2 · Ba · max{Mf ,a; Mf ,b} · max{Na,max; Nb,max} · ∣∣Na(τ ) – Nb(τ )

∣
∣dτ .
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Another application of the inequality of the first step yields

III :=
∫ t

0

∣
∣Ca · N3

a (τ ) – Cb · N3
b (τ )

∣
∣dτ

≤
∫ t

0

{

Ca · ∣∣N3
a (τ ) – N3

b (τ )
∣
∣ +

(

max{Na,max; Nb,max}
)3 · |Ca – Cb|

}

dτ

≤
∫ t

0
Ca · ∣∣N2

a (τ ) + Na(τ ) · Nb(τ ) + N2
b (τ )

∣
∣ · ∣∣Na(τ ) – Nb(τ )

∣
∣dτ

+
(

max{Na,max; Nb,max}
)3 · t · |Ca – Cb|

≤ (

max{Na,max; Nb,max}
)3 · t · |Ca – Cb|

+
∫ t

0
3 · Ca · max

({Na,max; Nb,max}
)2 · ∣∣Na(τ ) – Nb(τ )

∣
∣dτ .

Define the time-dependent coefficient

β1(t) := |Na,0 – Nb,0| +
(

max{Na,max; Nb,max}
) · t · |Aa – Ab|

+ Ba · (max{Na,max; Nb,max}
)2 · t · ∥∥fa(t) – fb(t)

∥
∥∞

+ max{Mf ,a; Mf ,b} · (max{Na,max; Nb,max}
)2 · t · |Ba – Bb|

+
(

max{Na,max; Nb,max}
)3 · t · |Ca – Cb|

and the constant

β2 := max{Aa; Ab} + 2 · Ba · max{Mf ,a; Mf ,b} · max{Na,max; Nb,max}
+ 3 · Ca · max

({Na,max; Nb,max}
)2.

We obtain

∣
∣Na(t) – Nb(t)

∣
∣ ≤ β1(t) +

∫ t

0
β2 · ∣∣Na(τ ) – Nb(τ )

∣
∣dτ .

Since all assumptions of Theorem 2.4 are fulfilled, our claim is proven.
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