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Abstract
In this paper, we deal with Caputo-type fractional differential inequality where there is
a low-order fractional derivative with the term polynomial source. We investigate the
nonexistence of nontrivial global solutions in a suitable space via the test function
technique and some properties of fractional integrals. Finally, we demonstrate three
examples to illustrate our results. The presented results are more general than those
in the literature, which can be obtained as particular cases.
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1 Introduction
Fractional-order differential equations have more benefits in contrast with integer-order
differential equations. These equations are adaptable and exact in portraying the changing
law of things. Hence fractional-order differential equations are broadly utilized in real life
[1–6]. Nonetheless, some physical meanings of the fractional differential equations (FDEs)
are yet to be generally perceived because of the intricacy of its initial values; consequently,
the improvement of the theory of FDEs is as yet in its early stages. However, these equa-
tions have become a significant point among numerous researchers in light of their wide
practical applications and theoretical importance.

Although fractional calculus was proposed 300 years ago, the scientists and researchers
are still developing and building up this field significantly, as it is closely related to many
other disciplines. Because of the significance of fractional calculus in applications, in the
previous few decades, there has been a developing interest in the investigation of FDEs.
Specifically, from the theoretical perspective, the existence of solutions for various classes
of FDEs was discussed in numerous contributions (see, e.g., [7–19]). As applications, there
are many recent models and numerical results regarding several classes of FDEs involving
various types of fractional derivatives (FDs) [20–26]. Regarding the problem of the nonex-
istence of solutions for FDEs, we refer to [27–36]. In this regard, we consider the following
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problem:

⎧
⎨

⎩

CDλ
0κ(t) + CDγ

0κ(t) = F(t,κ(t)), t > 0,

κ
(i)(0) = bi, i = 0, 1, . . . , n – 1, n = –[–λ],

(1)

where CDσ
a is the Caputo derivative of order σ (> 0) ∈ {λ,γ }, n < λ,γ < n + 1 (n ∈N).

We will highlight the nonexistence result of nontrivial global solutions for (1) along with
the following condition:

F
(
t,κ(t)

) ≥ tη
∣
∣CDϑ

0 κ(t)
∣
∣m, λ = κ + 1, γ = υ + 1,

for some m > 1, η ∈ R, and n – 1 < λ,γ ,ϑ < n (n ∈ N). That is, we regard the following
problem:

⎧
⎨

⎩

CDκ+1
0 κ(t) + CDυ+1

0 κ(t) ≥ tη|CDϑ
0 κ(t)|m, t > 0, m > 1,

κ
(i)(0) = bi, i = 0, 1, . . . , n, n = –[–κ],

(2)

where κ , υ , ϑ ∈ (n – 1, n), n ∈N, and we show that there are no solutions for specific values
of η and m. Specifically, we discover the range of values of m for which solutions do not
exist globally. Obviously, sufficient conditions for nonexistence give necessary conditions
for the existence of solutions.

Remark 1 The existence and uniqueness of solutions for problem (1) was discussed in [4].

Remark 2 In the case κ = υ = ϑ = 0 in (2), we obtain the problem

κ
′(t) = tη

κ
m(t), κ(0) = b,

which has a solution

κ(t) =
[

1 – m
1 + η

t1+η + b1–m
]1/(1–m)

for m > 1.

Notice that the solution blows up in finite time for m > 1.

Remark 3 In case λ = 1, γ = 0, and F(t,κ(t)) = κ
m(t), m > 1 in (1), we obtain the Bernoulli

differential problem

κ
′(t) + κ(t) = κ

m(t), κ(0) = b,

which has a solution

κ(t) =
[
1 +

(
b1–m – 1

)
exp(m – 1)t

]1/(1–m).

Obviously, κ(t) blows up in the finite time c = 1
1–m ln(1 – b1–m) for m, b > 1.
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Remark 4 In the case λ = γ = κ and F(t,κ(t)) ≥ tϑ |κ(t)|m in (1), we obtain
⎧
⎨

⎩

2Dκ
0κ(t) ≥ tϑ |κ(t)|m, t > 0,

I1–κ
0 κ(t)|t=0 = b.

(3)

Problem (3) was taken into consideration by Laskri and Tatar [29]. It turns out that if
ϑ > –κ and 1 < m ≤ ϑ+1

1–κ
, then problem (3) admits no global nontrivial solutions if b ≥ 0.

Kassim et al. [35] studied the problem
⎧
⎨

⎩

CDκ
0κ(t) + CDυ

0κ(t) ≥ tϑ |κ(t)|m, t > 0,

κ
(k)(0) = bk , k = 0, 1, . . . , n – 1,

(4)

where m > 1, n ≥ 1 is an integer, n – 1 < υ ≤ κ < n, and bk ≥ 0. It turns out that if m(1 –
υ) – 1 < ϑ < m – 1, then problem (4) admits no nontrivial global solutions.

In case 0 < κ ,υ,ϑ < 1 and η = 0 in (2), we obtain
⎧
⎨

⎩

CDκ+1
0 κ(t) + CDυ+1

0 κ(t) ≥ |CDϑ
0 κ(t)|m, t > 0,

κ(0) = b0, κ
′(0) = b1.

(5)

Not long ago, Jleli and Samet [37] studied (5). They proved that the problem admits no
global solutions if b1 > 0.

In this work, we investigate the case of a lower order FD in the inequality (or equation). It
is clear that for hyperbolic equations, for example, the wave equation with an interval frac-
tional damping represented by the first derivative (i.e., κ = 1,υ = 0), this damping process
has a squandering effect. It will contend with the polynomial source and may take care
of this blowing-up term under certain conditions. Besides, in the telegraphing problem
[38], the solutions approach the solution of the same problem without the nth derivative
as t → ∞ (i.e., the parabolic equation). This result has been summed up and generalized
to the FD case in [38] and [30]. For our concern with a problem (2), we might want to
see how effective Dυ

0κ will be on the blowup phenomenon, specifically, how the range of
values m guaranteeing to blowup in finite time would be influenced. We arrived at the
conclusion that here it is the lower-order derivative (i.e., υ), which determines the range
of blowup much the same as the parabolic portion and hyperbolic problem.

In Sect. 2, we give some notations, definitions, and lemmas required later in our analysis.
Sections 3 and 4 are committed to the test function and the nonexistence result. In Sect. 5,
we provide some examples to justify the preceding results. In the final section, we close
our work with concluding remarks.

2 Preliminaries
In this section, we recall some primary facts utilized in our outcomes. We refer the reader
to [4–6] for additional insights about FDs.

Definition 1 We denote by AC[0,∞) the space of absolutely continuous functions on
[0,∞) and by ACn[0,∞) the space of functions 	 that have continuous derivatives up to
order n – 1 on [0,∞) such that 	 (n–1) ∈ AC[0,∞), where 	 (n–1) denotes the derivative of
order n – 1 of 	 .
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Definition 2 We denote by Lp(a, b), p ≥ 1, the spaces of Lebesgue-integrable functions
on (a, b).

Definition 3 Let a < t < b and κ > 0, and let 	 ∈ L1(a, b). Then the left- and right-sided
Riemann–Liouville fractional integrals of order κ of 	 are given by

(
Iκ

a 	
)
(t) :=

1

(κ)

∫ t

a

	 (r)
(t – r)1–κ

dr (6)

and

(
Iκ

b–	
)
(t) :=

1

(κ)

∫ b

t

	 (r)
(r – t)1–κ

dr, (7)

respectively, where 
 is the gamma function. Note that if κ = 0, then I0
a	 = I0

b–	 = 	 .

Definition 4 Let 	 ∈ ACn[0,∞). The expression

CDκ
a	 (t) = In–κ

a 	 (n)(t) =
1


(n – κ)

∫ t

a

	 (n)(s)
(t – s)κ+1–n ds (8)

is called left-sided Caputo FD of order κ of 	 .

Lemma 1 ([6]) Let κ > 0, p ≥ 1, q ≥ 1, and 1
p + 1

q ≤ 1 + κ (p �= 1 and q �= 1 in the case where
1
p + 1

q = 1 + κ). If �1 ∈ Lp(a, b) and �2 ∈ Lq(a, b), then

∫ b

a
�1(t)

(
Iκ

a �2
)
(t) dt =

∫ b

a
�2(t)

(
Iκ

b–�1
)
(t) dt. (9)

Lemma 2 If κ ≥ 0 and υ > 0, then

Iκ
T (T – t)κ =


(υ + 1)

(υ + κ + 1)

(T – t)υ+κ ,

Dκ
T (T – t)υ =


(υ + 1)

(υ – κ + 1)

(T – t)υ–κ .

Lemma 3 Let κ > 0 and υ > 0. If 	 ∈ Lp(a, b), then

Iυ
a Iκ

a 	 (t) = Iυ+κ
a 	 (t), t > a,

Iυ
b Iκ

b 	 (t) = Iυ+κ
b 	 (t), t < b.

Lemma 4 Let κ ∈ (n – 1, n), n ∈N, and 	 ∈ Lp(0, b). Then the IVP

CDκ
0κ(t) = 	 (t), t > 0,

κ
(i)(0) = ci, i = 0, 1, . . . , n – 1,

has the solution

κ(t) = c0 + c1t + · · · +
cn–1

(n – 1)!
tn–1 +

1

(κ)

∫ t

0
(t – r)κ–1	 (r) dr.
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3 The test function
We use the test function

�(t) =

⎧
⎨

⎩

T–ς (T – t)ς , 0 ≤ t ≤ T ,ς > 0,

0, t > T .
(10)

This test function has the following properties.

Lemma 5 Let η ≥ 0 and � be as in (10). Then

Iη

T�(t) =

(ς + 1)


(η + ς + 1)
T–ς (T – t)ς+η,

Iη

T�(0) =

(ς + 1)


(η + ς + 1)
Tη and Iη

T�(T) = 0,

d2

dt2 Iη

T�(t) =

(ς + 1)


(η + ς – 1)
T–ς (T – t)ς+η–2.

Proof It follows from Lemma 2. �

Lemma 6 Let � be as in (10) with ς + p(υ + κ – 2) + 1 > 0, ϑ(1 – p) + 1 > 0,
υ , κ ≥ 0, and p > 1. Then

∫ T

0
tϑ(1–p)�1–p(t)

(

Iυ
T

d2

dt2 Iκ
T�(t)

)p

dt = Kϑ ,p,ς
υ,κ Tϑ(1–p)+p(υ+κ–2)+1,

where

Kϑ ,p,ς
υ,κ =

[

(ς + 1)


(υ + κ + ς – 1)

]p

(ϑ(1 – p) + 1)
(ς + p(υ + κ – 2) + 1)


(ϑ(1 – p) + ς + p(υ + κ – 2) + 2)
.

Proof By Lemma 5 we have

Iυ
T

d2

dt2 Iκ
T�(t) =


(ς + 1)

(κ + ς – 1)

T–ς Iυ
T (T – t)ς+κ–2

=

(ς + 1)


(υ + κ + ς – 1)
T–ς (T – t)υ+ς+κ–2.

Then
∫ T

0
tϑ(1–p)�1–p(t)

(

Iυ
T

d2

dt2 Iκ
T�(t)

)p

dt

=
[


(ς + 1)

(υ + κ + ς – 1)

]p

T–pς

∫ T

0
tϑ(1–p)[T–ς (T – t)ς

]1–p(T – t)p(υ+ς+κ–2) dt

=
[


(ς + 1)

(υ + κ + ς – 1)

]p

T–ς

∫ T

0
tϑ(1–p)(T – t)ς+p(υ+κ–2) dt.

Let t = sT . Then
∫ T

0
tϑ(1–p)�1–p(t)

(

Iυ
T

d2

dt2 Iκ
T�(t)

)p

dt
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=
[


(ς + 1)

(υ + κ + ς – 1)

]p

Tϑ(1–p)+p(υ+κ–2)+1
∫ 1

0
sϑ(1–p)(1 – s)ς+p(υ+κ–2) ds

=
[


(ς + 1)

(υ + κ + ς – 1)

]p

(ϑ(1 – p) + 1)
(ς + p(υ + κ – 2) + 1)


(ϑ(1 – p) + ς + p(υ + κ – 2) + 2)
Tϑ(1–p)+p(υ+κ–2)+1. �

Remark 5 For the rest of the paper, we will utilize the following equivalency. If m, m′ > 1,
and 1

m + 1
m′ = 1, then:

1. m′ = m
m–1 .

2. m′
m = m′ – 1.

3. m(κ – 1) + 1 > 0 ⇐⇒ m′κ > 1 for κ > 0.

4 Nonexistence result
In this part, we discuss the problem

⎧
⎨

⎩

CDκ+1
0 κ(t) + CDυ+1

0 κ(t) ≥ tη|CDϑ
0 κ(t)|m, t > 0, m > 1, 0 < υ < κ ,

κ
(i)(0) = bi, i = 0, 1, . . . , n, n = –[–κ].

(11)

Theorem 1 Let m(ϑ – n) + n – υ – 1 < η < m – 1 and m > 1. If bn > 0, then problem (11)
admits no global nontrivial solutions in ACn+1[0,∞).

Proof Let κ ∈ ACn+1[0,∞) be a global solution to (11). Let � be as in (10) with ς > m
m–1 (κ +

1 – ϑ) – 1. Multiplying both sides of (11) by �(t) and integrating over [0, T], we get

I =
∫ T

0
�(t)tη

∣
∣CDϑ

0 κ(t)
∣
∣m dt ≤ I1 + I2, (12)

where

I1 =
∫ T

0
�(t)CDκ+1

0 κ(t) dt

and

I2 =
∫ T

0
�(t)CDυ+1

0 κ(t) dt.

From the definition of CDϑ
0 κ(t) and Lemma 1 we have

I1 =
∫ T

0
�(t)In–κ

0 κ
(n+1)(t) dt =

∫ T

0
κ

(n+1)(t)In–κ
T �(t) dt. (13)

Integrating by parts and using Lemma 5, we get

I1 = κ
(n)(t)In–κ

T �(t)|Tt=0 –
∫ T

0
κ

(n)(t)
d
dt

In–κ
T �(t) dt

= –bnIn–κ
T �(0) –

∫ T

0
κ

(n)(t)
d
dt

In–κ
T �(t) dt. (14)
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On the other hand, by Lemma 3 we obtain

κ
(n)(t) =

d
dt

∫ t

0
κ

(n)(s) ds =
d
dt

(
I1

0κ
(n)(t)

)

=
d
dt

(
Iϑ+1–n

0 In–ϑ
0 κ

(n)(t)
)

=
d
dt

(
Iϑ+1–n

0
CDϑ

0 κ(t)
)
.

Then

I1 = –bnIn–κ
T �(0) –

∫ T

0

d
dt

(
Iϑ+1–n

0
CDϑ

0 κ(t)
) d

dt
In–κ

T �(t) dt.

Using integration by parts and Lemma 1, we have that

I1 = –bnIn–κ
T �(0) – Iϑ+1–n

0
CDϑ

0 κ(t)
d
dt

In–κ
T �(t)|Tt=0

+
∫ T

0
Iϑ+1–n

0
CDϑ

0 κ(t)
d2

dt2 In–κ
T �(t) dt

= –bnIn–κ
T �(0) +

∫ T

0
Iϑ+1–n

0
CDϑ

0 κ(t)
d2

dt2 In–κ
T �(t) dt

= –bnIn–κ
T �(0) +

∫ T

0

CDϑ
0 κ(t)Iϑ+1–n

T
d2

dt2 In–κ
T �(t) dt. (15)

Note that

Iϑ+1–n
0

CDϑ
0 κ(t)

d
dt

In–κ
T �(t)|t=T = 0, ς > 1 + κ – n,

and

Iϑ+1–n
0

CDϑ
0 κ(t)

d
dt

In–κ
T �(t)|t=0 = Iϑ+1–n

0 In–ϑ
0 κ

(n)(t)
d
dt

In–κ
T �(t)|t=0

= I1
0κ

(n)(t)
d
dt

In–κ
T �(t)|t=0

=
(
κ

(n–1)(t) – κ
(n–1)(0)

) d
dt

In–κ
T �(t)|t=0 = 0.

Next, we insert tη/m�(t)1/mt–η/m�(t)–1/m inside the integral of (15):

I1 = –bnIn–κ
T �(0) +

∫ T

0

CDϑ
0 κ(t)�(t)1/mtη/m�(t)–1/m(t)t–η/mIϑ+1–n

T
d2

dt2 In–κ
T �(t) dt.

Using the ε-Young inequality with 0 < ε < 1/2, we obtain

I1 ≤ –bnIn–κ
T �(0) + ε

∫ T

0

∣
∣CDϑ

0 κ(t)
∣
∣m

�(t)tη dt

+ K(ε, m)
∫ T

0
�(t)–m′/mt–ηm′/m

(

Iϑ+1–n
T

d2

dt2 In–κ
T �(t)

)m′

dt, K(ε, m) > 0.
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By Lemmas 5 and 6 we have

I1 ≤ –bn

(ς + 1)


(n – κ + ς + 1)
Tn–κ + ε

∫ T

0

∣
∣CDϑ

0 κ(t)
∣
∣m

�(t)tη dt

+ K(ε, m)Kη,m′ ,ς
ϑ+1–n,n–κTη(1–m′)+m′(ϑ–κ–1)+1. (16)

Similarly,

I2 ≤ –bn

(ς + 1)


(n – υ + ς + 1)
Tn–υ + ε

∫ T

0

∣
∣CDϑ

0 κ(t)
∣
∣m

�(t)tη dt

+ K(ε, m)Kη,m′ ,ς
ϑ+1–n,n–υTη(1–m′)+m′(ϑ–υ–1)+1. (17)

Hence from (12), (16), and (17) it follows that

(1 – 2ε)I + 
(ς + 1)bnTn–υ

(
Tυ–κ


(n – κ + ς + 1)
+

1

(n – υ + ς + 1)

)

≤ K(ε, m)Kη,m′ ,ς
ϑ+1–n,n–κTη(1–m′)+m′(ϑ–κ–1)+1

+ K(ε, m)Kη,m′ ,ς
ϑ+1–n,n–υTη(1–m′)+m′(ϑ–υ–1)+1. (18)

Since bn > 0 and 0 < ε < 1/2, we find


(ς + 1)bnTn–υ

(
Tυ–κ


(n – κ + ς + 1)
+

1

(n – υ + ς + 1)

)

≥ 
(ς + 1)

(n – υ + ς + 1)

bnTn–υ

and

(1 – 2ε)
∫ T

0
�(t)tη

∣
∣CDϑ

0 κ(t)
∣
∣m dt

+ 
(ς + 1)bnTn–υ

(
Tυ–κ


(n – κ + ς + 1)
+

1

(n – υ + ς + 1)

)

≥ 
(ς + 1)bnTn–υ

(
Tυ–κ


(n – κ + ς + 1)
+

1

(n – υ + ς + 1)

)

≥ 
(ς + 1)

(n – υ + ς + 1)

bnTn–υ .

Therefore

C1bnTn–υ ≤ C2Tη(1–m′)+m′(ϑ–κ–1)+1 + C3Tη(1–m′)+m′(ϑ–υ–1)+1,

where

C1 =

(ς + 1)


(n – υ + ς + 1)
, C2 = K(ε, m)Kη,m′ ,ς

ϑ+1–n,n–κ , C3 = K(ε, m)Kη,m′ ,ς
ϑ+1–n,n–υ ,

or

bn ≤ 1
C1

Tυ–n(C2Tη(1–m′)+m′(ϑ–κ–1)+1 + C3Tη(1–m′)+m′(ϑ–υ–1)+1)
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=
1

C1
Tυ–n+η(1–m′)+m′(ϑ–υ–1)+1(C2Tm′(υ–κ) + C3

)
.

Note that υ – n + η(1 – m′) + m′(ϑ – υ – 1) + 1 < 0 and m′(υ – κ) < 0, and, consequently,
Tυ–n+η(1–m′)+m′(ϑ–υ–1)+1, Tm′(υ–κ) → 0 as T → ∞. Therefore

bn ≤ 0.

We get a contradiction since bn > 0. �

Theorem 2 Let m(ϑ – υ) – 1 < η < m – 1, m > 1,and bn = 0. Then the only global solution
to problem (11) is

κ(t) = c0 + c1t + · · · +
cn–1

(n – 1)!
tn–1, t > 0.

Proof Taking bn = 0 in (18), we find

(1 – 2ε)I ≤ C2Tη(1–m′)+m′(ϑ–κ–1)+1 + C3Tη(1–m′)+m′(ϑ–υ–1)+1,

or

I ≤ C4Tη(1–m′)+m′(ϑ–υ–1)+1(C2Tm′(υ–κ) + C3
)
, (19)

where C4 = 1
1–2ε

and 0 < ε < 1/2. Using (10) and (12), we get

∫ T

0

(

1 –
t
T

)ς

tη
∣
∣CDϑ

0 κ(t)
∣
∣m dt ≤ C4Tη(1–m′)+m′(ϑ–υ–1)+1

× (
C2Tm′(υ–κ) + C3

)
.

(20)

Since υ ≤ κ and m(ϑ –υ)–1 < η, we have m′(υ –κ) ≤ 0 and η(1–m′)+m′(ϑ –υ –1)+1 < 0.
Taking the limit as T → ∞ in (20) and using Fatou’s lemma, we obtain

∫ T

0
tη

∣
∣CDϑ

0 κ(t)
∣
∣m dt = 0,

which yields

CDϑ
0 κ(t) = 0, t > 0.

Then by Lemma 4 we have

κ(t) = c0 + c1t + · · · +
cn–1

(n – 1)!
tn–1, t > 0. �

5 Examples
In this section, we give some examples to justify the preceding results.
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Example 1 The fractional differential problem

CD1.8
0 κ(t) + CD1.5

0 κ(t) ≥ t0.5∣∣CD0.6
0 κ(t)

∣
∣2, t > 0,

κ(0) = 0, κ
′(0) = 1,

(21)

is a particular case of (11) where κ = 0.8, υ = 0.5, η = 0.5, ϑ = 0.6, m = 2, b0 = 0, and b1 = 1.
Therefore by Theorem 1 the fractional differential problem (21) has no nontrivial global
solutions in AC2[0,∞).

Example 2 The fractional differential problem

CD2.7
0 κ(t) + CD2.4

0 κ(t) ≥ t–0.4∣∣CD1.5
0 κ(t)

∣
∣3, t > 0,

κ(0) = 1, κ
′(0) = –2, κ

′′(0) = 3,
(22)

is a particular case of (11) where κ = 1.7, υ = 1.4, η = –0.4, ϑ = 1.5, m = 3 and b0 = 1,
b1 = –2, b2 = 3. Therefore, by Theorem 1, the fractional differential problem (22) has no
nontrivial global solution in AC3[0,∞).

Example 3 The fractional differential problem

CD3.7
0 κ(t) + CD3.5

0 κ(t) ≥ t0.8∣∣CD2.6
0 κ(t)

∣
∣3, t > 0,

κ(0) = 4, κ
′(0) = 1, κ

′′(0) = 2, κ
′′′(0) = 0,

(23)

is a special case of (11) when κ = 2.7, υ = 2.5, η = 0.8, ϑ = 2.6, m = 3, b0 = 4, b1 = 1, b2 = 2,
and b3 = 0. Therefore by Theorem 2 the only global solution to problem (23) is

κ(t) = 4 + t + t2, t > 0.

6 Concluding remarks
In this paper, we studied a new class of fractional differential inequalities involving the
Caputo fractional derivatives depending on two different orders. With the aid of the test
function technique and some properties of fractional integrals, we investigated the nonex-
istence of nontrivial global solutions in a suitable space. Three simulation examples were
presented to illustrate our acquired results. Moreover, for the telegraphing problem [38], it
was deduced that the solutions approach the solution of the same problem without the nth
derivative as t → ∞. This result was summed up and generalized to the FD. We investi-
gated the case in which there is a lower-order FD in the inequality (or equation), for exam-
ple, problem (2). We realized how effective Dυ

0κ would be on the blow-up phenomenon.
Specifically, it affected the range of values m which guaranteed blow-ups in finite time
Based on this, we arrived at the conclusion that the lower-order derivative (i.e., υ) de-
termines the range of blow-up much the same as the parabolic portion and hyperbolic
problem. The presented results are more general than those in the literature, which can
be obtained as particular cases: for more detail, see Remarks 2, 3, and 4.

In future work, many cases can be established for more general operators containing an-
other function, for instance, the generalized Caputo [39] or Hilfer [40] fractional operator.
Also, it will be of interest to study the problem of this paper for the Mittag-Leffler power
low [41].
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