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Abstract
The aim of this paper is to consider a fully cantilever beam equation with one end
fixed and the other connected to a resilient supporting device, that is,

⎧
⎪⎨

⎪⎩

u(4)(t) = f (t,u(t),u′(t),u′′(t),u′′′(t)), t ∈ [0, 1],

u(0) = u′(0) = 0,

u′′(1) = 0, u′′′(1) = g(u(1)),

where f : [0, 1]×R
4 →R, g :R → R are continuous functions. Under the assumption

of monotonicity, two existence results for solutions are acquired with the monotone
iterative technique and the auxiliary truncated function method.
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1 Introduction
In this paper, we investigate a fully fourth-order differential equation with nonlinear
boundary condition

⎧
⎪⎪⎨

⎪⎪⎩

u(4)(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],

u(0) = u′(0) = 0,

u′′(1) = 0, u′′′(1) = g(u(1)),

(1.1)

where f : [0, 1] ×R
4 →R, g : R →R are continuous functions.

The two-point boundary value problems (BVPs) of fourth-order differential equations
are the mathematical models for describing the states of elastic beams. It is generally
known that the elastic beams are one of the basic structures of modern architecture, air-
craft, and ships. Due to their practical mathematical models and extensive application
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background, they have attracted the general attention of researchers, see [1–21] and the
references therein.

The solvability for the cantilever beam equations with zero boundary conditions u(0) =
u′(0) = u′′(1) = u′′′(1) = 0 has been researched by many scholars (see [5, 10–12, 18, 20, 21]).
Specially, in [10–12], Li considered the cantilever beam equation

⎧
⎨

⎩

u(4)(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ [0, 1],

u(0) = u′(0) = u′′(1) = u′′′(1) = 0,
(1.2)

and studied the existence of solutions or positive solutions by means of the fixed point
theorem of completely continuous operators, the fixed point index theory in cones, and
the lower and upper solutions method, respectively. It should be noted that in the above
works, all the lower-order derivatives of unknown function are involved in the nonlinear
function, which greatly generalizes and extends many early results.

It is common knowledge that in the force analysis of beams, the physical meaning of the
derivatives u′(t), u′′(t), u′′′(t), and u(4)(t) of u(t) are slope, bending moment, shear force,
and load density, respectively (see [1, 6, 7, 11–14]). Thus, the nonlinear boundary condi-
tion

u(0) = u′(0) = u′′(1) = 0, u′′′(1) = g
(
u(1)

)
, (1.3)

indicates that the shear force is equal to g(u(1)), which implies that there may be a nonlin-
ear relationship between the displacement u(1) and the vertical force, as well as u′′(1) = 0
denotes that the beam has no bending moment at t = 1, so it is supported on the bear-
ing g . Therefore, BVP (1.1) simulates the static deformation for a spring beam of length 1
in which the left end is fixed and the right end is linked together with an elastic bearing
device described by g , which is the cantilever beam equation with support in engineering
and mechanics.

Owing to its specific boundary condition and realistic physical meaning, the solvability
for cantilever equation (1.1) has been studied by some scholars, see [2–4, 7, 8, 13, 14,
17, 19]. In [4, 13, 14, 17, 19]. The existence theory of solutions for the cantilever beam
equation with nonlinear boundary condition (1.3) was studied under the condition that the
nonlinear term f does not involve the derivative terms of deformation function u. In [2, 7,
8], the solvability conclusions were obtained by some fixed point theorems and monotone
iterative method under the conditions that the nonlinear function f only contains the first-
order derivative term. Recently, Azarnavid et al. [3] used the reproducing kernel space
method to construct an analytical approximate solution for BVP (1.1). However, because
of the influence of fully derivative terms in the nonlinear function f and the nonlinearity
of the boundary condition, the solvability for BVP (1.1) has not been studied extensively.
In particular, as far as we know, there are fewer results on the equations of fully cantilever
beam with nonlinear boundary conditions by using the method involving lower and upper
solutions.

Inspired by the above literature, in the present paper, we utilize the monotone itera-
tive technique involving lower and upper solutions and the auxiliary truncation function
method to discuss the existence of solutions for BVP (1.1) between lower solution and up-
per solution. In order to study BVP (1.1), we put forward some reasonable monotonicity
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assumptions for the nonlinear functions f and g . Indeed, in order to reasonably introduce
the definition of lower or upper solutions, we also consider the function g . Therefore, our
results generalize and improve many results in the existing literature, which are new and
meaningful. Our main results and proof processes are presented in Sect. 3, and two ex-
amples are given to verify our results in Sect. 4. In the following section, we introduce the
definitions of lower and upper solutions and provide some preliminary results, which are
useful in the proof.

2 Preliminaries
Denote I = [0, 1]. Let C(I) be a continuous function space with the norm ‖u‖C =
maxt∈I |u(t)|, and Cn(I) (n = 1, 2, 3, 4) be an n-order continuous differentiable function
space with the norm ‖u‖Cn = max {‖u‖C ,‖u′‖C , . . . ,‖u(n)‖C}. Set C+(I) = {u ∈ C(I) | u(t) ≥
0, t ∈ I}, which is a positive cone of C(I).

Firstly, with regard to the linear boundary value problem (LBVP)

⎧
⎨

⎩

u(4)(t) = h(t), t ∈ I,

u(0) = u′(0) = u′′(1) = u′′′(1) = 0.
(2.1)

By [10], we know that, for given h ∈ C(I), LBVP (2.1) has a unique solution

u(t) =
∫ 1

0
G(t, s)h(s) ds := Sh(t), t ∈ I, (2.2)

where the Green function is defined by

G(t, s) =
1
6

⎧
⎨

⎩

t2(3s – t), 0 ≤ t ≤ s ≤ 1,

s2(3t – s), 0 ≤ s ≤ t ≤ 1.
(2.3)

From (2.2) and (2.3), it is easy to find that S : C(I) → C4(I) is a bounded linear operator.
Moreover, S : C(I) → C3(I) is completely continuous based on the compactness of imbed-
ding C4(I) ↪→ C3(I).

Next, we consider the LBVP corresponding to BVP (1.1)

⎧
⎪⎪⎨

⎪⎪⎩

u(4)(t) = h(t), t ∈ I,

u(0) = u′(0) = 0,

u′′(1) = 0, u′′′(1) = γ ,

(2.4)

where γ ≤ 0 is a constant.
With a simple calculation, for each h ∈ C(I),

u(t) =
∫ 1

0
G(t, s)h(s) ds – γ ϕ(t), t ∈ I, (2.5)

is the unique solution of LBVP (2.4), where G(t, s) is defined by (2.3) and

ϕ(t) =
1
2

t2 –
1
6

t3, t ∈ I. (2.6)
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As a matter of fact, by (2.4) and (2.5), one can find that the solutions of BVP (1.1) can be
expressed by

u(t) =
∫ 1

0
G(t, s)f

(
t, u(t), u′(t), u′′(t), u′′′(t)

)
ds – g

(
u(1)

)
ϕ(t) := Tu(t), (2.7)

which suggests that the solutions of BVP (1.1) are equivalent to the fixed points of the
operator T . For u ∈ C3(I), define operators B : C3(I) → C3(I) and F : C3(I) → C(I) by

B(u)(t) = –g
(
u(1)

)
ϕ(t), t ∈ I, (2.8)

F(u)(t) = f
(
t, u(t), u′(t), u′′(t), u′′′(t)

)
, t ∈ I. (2.9)

Thus, for every u ∈ C3(I),

Tu = (S ◦ F)(u) + Bu. (2.10)

Lemma 2.1 For every u ∈ C3(I), B : C3(I) → C3(I) is a completely continuous operator and
‖Bu‖C3 = |g(u(1))|.

Proof By (2.6), for any t ∈ I ,

ϕ′(t) = t
(

1 –
1
2

t
)

≥ 0, ϕ′′(t) = 1 – t ≥ 0, ϕ′′′(t) = –1 < 0.

Hence, we can conclude that

max
t∈I

∣
∣ϕ(t)

∣
∣ = ϕ(1) =

1
3

, max
t∈I

∣
∣ϕ′(t)

∣
∣ = ϕ′(1) =

1
2

,

max
t∈I

∣
∣ϕ′′(t)

∣
∣ = ϕ′′(0) = 1, max

t∈I

∣
∣ϕ′′′(t)

∣
∣ = 1.

Then, from (2.8), it follows that, for any u ∈ C3(I),

‖Bu‖C = max
t∈I

∣
∣–g

(
u(1)

)
ϕ(t)

∣
∣ =

1
3
∣
∣g

(
u(1)

)∣
∣,

∥
∥(Bu)′

∥
∥

C = max
t∈I

∣
∣–g

(
u(1)

)
ϕ′(t)

∣
∣ =

1
2
∣
∣g

(
u(1)

)∣
∣,

∥
∥(Bu)′′

∥
∥

C = max
t∈I

∣
∣–g

(
u(1)

)
ϕ′′(t)

∣
∣ =

∣
∣g

(
u(1)

)∣
∣,

∥
∥(Bu)′′′

∥
∥

C = max
t∈I

∣
∣–g

(
u(1)

)
ϕ′′′(t)

∣
∣ =

∣
∣g

(
u(1)

)∣
∣,

and B : C3(I) → C3(I) is completely continuous. Evidently,

‖Bu‖C3 = max
{‖Bu‖C ,

∥
∥(Bu)′

∥
∥

C ,
∥
∥(Bu)′′

∥
∥

C ,
∥
∥(Bu)′′′

∥
∥

C

}
=

∣
∣g

(
u(1)

)∣
∣.

The proof is completed. �

Now, we establish the following comparison principle.
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Lemma 2.2 Let γ ≤ 0 be a constant and u ∈ C(4)(I) satisfy

⎧
⎨

⎩

u(4)(t) ≥ 0, t ∈ I,

u(0) ≥ 0, u′(0) ≥ 0, u′′(1) ≥ 0, u′′′(1) ≤ γ ,

then for any t ∈ I , u(t) ≥ 0, u′(t) ≥ 0, u′′(t) ≥ 0, u′′′(t) ≤ γ .

Proof By the definition of integral, for any t ∈ I ,

u′′′(t) = u′′′(1) –
∫ 1

t
u(4)(s) ds ≤ γ ,

u′′(t) = u′′(1) –
∫ 1

t
u′′′(s) ds ≥ –γ (1 – t) ≥ 0,

u′(t) = u′(0) +
∫ t

0
u′′(s) ds ≥ 0,

u(t) = u(0) +
∫ t

0
u′(s) ds ≥ 0.

The proof is completed. �

Definition 2.3 If α(t) ∈ C4(I) satisfies
⎧
⎨

⎩

α(4)(t) ≤ f (t,α(t),α′(t),α′′(t),α′′′(t)), t ∈ I,

α(0) ≤ 0, α′(0) ≤ 0, α′′(1) ≤ 0, α′′′(1) ≥ g(α(1)),

then α(t) is named a lower solution of BVP (1.1). And if the inequalities in the above are
all reversed, then α(t) is named an upper solution of BVP (1.1).

Lemma 2.4 Let α(t) and β(t) be a pair of lower and upper solutions for BVP (1.1) with
α′′′(t) ≥ β ′′′(t) for every t ∈ I . Then

α(t) ≤ β(t), α′(t) ≤ β ′(t), α′′(t) ≤ β ′′(t), t ∈ I.

Proof Denote u(t) = β(t) – α(t), then u′′′(t) ≤ 0. By Definition 2.3,

u(0) ≥ 0, u′(0) ≥ 0, u′′(1) ≥ 0.

So, for any t ∈ I , we can figure out that

u′′(t) = u′′(1) –
∫ 1

t
u′′′(s) ≥ 0,

u′(t) = u′(0) +
∫ t

0
u′′(s) ≥ 0,

u(t) = u(0) +
∫ t

0
u′(s) ≥ 0.

At this point, the proof is finished. �
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For convenience, we recommend a semi-ordering “	” in C3(I):

α 	 β ⇔ α ≤ β , α′ ≤ β ′, α′′ ≤ β ′′, α′′′ ≥ β ′′′,

we note that β � α is equal to α 	 β . Let α,β ∈ C3(I) and α 	 β , we also introduce the
order-interval in C3(I):

Dβ
α =

{
u ∈ C3(I) | α 	 u 	 β

}
, (2.11)

then Dβ
α ⊂ C3(I) is a nonempty bounded convex closed set.

At the end of this section, we present an important result, which will be used in Sect. 3.

Lemma 2.5 Let f : I × R
4 → R, g : R → R be boundary continuous functions, then BVP

(1.1) has a solution u ∈ C4(I).

Proof Obviously, F : C3(I) → C(I) is bounded and continuous. Thus, S ◦F : C3(I) → C3(I)
is completely continuous, which implies that T : C3(I) → C3(I) is a completely continuous
operator. Here, we apply the Schauder fixed point theorem to testify that there is a fixed
point for the operator T in C3(I).

By the boundedness of f and g , there exist constants M1, M2 > 0 such that

‖Fu‖C ≤ M1,
∣
∣g

(
u(1)

)∣
∣ ≤ M2, u ∈ C3(I).

Choose R ≥ M1‖S‖+ M2, and define a closed bounded convex set � = {u ∈ C3(I) : ‖u‖C3 ≤
R}, where ‖S‖ is the norm of operator S in C3(I). For u ∈ �, one can find

‖Tu‖C3 ≤ ∥
∥SF(u)

∥
∥

C3 + ‖Bu‖C3

≤ ‖S‖ · ‖Fu‖C +
∣
∣g

(
u(1)

)∣
∣

≤ M1‖S‖ + M2 ≤ R,

it shows that T(�) ⊂ �. Hence, the Schauder fixed point theorem guarantees that the
operator T has a fixed point u ∈ �, which is a solution of BVP (1.1). �

3 Main results
Theorem 3.1 Let α(t) and β(t) be a pair of lower and upper solutions of BVP (1.1) with
α′′′(t) ≥ β ′′′(t) for every t ∈ I . If the following conditions are established:

(H1) f : I ×R
4 →R is continuous and satisfies:

(i) f (t, x0, x1, x2, x3) is increasing with respect to x0, x1, and x2 in
[α(t),β(t)] × [α′(t),β ′(t)] × [α′′(t),β ′′(t)] for every t ∈ I , x3 ∈ [β ′′′(t),α′′′(t)];

(ii) f (t, x0, x1, x2, x3) is decreasing with respect to x3 in [β ′′′(t),α′′′(t)] for every t ∈ I ,
xi ∈ [α(i)(t),β (i)(t)] (i = 0, 1, 2).

(H2) g : R →R is continuous and decreasing with respect to x in [α(t),β(t)] for every
t ∈ I .

Then there exists maximal solution u and minimal solution u for BVP (1.1) in Dβ
α .
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Proof It is easy to know that α 	 β by Lemma 2.4. Let F : C3(I) → C(I) be defined by (2.9),
then F is continuous. Based on (H1), we can certify that

u1 	 u2 ⇒ F(u1) ≤ F(u2), u1, u2 ∈Dβ
α . (3.1)

Since S is completely continuous, thus S◦F : Dβ
α → C3(I) is completely continuous. There-

fore, T : Dβ
α → C3(I) is a completely continuous operator.

Next, we will accomplish the proof in three steps:
I. We prove that T : Dβ

α → Dβ
α is an order-increasing operator under the semi-ordering

“	”, namely

α 	 u1 	 u2 	 β ⇒ α 	 Tu1 	 Tu2 	 β . (3.2)

To this end, let x = Tu = (S ◦ F)(u) + Bu for u ∈ Dβ
α . Denote h = F(u), γ = g(u(1)), then

x = Tu is the solution of LBVP (2.4) and satisfies

⎧
⎪⎪⎨

⎪⎪⎩

x(4)(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ I,

x(0) = x′(0) = 0,

x′′(1) = 0, x′′′(1) = g(u(1)).

(3.3)

Using the definition of lower solution together with (H1),

(x – α)(4)(t) ≥ F(u)(t) – F(α)(t) ≥ 0.

By the boundary conditions and (H2), one can find

(x – α)(0) ≥ 0, (x – α)′(0) ≥ 0,

(x – α)′′(1) ≥ 0, (x – α)′′′(1) ≤ g
(
u(1)

)
– g

(
α(1)

) ≤ 0.

Thus, according to Lemma 2.2, for every t ∈ I ,

(x – α)(t) ≥ 0, (x – α)′(t) ≥ 0,

(x – α)′′(t) ≥ 0, (x – α)′′′(t) ≤ g
(
u(1)

)
– g

(
α(1)

) ≤ 0,

which means α 	 x. Similarly, one can see x 	 β . Therefore, α 	 x 	 β , that is, T : Dβ
α →

Dβ
α .
Furthermore, for every u1, u2 ∈ Dβ

α with u1 	 u2, denote x1 = Tu1, x2 = Tu2, then x1, x2

satisfy equation (3.3), respectively. Combining with (H1) and (H2), we obtain that

(x2 – x1)(4)(t) = F(u2)(t) – F(u1)(t) ≥ 0, t ∈ I,

(x2 – x1)(0) ≥ 0, (x2 – x1)′(0) ≥ 0,

(x2 – x1)′′(1) ≥ 0, (x2 – x1)′′′(1) = g
(
u2(1)

)
– g

(
u1(1)

) ≤ 0.
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By Lemma 2.2, for every t ∈ I , we have

(x2 – x1)(t) ≥ 0, (x2 – x1)′(t) ≥ 0, (x2 – x1)′′(t) ≥ 0, (x2 – x1)′′′(t) ≤ 0,

which implies that Tu1 	 Tu2.
II. We testify that BVP (1.1) has a solution in Dβ

α .
Taking α0 = α, β0 = β , establish iterative sequences

αn = Tαn–1, βn = Tβn–1, n = 1, 2, . . . . (3.4)

Using (3.2), we can easily confirm that αn and βn satisfy the monotone conditions:

α0 	 α1 	 · · · 	 αn 	 βn 	 · · · 	 β1 	 β0, n = 1, 2, . . . . (3.5)

From the compactness of T , it follows that {αn}, {βn} ⊂ T(Dβ
α ) are relatively compact in

C3(I). Hence, by (3.5), {αn} and {βn} are uniformly convergent in C3(I), which means that
there exist u, u ∈ C3(I) such that αn → u, βn → u. With the convexity and closeness of Dβ

α ,
u, u ∈Dβ

α . By (3.4) and the continuity of T , one can deduce u = Tu, u = Tu. Thus, u and u
are the solutions of BVP (1.1) in Dβ

α .
III. We demonstrate that u and u are the minimal and maximal solutions of BVP (1.1) in

Dβ
α , respectively.
Let u ∈Dβ

α be a solution of BVP (1.1), then α 	 u 	 β , by (3.2),

αn 	 u 	 βn, n = 1, 2, . . . .

Setting n → ∞, then

u 	 u 	 u.

Consequently, u and u are the minimal and maximal solutions of BVP (1.1) in Dβ
α , respec-

tively.
The proof is finished. �

On the basis of the above argument, it is easy to draw the following corollary.

Corollary 3.2 Suppose that the conditions of Theorem 3.1 are established. Constructing
iterative sequences {αn} and {βn} with α0 = α, β0 = β by the iterative equation

⎧
⎪⎪⎨

⎪⎪⎩

u(4)
n (t) = f (t, un–1(t), u′

n–1(t), u′′
n–1(t), u′′′

n–1(t)), t ∈ I,

un(0) = u′
n(0) = 0,

u′′
n(1) = 0, u′′′

n (1) = g(un–1(1)),

(3.6)

then (3.5) holds and

lim
n→∞α(i)

n (t) = u(i)(t), lim
n→∞β (i)

n (t) = u(i)(t), i = 0, 1, 2, 3, (3.7)

uniformly for t ∈ I , where u and u are the minimal and maximal solutions of BVP (1.1) in
Dβ

α , respectively.
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Theorem 3.1 guarantees the existence results for BVP (1.1) in the order-interval Dβ
α

under the assumptions that f and g are monotonic. Now, we weaken the monotonicity as-
sumption and prove the existence results for BVP (1.1) between lower and upper solutions
by using the classical auxiliary truncation function method.

Theorem 3.3 Let α(t) and β(t) be a pair of lower and upper solutions of BVP (1.1) with
α′′′(t) ≥ β ′′′(t) for every t ∈ I . If the following conditions are established:

(H3) f : I ×R
4 →R is continuous, and for any t ∈ I ,

(x0, x1, x2) ∈ [α(t),β(t)] × [α′(t),β ′(t)] × [α′′(t),β ′′(t)],

f
(
t, x0, x1, x2,α′′′(t)

) ≥ f
(
t,α(t),α′(t),α′′(t),α′′′(t)

)
,

f
(
t, x0, x1, x2,β ′′′(t)

) ≤ f
(
t,β(t),β ′(t),β ′′(t),β ′′′(t)

)
;

(H4) g : R →R is continuous, and for any t ∈ I , x ∈ [α(t),β(t)],

g
(
β(t)

) ≤ g(x) ≤ g
(
α(t)

)
.

Then there is at least one solution u ∈Dβ
α for BVP (1.1).

Proof By Lemma 2.4, we know that α 	 β . For any t ∈ I , x ∈R, let

ηi(t, x) = min
{
max

{
α(i)(t), x

}
,β (i)(t)

}
, i = 0, 1, 2,

η3(t, x) = min
{
max

{
β ′′′(t), x

}
,α′′′(t)

}
.

Then ηi : I ×R →R (i = 0, 1, 2, 3) are continuous functions and satisfy

α(i)(t) ≤ ηi(t, x) ≤ β (i)(t), i = 0, 1, 2,

β ′′′(t) ≤ η3(t, x) ≤ α′′′(t)

for any t ∈ I , x ∈R. Now, we construct a truncating function of f as follows:

f ∗(t, x0, x1, x2, x3) = f
(
t,η0(t, x0),η1(t, x1),η2(t, x2),η3(t, x3)

)
+

x3 – η3(t, x3)
1 + x2

3

for any t ∈ I and xi ∈ R (i = 0, 1, 2, 3). According to the definition of ηi(t, x) (i = 0, 1, 2, 3),
f ∗ : I × R

4 → R is a bounded continuous function. Hence, by Lemma 2.5, there exists a
solution u0 ∈ C4(I) for BVP

⎧
⎪⎪⎨

⎪⎪⎩

u(4)(t) = f ∗(t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ I,

u(0) = u′(0) = 0,

u′′(1) = 0, u′′′(1) = g(u(1)).

(3.8)

Here, we show that u0 is also a solution of BVP (1.1) in Dβ
α . Firstly, we check that

β ′′′ ≤ u′′′
0 ≤ α′′′. (3.9)
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Suppose on the contrary, then there exists t0 ∈ [0, 1] such that

u′′′
0 (t0) – α′′′(t0) = max

t∈[0,1]

(
u′′′

0 (t) – α′′′(t)
)

> 0. (3.10)

We can prove that t0 �= 1. In fact, since ηi(t,α(i)(t)) = α(i)(t) (i = 0, 1, 2, 3) for any t ∈ I , we
infer that

f ∗(t,α(t),α′(t),α′′(t),α′′′(t)
)

= f
(
t,η0

(
t,α(t)

)
,η1

(
t,α′(t)

)
,η2

(
t,α′′(t)

)
,η3

(
t,α′′′(t)

))
+

α′′′(t) – η3(t,α′′′(t))
1 + [α′′′(t)]2

= f
(
t,α(t),α′(t),α′′(t),α′′′(t)

)

≥ α(4)(t),

which means that α(t) is a lower solution of BVP (3.8). Thus, α(1) ≤ u0(1), combining with
(H4), it is quite evident that

u′′′
0 (1) = g

(
u0(1)

) ≤ g
(
α(1)

) ≤ α′′′(1).

Hence, by (3.10), there exists t0 ∈ [0, 1) such that

u′′′
0 (t0) – α′′′(t0) > 0, (3.11)

u(4)
0 (t0) – α(4)(t0) ≤ 0. (3.12)

In addition, by the definition of η3, we can obtain that

η3
(
t0, u′′′

0 (t0)
)

= α′′′(t0). (3.13)

Then, by BVP (3.8), we can deduce that

u(4)(t0) = f ∗(t0, u0(t0), u′
0(t0), u′′

0(t0), u′′′
0 (t0)

)

= f
(
t0,η0

(
t0, u0(t0)

)
,η1

(
t0, u′

0(t0)
)
,η2

(
t0, u′′

0(t0)
)
,α′′′(t0)

)

+
u′′′

0 (t0) – α′′′(t0)
1 + [u′′′

0 (t0)]2

≥ f
(
t0,α(t0),α′(t0),α′′(t0),α′′′(t0)

)
+

u′′′
0 (t0) – α′′′(t0)
1 + [u′′′

0 (t0)]2

> f
(
t0,α(t0),α′(t0),α′′(t0),α′′′(t0)

)

≥ α(4)(t0).

Therefore, we get a contradiction. Hence u′′′
0 ≤ α′′′ holds.

Using an analogous technique, β ′′′ ≤ u′′′
0 holds, and so (3.9) is valid. It follows from

Lemma 2.4 that u0 ∈Dβ
α . By the definition of ηi(t, x),

ηi
(
t, u(i)

0 (t)
)

= u(i)
0 (t), t ∈ I, i = 0, 1, 2, 3.
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Therefore, by BVP (3.8), we can get that, for any t ∈ I ,

u(4)
0 (t) = f ∗(t, u0(t), u′

0(t), u′′
0(t), u′′′

0 (t)
)

= f
(
t,η0

(
t, u0(t)

)
,η1

(
t, u′

0(t)
)
,η2

(
t, u′′

0(t)
)
,η3

(
t, u′′′

0 (t)
))

+
u′′′

0 (t) – η3

1 + [u′′′
0 (t)]2

= f
(
t, u0(t), u′

0(t), u′′
0(t), u′′′

0 (t)
)
.

It means that u0 ∈Dβ
α is a solution of BVP (1.1). �

4 Example
Example 4.1 Consider the following nonlinear BVP:

⎧
⎪⎪⎨

⎪⎪⎩

u(4)(t) = sin t
9 u(t) + 1

8 u′(t)u′′(t) + cos t
9 u′′(t) – 1

4 u′′′(t) + 1
3 e–t , t ∈ I,

u(0) = u′(0) = 0,

u′′(1) = 0, u′′′(1) = 1–u(1)
5+u(1) – 1

5 .

(4.1)

Obviously, α(t) ≡ 0 is a lower solution of BVP (4.1). Now we prove that BVP (4.1) has an
upper solution

β(t) = e–t + t – 1 ≥ 0, t ∈ I.

Apparently,

β ′(t) = 1 – e–t ≥ 0, β ′′(t) = e–t ≥ 0, β ′′′(t) = –e–t ≤ 0.

Corresponding to BVP (1.1),

f (t, x0, x1, x2, x3) =
sin t

9
x0 +

1
8

x1x2 +
cos t

9
x2 –

1
4

x3 +
1
3

e–t ,

g(x) =
1 – x
5 + x

–
1
5

.

Then, we can obtain that, for every t ∈ I ,

f
(
t,β ,β ′,β ′′,β ′′′) =

sin t
9

β(t) +
1
8
β ′(t)β ′′(t) +

cos t
9

β ′′(t) –
1
4
β ′′′(t) +

1
3

e–t

=
sin t

9
(t – 1) +

sin t
9

e–t +
e–t

8
(
1 – e–t) +

cos t
9

e–t +
1
4

e–t +
1
3

e–t

≤
√

2
9

sin

(

t +
π

4

)

e–t +
2
3

· e–t

8
+

1
4

e–t +
1
3

e–t

< e–t = β (4)(t),

and

β(0) = 0, β ′(0) = 0, β ′′(1) =
1
e

> 0,
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g
(
β(1)

)
– β ′′′(1) =

1 – e–1

5 + e–1 –
1
5

+
1
e

=
19 + 5e–1

5e(5 + e–1)
> 0,

that is, β ′′′(1) < g(β(1)). Those imply that β(t) is an upper solution of BVP (4.1) with
β ′′′(t) ≤ α′′′(t).

Moreover, it is quite obvious that f (t, x0, x1, x2, x3) is increasing on x0, x1, and x2 in
[0,β(t)] × [0,β ′(t)] × [0,β ′′(t)] and decreasing on x3 in [β ′′′(t), 0]; g(x) is decreasing on
x in [0,β(t)], which indicate that f and g satisfy (H1) and (H2). Then, by Theorem 3.1,
BVP (4.1) has maximal solution u and minimal solution u in Dβ

0 .

Example 4.2 Consider the following nonlinear BVP:

⎧
⎪⎪⎨

⎪⎪⎩

u(4)(t) = sin t
9 u(t) + 1

8 u′(t)u′′(t) + cos t
9 u′′(t) + 1

4 (u′′′(t))3 + 1
3 e–t , t ∈ I,

u(0) = u′(0) = 0,

u′′(1) = 0, u′′′(1) = 1–u(1)
5+u(1) – 1

5 .

(4.2)

We can check that α(t) ≡ 0 and β(t) = e–t + t – 1 are a pair of lower and upper solutions
for BVP (4.2) with β ′′′(t) ≤ α′′′(t) for every t ∈ I . In view of the fact that

f (t, x0, x1, x2, x3) =
sin t

9
x0 +

1
8

x1x2 +
cos t

9
x2 +

1
4

x3
3 +

1
3

e–t

is nondecreasing on x3, Theorem 3.1 does not apply to BVP (4.2). However, it is easy to
see that f (t, x0, x1, x2, x3) is increasing on x0, x1, and x2 in R

3, and

g(x) =
1 – x
5 + x

–
1
5

is decreasing on x, then conditions (H3) and (H4) are valid. Therefore, by Theorem 3.3,
BVP (4.2) has at least one solution in Dβ

0 .
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