
Yen et al. Advances in Difference Equations        (2021) 2021:241 
https://doi.org/10.1186/s13662-021-03404-x

R E S E A R C H Open Access

Well-posedness results and blow-up for a
class of semilinear heat equations
Dang Van Yen1, Ho Duy Binh2*, Le Dinh Long2* and Ho Thi Kim Van2

*Correspondence:
hoduybinh@tdmu.edu.vn;
ledinhlong@tdmu.edu.vn
2Division of Applied Mathematics,
Thu Dau Mot University, Binh
Duong Province, Vietnam
Full list of author information is
available at the end of the article

Abstract
This paper considers the initial value problem for nonlinear heat equation in the
whole space RN . The local existence theory related to the finite time blow-up is also
obtained for the problem with nonlinearity source (like polynomial types).

MSC: 35K05; 35K15; 37K40

Keywords: Nonlinear heat equation; Existence; Blow-up

1 Introduction
We consider the following initial value problem for u : RN × [0, T] →R:

⎧
⎨

⎩

ut = �u + λu – ρum, in R
N × [0, T],

u(x, 0) = f (x), in R
N ,

(P)

where λ,ρ ∈ R and m, N ∈ N
∗ are parameters; � is the standard Laplacian with Dirichlet

boundary conditions in L2(RN ); u = u(x, t) is the state of the unknown function and f is
given function. Mathematical formulations modeled by problem (P) appear in many other
practical applications of mathematics and engineering science models [5–7, 12]. The goal
of this paper is the study of the local existence, unique continuation and a finite time blow-
up of solution to Problem (P).

For the homogeneous linear case of problem (P)

⎧
⎨

⎩

ut – �u = 0, in R
N × [0, T],

u(x, 0) = f (x), in R
N ,

(1.1)

this is the well-known classical heat equation and these problems have been studied for
decades and much work on this topic has been published.

In recent years, results on inhomogeneous partial differential equations have been ex-
tensively studied. Unlike linear source functions, nonlinear source functions describe
more complex systems and have many applications in the real world. For nonlinear prob-
lems that appear in some physical phenomena there are many results devoted to nonlinear
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heat equations; see [2–11, 13] and the references therein. Studies of well-posedness and
asymptotic behavior of solutions for semilinear heat equations have been performed by
many authors; see [1, 7, 14] and the references therein. Equations of the form

ut = �u + λ
(
u – u3)

on a bounded one-dimensional domain were studied by Chafee and Infante (1974) (so
this equation is sometimes called the Chafee–Infante equation). Although there has been
published much work on the semilinear cases, the literature on the case of the form of
Problem (P) is quite scarce. In this work, we consider the special case with

φm(u) := λu – ρum, (1.2)

so that we can focus on the essential ideas. Our goal is to establish the local well-posedness
results for a nonlinearity source like the form (1.2) which causes difficulties. However, our
study here is new in the sense that we consider Sobolev spaces H2s(RN ). The key ideas for
the existence of solutions in H2s(RN ) is to apply the Banach fixed point theorem. Based
on the conditions of the constants s depending on the dimensions N ≥ 1, we set up the
Sobolev embeddings H2s(RN ) ↪→ L2(RN ). Moreover, we also establish the results on the
continuation and finite time blow-up of solutions in H2s(RN ).

We assume that the following hypotheses hold:

∣
∣φm(u)(t) – φm(v)(t)

∣
∣ ≤ C|u – v|(1 + |u|m–1 + |v|m–1), ( H1 )

∣
∣φm(u)(t)

∣
∣ ≤ C|u|(1 + |u|m–1), ( H2 )

for C > 0, m > 1.
The notation and the functional setting are introduced in Sect. 2.1 and in Sect. 2.2 we

give some related results. The main results of this paper are in Sect. 3; we present local
existence in Sect. 3.1, uniqueness continuation of the solution is discussed in Sect. 3.2 and
a finite time blow-up result is demonstrated in Sect. 3.3.

2 Preliminaries
2.1 Functional setting and notation
The notation ‖ · ‖B stands for the norm in the Banach space B. For 1 ≤ p ≤ ∞, T > 0,
consider the Banach space of real-valued measurable functions f : (0, T) → B with the
following norm:

‖f ‖Lp(0,T ;B) =
(∫ T

0

∥
∥f (t)

∥
∥p

B dt
) 1

p
, for 1 ≤ p < ∞, (2.1)

‖f ‖L∞(0,T ;B) = ess sup
t∈(0,T)

∥
∥f (t)

∥
∥

B, for p = ∞. (2.2)

Given a Banach space B, let C([0, T]; B) be the set of all continuous functions which map
[0, T] into B. The norm of the function space Ck([0, T]; B), for 0 ≤ k ≤ ∞ is denoted

‖f ‖Ck ([0,T];B) =
k∑

i=0

sup
t∈[0,T]

∥
∥f (i)(t)

∥
∥

B < ∞. (2.3)
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For s ∈R
N , the Sobolev space Hs(RN ) consists of all tempered distributions w ∈ S

′(RN )
whose Fourier transform ŵ is a regular distribution such that

∫

RN

(
1 + |ξ |2)s∣∣ŵ(ξ )

∣
∣2 dξ < ∞.

The inner product and norm of w, v ∈ Hs(RN ) are defined by

(w, v)Hs(RN ) = (2π )N
∫

RN

(
1 + |ξ |2)sŵ(ξ )̂v(ξ ) dξ

and

‖w‖Hs(RN ) = (2π )N
(∫

RN

(
1 + |ξ |2)s∣∣ŵ(ξ )

∣
∣2 dξ

) 1
2

.

Let A denote the negative Laplacian operator in L2(RN ),

A : D(A) ⊂ L2(
R

N) → L2(
R

N)
, A = –�, D(A) = H2(

R
N)

. (2.4)

We define A as an operator acting in L2(RN ) because we can study it explicitly by use of
the Fourier transform. As is well known, A is a closed, densely defined positive operator,
and –A is the generator of a strongly continuous contraction semigroup

{
e–tA : t ≥ 0

}
on L2(

R
N)

.

The Fourier representation of the semigroup operators is

e–tA : L2(
R

N) → L2(
R

N)
,

(
ê–tAw

)
(ξ ) = e–t|ξ |2 ŵ(ξ ). (2.5)

If t > 0 we have for any s > 0

e–tA : L2(
R

N) → H2s(
R

N)
.

We define the nonlinear function

φm : H2s(
R

N) → L2(
R

N)
, φm(w)(x) = λw(x) – ρwm(x). (2.6)

2.2 Some related results
We define mild H2s(RN )-value solutions of (P) as follows.

Definition 2.1 Suppose that T > 0, 4s > N , and f ∈ H2s(RN ). A mild H2s-value solution of
(P) on [0, T] is a function

u ∈ C
(
[0, T]; H2s(

R
N))

,

such that

u(t) = e–tAf +
∫ t

0
e–(t–τ )Aφm

(
u(τ )

)
dτ , for every 0 ≤ t ≤ T , (2.7)

where e–tA is given by (2.5), and φm is given by (1.2).
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Lemma 2.2 Let e–tA be the semigroup operator defined in (2.5) and s > 0. If t > 0, then

e–tA : L2(
R

N) → H2s(
R

N)
,

and there is a constant C = C(s, N) such that

∥
∥e–tAw

∥
∥

H2s(RN ) ≤ Cet

ts ‖w‖L2(RN ). (2.8)

Proof Suppose that w ∈ L2(RN ). Using the Fourier representation (2.5) of e–tA as multi-
plication by e–t|ξ |2 and the definition of the H2s-norm, we get

∥
∥e–tAw

∥
∥2

H2s(RN ) = (2π )N
∫

RN

(
1 + |ξ |2)2se–2t|ξ |2∣∣ŵ(ξ )

∣
∣2 dξ

≤ (2π )N sup
ξ∈RN

((
1 + |ξ |2)2se–2t|ξ |2)

∫

RN

∣
∣ŵ(ξ )

∣
∣2 dξ .

Hence, by Parseval’s theorem, we have

∥
∥e–tAw

∥
∥

H2s(RN ) ≤ M‖w‖L2(RN ),

where

M = (2π )
N
2 sup

ξ∈RN

((
1 + |ξ |2)2se–2t|ξ |2) 1

2 .

Writing 1 + |ξ |2 = z, we have

M = (2π )
N
2 et sup

z≥1

(
zse–tz) ≤ Cet

ts , (2.9)

and the result of this lemma follows. �

3 Local well-posedness results
3.1 Local existence of the solutions to problem (P)
Theorem 3.1 (Local existence) Let N ∈ [1, 3], and s ∈ ( N

4 , 1). Let f ∈ H2s(RN ), then there
is a time constant T > 0 (depending only on N , s, f ) such that Problem (P) has a unique
mild solution belonging to C([0, T]; H2s(RN )) in the sense of Definition 2.1.

Proof We write (2.7) as

u = J(u),

J : C
(
[0, T]; H2s(

R
N)) → C

(
[0, T]; H2s(

R
N))

,

J(u)(t) = e–tAf +
∫ t

0
e–(t–τ )Aφm(u)(τ ) dτ .

(3.1)

We will show that J defined in (3.1) is a contraction mapping on a suitable ball in
C([0, T]; H2s(RN )). We write J in (3.1) as

J(u)(t) = e–tAf + F(u)(t), F(u)(t) =
∫ t

0
e–(t–τ )Aφm(u)(τ ) dτ .
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Since f ∈ H2s(RN ) and {e–tA : t ≥ 0} is a strongly continuous semigroup on H2s(RN ), the
map

t �→ e–tA belongs to C
(
[0, T]; H2s(

R
N))

.

Thus we only need to prove the result for J. The fact that F(u) ∈ C([0, T]; H2s(RN )) if
u ∈ C([0, T]; H2s(RN )) follows from the Lipschitz continuity of F and a density argument.
Thus, we only need to prove the Lipschitz estimate.

If u, v ∈ C([0, T]; H2s(RN )), then using Lemma 2.2 we find that

∥
∥F(u)(t) – F(u)(t)

∥
∥

H2s(RN )

≤ C
∫ t

0

et–τ

|t – τ |s
∥
∥φm(u)(τ ) – φm(v)(τ )

∥
∥

L2(RN ) dτ

≤ CeT sup
0≤τ≤T

∥
∥φm(u)(τ ) – φm(v)(τ )

∥
∥

L2(RN )

∫ t

0
|t – τ |–s dτ .

Evaluating the τ -integral, with s < 1, and taking the supremum of the result over 0 ≤ t ≤ T ,
we get

∥
∥F(u) – F(u)

∥
∥

L∞(0,T ;H2s(RN )) ≤ CeT T1–s∥∥φm(u) – φm(v)
∥
∥

L∞(0,T ;L2(RN )). (3.2)

From (1.2), if u, v ∈ C0(RN ) ⊂ H2s(RN ) we have

∥
∥φm(u) – φm(v)

∥
∥

L2(RN ) ≤ |λ|‖u – v‖L2(RN ) + |γ |∥∥um – vm∥
∥

L2(RN )

and

∥
∥um – vm∥

∥
L2(RN ) ≤ C

(‖u‖m–1
L∞(RN ) + ‖v‖m–1

L∞(RN )

)‖u – v‖L2(RN ).

For s ≥ N
4 , we have the Sobolev embeddings

H2s(
R

N)
↪→ C0

(
R

N)
,

and using the facts that ‖u‖L∞(RN ) ≤ C‖u‖H2s(RN ) and ‖u‖L2(RN ) ≤ C‖u‖H2s(RN ), we get

∥
∥φm(u) – φm(v)

∥
∥

L2(RN ) ≤ C
(
1 + ‖u‖m–1

H2s(RN ) + ‖v‖m–1
H2s(RN )

)‖u – v‖H2s(RN ),

which means that φm : H2s(RN ) → L2(RN ) is locally Lipschitz continuous.
If ‖f ‖H2s(RN ) = R, then

∥
∥e–tAf

∥
∥

H2s(RN ) ≤ R, for every 0 ≤ t ≤ T ,

since {e–tA} is a contraction semigroup on H2s(RN ). Therefore, if we choose

BR =
{

u ∈ C
(
[0, T]; H2s(

R
N))

: ‖u‖C([0,T];H2s(RN )) ≤ 2R
}

,
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we see that J : BR → BR if we choose T > 0 such that

CeT T1–s(1 + 2Rm–1) = ρR,

where 0 < ρ < 1. Moreover, in that case

∥
∥J(u) – J(v)

∥
∥

C([0,T];H2s(RN )) ≤ ρR‖u – v‖C([0,T];H2s(RN )), for every u, v ∈ BR.

The contraction mapping theorem then implies the existence of a unique solution u ∈
BR. �

3.2 Uniqueness continuation of the solution
Since we already know that the mild solution of Problem (P) does exist, the question is
whether it will continue (continuation to a bigger interval of existence) and in what situa-
tion it is non-continuation by blow-up.

Definition 3.2 Given a mild solution u ∈ C([0, T]; H2(RN )) of (P), we say that u� is a con-
tinuation of u in [0, T�] for T� > T if it is satisfies

⎧
⎨

⎩

u� ∈ C([0, T�]; H2s(RN )) is a mild solution of (P) ∀t ∈ [T , T�],

u�(·, t) = u(·, t) whenever t ∈ [0, T].
(3.3)

Theorem 3.3 (Continuation) Suppose that the assumptions of Theorem 3.1 are satisfied.
Then the mild solution (unique) on [0, T] of Problem (P) can be extended to the interval
[0, T�], for some T� > T , so that the extended function is also the mild solution (unique) of
Problem (P) on [0, T�].

Proof Let u : [0, T] → H2s(RN ) be a mild solution of Problem (P) (T is the time from
Theorem 3.1). Fix R� > 0, and for T� > T (T� depending on R�), we shall prove that u� :
[0, T�] → H2s(RN ) is a mild solution of Problem (P). Assume the following estimates hold:
max{θi} ≤ R�

4 , θi > 0, i = 1, . . . , 4, with the constants θi (i = 1, . . . , 4) defined as follows:

CeT

Ts ‖f ‖H2s(RN ) =: θ1; (3.4a)

CeT�
QT ,R�

(
1 + Qm–1

T ,R�

)(
T�

)1–s =: θ2; (3.4b)

CeT

Ts QT ,R�

(
1 + Qm–1

T ,R�

)√
T� =: θ3; (3.4c)

CeT�(
T�

)1–s(1 + 2Qm–1
T ,R�

)
=: θ4, (3.4d)

where QT ,R� = R� + ‖u(·, T)‖H2s(Rn). For T� ≥ T > 0 and R� > 0, let us define

B̃R� :=

⎧
⎨

⎩
u� ∈ C

([
0, T�

]
; H2s(

R
N))

:

∣
∣
∣
∣
∣
∣

u�(·, t) = u(·, t), ∀t ∈ [0, T],
∥
∥u�(·, t) – u(·, T)

∥
∥

C([T ,T�];H2s(RN )) ≤ R�, ∀t ∈ [
T , T�

]

⎫
⎬

⎭
. (3.5)
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• Step I: We show that J defined as in (3.1) is the operator on B̃R� . Let u� ∈ B̃R� and we
consider two cases.

Case 1: If t ∈ [0, T], then by virtue of Theorem 3.1, we have the Problem (P) has a unique
solution and we also have u�(·, t) = u(·, t). Thus Ju�(t) = Ju(t) = u(·, t) for all t ∈ [0, T].

Case 2: If t ∈ [T , T�], we have

Ju�(t) – u(·, T) ≤ (
e–(t–T)A – I

)
e–TAf

+
∫ t

T
e–(t–τ )Aφm

(
u�

)
(τ ) dτ +

(
e–(t–T)A – I

)
∫ T

0
e–(T–τ )Aφm

(
u�

)
(τ ) dτ

=: (I) + (II) + (III). (3.6)

Estimating the term (I), using (2.9) we have, for all t ∈ [T , T�],

∥
∥(I)

∥
∥2

H2s(RN ) =
∥
∥
(
e–(t–T)A – I

)
e–TAf

∥
∥2

H2s(RN )

= (2π )N
∫

RN

(
1 + |ξ |2)2s(e–(t–T)|ξ |2 – 1

)2e–2T |ξ |2 ∣∣̂f (ξ )
∣
∣2 dξ

≤ (2π )N sup
ξ∈RN

((
1 + |ξ |2)2se–2T |ξ |2)

∫

RN

∣
∣̂f (ξ )

∣
∣2 dξ ≤ Ce2T

T2s ‖f ‖2
L2(RN ).

Hence, we get

∥
∥(I)

∥
∥

H2s(RN ) ≤ CeT

Ts ‖f ‖H2s(RN ).

From (3.4a), this implies that the following estimate holds:

∥
∥(I)

∥
∥

C([0,T�];H2s(RN )) ≤ R�

4
. (3.7)

From Lemma 2.2, ( H2 ), we have the following estimate for all t ∈ [T , T�]:

∥
∥(II)

∥
∥

H2s(RN ) ≤
∫ t

T

∥
∥e–(t–τ )Aφm

(
u�

)
(τ )

∥
∥

H2s(RN ) dτ

≤ CeT�

∫ t

T
(t – τ )–s∥∥φm

(
u�

)
(·, τ )

∥
∥

L2(RN ) dτ

≤ CeT�

∫ t

T
(t – τ )–s(1 +

∥
∥u�(·, τ )

∥
∥m–1

H2s(RN )

)∥
∥u�(·, τ )

∥
∥

H2s(RN ) dτ ,

and from (3.5), for all t ∈ [T , T�], we have used that

∥
∥u�(·, t)

∥
∥

H2s(RN ) ≤ R� +
∥
∥u(·, T)

∥
∥

H2s(RN ) = QT ,R� .

Using (3.4b), we obtain

∥
∥(II)

∥
∥

H2s(RN ) ≤ CeT�
QT ,R�

(
1 + Qm–1

T ,R�

)(
T�

)1–s ≤ R�

4
. (3.8)
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From (2.9) and ( H2 ), we have the following estimate for all t ∈ [T , T�]:

∥
∥(III)

∥
∥2

H2s(RN )

≤ (2π )N
∫ T

0

∫

RN

(
1 + |ξ |2)2s(e–(t–T)|ξ |2 – 1

)2e–2T |ξ |2 ∣∣φ̂m
(
u�

)
(ξ , τ )

∣
∣2 dξ dτ

≤ Ce2T

T2s

∫ T

0

∥
∥φm

(
u�

)
(·, τ )

∥
∥2

L2(RN ) dτ ≤ Ce2T

T2s

∫ T

0

(
1 +

∥
∥u�

∥
∥m–1

H2s(RN )

)2∥∥u�
∥
∥2

H2s(RN )

≤ Ce2T

T2s Q2
T ,R�

(
1 + Qm–1

T ,R�

)2T�. (3.9)

Using (3.4c), we infer that

∥
∥(III)

∥
∥

C([0,T�];H2s(RN )) ≤ CeT

Ts QT ,R�

(
1 + Qm–1

T ,R�

)√
T� ≤ R�

4
. (3.10)

It follows from (3.7), (3.8), (3.10) that, for every t ∈ [0, T�]

∥
∥Ju� – u(·, T)

∥
∥

C([0,T�];H2s(RN )) ≤ R�

4
+

R�

4
+

R�

4
=

3R�

4
≤ R�.

We have shown that J is a map B̃R� into B̃R� .
• Step II: We show that J is a contraction on B̃R� . Let u, v ∈ B̃R� , and we have, for 0 ≤ t ≤

T�,

Ju(t) – Jv(t) =
∫ t

0
e–(t–τ )A(

φm(u)(τ ) – φm(v)(τ )
)

dτ , (3.11)

where we note that Ju(t)– Jv(t) = 0, vanishes in B̃R� for all t ∈ (0, T]. Then, for all t ∈ [0, T�],
proceeding as in the proof of the last theorem, we have

∥
∥Ju(t) – Jv(t)

∥
∥

H2s(RN ) ≤ CeT�(
T�

)1–s(1 + 2Qm–1
T ,R�

)‖u – v‖C([0,T�];H2s(RN )),

and from (3.4d), we infer that

‖Ju – Jv‖C([0,T�];H2s(RN )) ≤ R�

4
‖u – v‖C([0,T�];H2s(RN )). (3.12)

So without loss of generality, we may assume that 0 ≤ R� < 1
4 , this implies that J is a R�

4 -
contraction. By the Banach contraction principle it follows that J has a unique fixed point
u� of J in B̃R� , which is a continuation of u. This finishes the proof. �

3.3 Finite time blow-up
The next results are on global existence or non-continuation by a blow-up.

Definition 3.4 Let u(x, t) be a solution of (P). We define the maximal existence time Tmax

of u(x, t) as follows:
(i) If u(x, t) exists for all 0 ≤ t < ∞, then Tmax = ∞.

(ii) If there exists T ∈ [0,∞) such that u(x, t) exists for 0 ≤ t < T , but does not exist at
t = T , then Tmax = T .
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Definition 3.5 Let u(x, t) be a solution of (P). We say u(x, t) blows up in finite time if the
maximal existence time Tmax is finite and

lim sup
t→T–

max

∥
∥u(·, t)

∥
∥

H2s(RN ) = ∞. (3.13)

Theorem 3.6 (Global existence or finite time blow-up) Let N ∈ [1, 3], and s ∈ ( N
4 , 1). Then

there exists a maximal time Tmax > 0 such that u ∈ C([0, Tmax]; H2s(RN )) is a mild solution
of (P). Thus, either Problem (P) has a unique global mild solution on [0,∞), or there exists
a maximal time Tmax < ∞ such that

lim sup
t→T–

max

∥
∥u(·, t)

∥
∥

H2s(RN ) = ∞.

Proof Define

Tmax := sup
{

T > 0 : there exits a solution on [0, T]
}

.

Assume that Tmax < ∞, and ‖u(·, t)‖H2s(RN ) ≤ R0, for some R0 > 0. Now suppose there exists
a sequence {tk}k∈N ⊂ [0, Tmax) such that tk → Tmax and {u(·, tk)}k∈N ⊂ H2s(RN ). Let us show
that {u(·, tk)}k∈N is a Cauchy sequence in H2s(RN ). Indeed, given ε > 0, fix N ∈ N such that,
for all k, n > N , 0 < tk < tn < Tmax, we have

u(·, tn) – u(·, tk) =
(
e–(tn–tk )A – I

)
e–tkAf +

∫ tn

tk

e–(tn–τ )Aφm(u)(τ ) dτ

+
(
e–(tn–tk )A – I

)
∫ tk

0
e–(tk –τ )Aφm(u)(τ ) dτ

=
(
e–(tn–tk )A – I

)
(

e–tkAf +
∫ tk

0
e–(tk –τ )Aφm(u)(τ ) dτ

)

+
∫ tn

tk

e–(tn–τ )Aφm(u)(τ ) dτ

=
(
e–(tn–tk )A – I

)
u(·, tk) +

∫ tn

tk

e–(tn–τ )Aφm(u)(τ ) dτ .

Thus, we have

∥
∥u(·, tn) – u(·, tk)

∥
∥

H2s(RN ) ≤ ∥
∥
(
e–(tn–tk )A – I

)
u(·, tk)

∥
∥

H2s(RN )

+
∫ tn

tk

∥
∥e–(tn–τ )Aφm(u)(τ )

∥
∥

H2s(RN ) dτ

=: (O1) + (O2). (3.14)

First, we estimate the term (O1), we have

∥
∥(O1)

∥
∥

H2s(RN ) =
∥
∥
(
e–(tn–tk )A – I

)
u(·, tk)

∥
∥

H2s(RN )

≤ ∥
∥e–(tn–tk )A – I

∥
∥
L(H2s(RN ))

∥
∥u(·, tk)

∥
∥

H2s(RN ). (3.15)
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From Lemma 2.2 and ( H2 ), we have the following estimate:

∥
∥(O2)

∥
∥

H2s(RN ) ≤ CeTmax

∫ tn

tk

(tn – τ )–s∥∥φm(u)(·, τ )
∥
∥

L2(RN ) dτ

≤ CeTmax

∫ tn

tk

(tn – τ )–s(1 +
∥
∥u(·, τ )

∥
∥m–1

H2s(RN )

)∥
∥u(·, τ )

∥
∥

H2s(RN ) dτ

≤ CeTmax
(
1 + Rm–1

0
)
R0

∫ 1

tk
tn

(1 – η)–sdη.

Thus, since {tk}k∈N∗ is convergent we can take N := N(ε) ∈ N
∗ with n ≥ k ≥ N such that

|tn – tk| is as small as we want. Since the semigroup {e–tA}t≥0 is strongly continuous in
H2s(RN ), given ε > 0, we have

R0
∥
∥e–(tn–tk )A – I

∥
∥
L(H2s(RN )) <

ε

2

and

CeTmax
(
1 + Rm–1

0
)
R0

∫ 1

tk
tn

(1 – η)–s dη <
ε

2
.

Hence, given ε > 0 there exists N ∈N such that

∥
∥u(·, tn) – u(·, tk)

∥
∥

H2s(RN ) < ε, for n, k ≥ N . (3.16)

It follows that {u(·, tk)}k∈N ⊂ H2s(RN ) is a Cauchy sequence and for {tk}k∈N∗ arbitrary we
have proved the existence of the limit

lim
t→T–

max

∥
∥u(·, t)

∥
∥

H2s(RN ) < ∞.

From our previous result we deduce that the solution can extended to some larger interval
(u can be continued beyond Tmax), and this contradicts the definition of Tmax. Thus, either
Tmax = ∞ or if Tmax < ∞ then limt→T–

max ‖u(·, t)‖H2s(RN ) = ∞. The proof of Theorem 3.6 is
finished. �
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