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Abstract

In this paper, we investigate the conditions on the control mappings
¥, :(0,00) — R that guarantee the existence of the fixed points of the mapping
T: X — P(X) satisfying the following inequalities:

Y (HTX, Ty)) < @(dx,y) Vx,y € X, provided that H(Tx, Ty) > O,
and
Y (HTX, Ty) < @(Al,y)) Vx.y € X,provided that H(Tx, Ty) > 0,
where A(x,y) = max{d(x, y), d(x, x),d(y, Ty), (d(x, Ty) + d(Tx, y))/2}, and (X, d) is a metric

space. The obtained fixed point results improve many earlier results on the set-valued
contractions. As an application, we consider the existence of the solutions of an FDE.
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1 Introduction and preliminaries

The metric fixed point theory was initiated by Banach (1922) [15]. This theory has been
enriched with well-known structures and metric generalizations. Recently, Chifu [20] es-
tablished common fixed point theorems endowed with directed graphs in extended b-
metric spaces. Ozturk [31] proved a fixed point theorem involving a simulation function
and F-contraction. Ozyurt [33] presented fixed point theorems covering a comparison
function and large contractions. In [32] the author proved some results on @ — ¢ con-
tractions in Branciari b-metric spaces. The study of F-metric spaces attracted attention of
many researchers, and in this direction, several papers were published (see [11, 12, 16]).
The existence of solutions of FDEs, IEs, ODEs, and PDEs was investigated by applying
various known fixed point results; see [4, 6,9, 13, 17, 30, 38, 39] for details. A useful gener-
alization of the Banach contraction principle is an F-contraction presented by Wordowski
[40]; a survey on this contraction is given in [25]. The notion of F-contraction was gener-
alized using various structures; see [1, 25, 30] for details. Boyd and Wong [18] introduced
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mapping ¥ : [0,00) — [0, co) that satisfy the following conditions to generalize the Banach
contraction principle:

(1) ¥(y)<yforally>0,

(2) limyy, ¥ (x) <yforally>O0.
Boyd and Wong [18] used such mapping to present the following result.

Theorem 1.1 Let (X, d) be a complete metric space, and let T : X — X be a mapping sat-
isfying the following contractive condition:

d(Tx, Ty) < ¥ (d(x,y)) forallx,y€X,

where V¥ : [0,00) — [0, 00) satisfies (1)—(2). Then T admits a unique fixed point u in X, and
(T"x) > uforallx € X.

Note that Theorem 1.1 improves the fixed point theorems given by Rakotch [35] and
Browder [19]. Recently, Proinov [34] presented a generalization of F-contraction, JS-
contraction [24], and many recent results by introducing (¢, y)-generalized contractions.
Using the mappings v, ¢ : (0,00) — (—00,00), he introduced the following contractive-

type conditions:

¥ (d(Tx, ) < 9(d(x,9))
Vx,y € X, provided that min{d(x,y), d(Tx, Ty)} >0, (1.1)

and

I/I(d(Tx, Ty)) < (p(A(x,y))
Vx,y € X, provided that min{A(x,y),d(Tx, Ty)} >0, (1.2)

where A(x,y) = max{d(x,y), d(x, Tx),d(y, T¥), (d(x, Ty) + d(Tx,y))/2} and T : X — X. In this
paper, we call them (v, ¢)-contractions.
Proinov [34] established the following fixed point results.

Theorem 1.2 Let (X, d) be a complete metric space, and let T : X — X be a mapping sat-
isfying (1.1). Suppose the mappings ¥, ¢ : (0,00) — (—00,00) satisfy the following condi-
tions:
(i) v is nondecreasing;

(i) ¢() < 0) forally>0;

(iii) lim sup,_,,, 9(y) <y (r+) forall r > 0.
Then T has a unique fixed point p € X, and the iterative sequence (T"x) converges to p for
allx e X.

Theorem 1.3 ([34]) Let (X, d) be a complete metric space, and let T : X — X be a map-
ping satisfying (1.1). Suppose the mappings ¥, ¢ : (0,00) — (—00, 00) satisfy the following
conditions:

(i) () <¥ ) forally>0;
(ii) infyse ¥ (y) > —00 for all € > 0;
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(iti) if (W (yy)) and (p(y,)) are convergent sequences such that
limy,, 00 ¥ (¥y) = limy,— 00 ©(¥,,) and (¥ (y,)) is strictly decreasing, then lim,,_, o ¥, = 0;
(iv) limsup, ., ¢(y) <liminf,_.. ¥ (y) or limsup,_, . ¢(y) < liminf,_., ¥ (y) for all € > 0;
(v) T has a closed graph, or limsup,_,,, ¢(y) < liminf,_.. ¥ (y) for all € > 0.
Then T has a unique fixed point u € X, and the iterative sequence (T"x) converges to u for
allx e X.

Remark 1.4 Theorems 1.2 and 1.3 also hold if we replace contractive condition (1.1) with
(1.2).

The following lemma is often seen in different papers (see [18, 34]) and provides a

method to prove that a sequence to be Cauchy.

Lemma 1.5 Let (X,d) be a metric space, and let {q,} C X be a sequence such that
lim,—, o0 d(gn, qu+1) = 0. If the sequence {q,,} is not Cauchy, then there exist two subsequences
{qn,} and (g, } and € > 0 such that

kgfi.lod(%ku»&]mku) =€+ (13)
and
klifgo d(qukr qu) = d(an+1) qu) = d(anrqu+1) = €. (14')

For the control mappings ¥, ¢ : (0,00) — R, the following conditions are needed for the
upcoming results:
(i) infyse ¥ (x) > —o0 for any € > 0.
(i) liminf,_ ¢, ¥ (x) > —oo for any € > 0.
(iii) lim,— o ¥ (x,) = —oco implies lim,_, o %, = 0.
(iv) lim,— o ¢(x,) = 0 implies lim,,_, ,c x,, = 0, where {x,} is a bounded sequence.
(v) liminf,_ . @(x) >0 forall € > 0.
(vi) limsup,_, . ¢(x) < liminf,_,. ¥ (x) for all € > 0.
(vii) If {x,} is a positive bounded sequence and if {{/(x,)} and {¢(x,)} are two
convergent sequences having the same limit, then lim,,_, o, %, = 0.
In the following conditions, we let ¢ : (0, 00) — (0, 00).
(viii) If lim,_ o %, = € > 0, then liminf,_, o, ¢(x,) > 0.
(ix) liminf,_ ¢ @(x) >0 forall € > 0.
(x) limsup,_,, ¢(x) > limsup,_, . ¥(x) — liminf,_,. ¥ (x).
Using conditions (i)—(x), Proinov [34] obtained the following lemma.

Lemma 1.6 ([34])
(1) Let ¥ :(0,00) = R. Then conditions (i), (ii), and (iii) are equivalent.
(2) Let ¢ :(0,00) = R. Then condition (iv) implies (v).
(3) Let ¢ :(0,00) = (0,00). Then conditions (viii), (vi), and (ix) are equivalent.
(4) Let ¥, ¢ :(0,00) > R be two mappings satisfying conditions (vi) and (vii). Then
lim,,_, 5o %, = 0.
(5) Let ¢ :(0,00) — (0,00) and v : (0,00) — R. Then condition (x) implies (iv).
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Let (A, d) be a metric space, let P(A) denote the set of all nonempty subsets of A, let
P, (A) denote the set of all nonempty closed bounded subsets of A, and let C(A) denote
the compact subsets of A.

Let d(q,A) = ilelﬁd(q, a), and let the mapping

H:P(A) x P(A) — [0,00)
be defined by

H(A,B) = max{supD(q, B), supD(b,A)}.
qeA beB

The mapping H satisfies all the axioms of metric and is known as the Hausdorff metric
induced by the metric d.

Definition 1.7 Let T': A — P(A) be a set-valued mapping. A point o € A is said to be a
fixed point of T if o € T'(0).

Definition 1.8 Let T: A — P(A) and f : A x A — [0,00). The mapping T is said to be
strictly f-admissible if for all g € A and ¢ € T(g) with f(g,¢) > 1, there exists w € T(¢)
such that f(¢,w) > 1.

Definition 1.9 Let (A, d) be a metric space, and let f : A x A — [0, 00). The space (A, d)
is said to be strictly f-regular if for any sequence {g,} C A such that f(g,,q,.1) > 1 for all
n € Nand g, — q as n — 00, we have f(q,,q) > 1 for all » € N.

Definition 1.10 A mapping 7 : (X,d) — (X,d) is said to be asymptotically regular at a
point x of X if

lim d(T"x, T""'x) = 0.

n—00

If T is asymptotically regular at every point of X, then it is called an asymptotically regular
mapping.

Lemma 1.11 plays a key role in the upcoming results.

Lemma 1.11 ([29]) Let A and B be nonempty closed bounded subsets of a metric space
(A,d), and let q > 1. Then for all a € A, there exists b € B such that d(a,b) < qgH(A, B).

2 Set-valued (¥, @)f-contractions and related fixed point problems

In this section, we introduce set-valued (¥, ¢)s-contractions. We discuss their nature and
generality. We investigate various conditions for the existence of fixed points of set-valued
(¥, p)r-contractions.

Definition 2.1 Let (A,d) be a metric space. A mapping T : A — Py (A) is said to be a
set-valued (v, ¢)s-contraction if there exists f : A x A — [0, 00), such that

v (f(g, s )H(T(q), T(s))) < ¢(d(g, 5)) (2.1)

for all ¢, ¢ € A with f(q,¢) > 1 and H(T(g), T(5)) > 0.
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Remark 2.2 Inequality (2.1) reduces to multivalued F-contraction [2] if ¢(0) = ¥(0) —
for all o € (0,00). Moreover, it turns into Nadler contraction [29] for /(o) = In(c). Let
¥ : (0,00) — (0, 00) be a nondecreasing mapping, and let 8 : (0,00) — (0, 1) be a mapping
satisfyinglimsup,,_, ., B(y) < 1forany € > 0. Then substituting ¢(y) = B(y)¥ (y) and ¥ (y) = y
for all y > 0, we obtain a very famous multivalued Geraghty’s contraction discussed in [5].

The following theorem suggests a set of conditions for the existence of a fixed point of

mapping T.

Theorem 2.3 Let (A,d) be an f-regular complete metric space. Let T : A — P.,(A) be
an f-admissible mapping satisfying (2.1). Suppose the mappings ¥, ¢ : (0,00) — (—00, 00)
satisfy the following conditions:
(i) forany qo € A, there exists q1 € T(qo) such that f(qo,q1) > 1;
(i) W is nondecreasing, and ¢(y) < ¥ (y) for all y > 0;
(iii) lim Sup,_, ., o) <Y (r+) forallr > 0.
Then T admits a fixed point in A.

Proof Step 1. By assumption (i), for any go € A, there exists g1 € T(qo) such that
f(g0,q1) > 1. Since T is an f-admissible mapping, there exists g, € T(gq1) such that
f(q1,92) > 1 and g3 € T(g2) such that f(g2,q3) > 1. In general, there exist g,,1 € T(q,)
such that f(g,,q,.1) > 1 for all n > 0. Note that if g, € T(q,), then g, is a fixed point of
T for all n > 0. So we assume that g, ¢ T(g,) for all n > 0. Thus H(1g,-1, 1g,) > 0; oth-
erwise, g, € Tg,. Since f(qu,qn1) > 1 and T(q,), T(qu+1) are closed and bounded sets
for all # > 0, by Lemma 1.11 there exist g1 € T(q4) (9n # qu+1) such that d(q,, gui1) <
f(Ggn-1,9.)H(T(qn-1), T(q,)) for all n > 1. By first part of (ii) and (2.1) we have

Y (d(Gn qni1)) <V (F@n-1,90)H (T (@n-1) T(qn))) < 9(d(Gn-1,94))-

By the second part of assumption (ii) we have

1p(d(qmqn-*—l)) = (P(d(%—h qn)) < I/f(d(qn—lan))' (22)

Since ¥ is a nondecreasing mapping, d(q,, 4u+1) < d(gn-1,qn) for every n > 1. This shows
that the sequence {d(g,-1,4,)} is positively decreasing. Thus there exists L > 0 such that
limy,—, 00 d(gn-1,4x) = L+. If L > 0, then by (2.2) we obtain a contradiction to assumption

(iii) as follows:
Y (L+) = lim ¥ (d(gu gn1)) < lim sup(d(qn-1,44) < lim supe(o).

Hence L = 0, and, consequently, T is an asymptotically regular mapping.

Step 2. We show that {g,,} is a Cauchy sequence. Assume on the contrary that {g,} is not
a Cauchy sequence. In this case, by Lemma 1.5 there exist two subsequences {g,, }, {q, }
of {g,} and € > 0 such that (1.3) and (1.4) hold. By (1.3) we infer that d(g,, +1,qm;+1) > € and
f(Gngsqm,) > 1forall k > 1. Letting g = g,,, and ¢ = g,,, in (2.1), we have

1p(d(anﬂ:qu+l)) =< w(f(an; qu)H(ankv Tqu)) < @(d(an,qu)) for all k >1,
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since if ax = d(qp 1, Gm+1) and by = d(qy; G, ), then
Y(ax) < @(br) < ¥ (bx) for any k > 1 implies that a; < bx.
Since limy_, o ay = €+, we also have limy_, o, by = €+. Thus
Vle+) = m Vlax) < Jim sup ¢(br) < lim ¢(0).

This is a contradiction to assumption (iii), and, consequently, {g,} is a Cauchy sequence
in (A, d). Since (A, d) is a complete metric space, there exists g* € A such that g, — ¢*
as n — 00, and the f-regularity of the space (A,d) implies f(q,,q"*) > 1. We claim that
d(q*, T(g*)) = 0. On the contrary, assume that d(g*, T(g*)) > 0. Then there exists n; € N
such that d(g,, T(q*)) > 0 for each n > n;. By (2.1)

Y (d(gne1, T(q%))) < ¥ (f(gma*)H(T(qn), T(q"))) < @(d(gn q")) < ¥ (d(qn q"))-

By the first part of assumption (ii) we have d(q.41, T(g*)) < d(qu,q*). Taking the limit
on both sides of the last inequality as n — oo, we have d(g*, T(q*)) < 0. This implies
d(q*, T(q*)) = 0. Since T(q*) is closed, g* € T(q*). The uniqueness of g* is obvious from

the contractive condition (2.1). O

The following theorem suggests another set of conditions for the existence of a fixed

point of a self-mapping T satisfying (2.1).

Theorem 2.4 Let (A, d) be an f-regular complete metric space. Let T : A — P.(.A) be an
f-admissible mapping satisfying (2.1). Suppose mappings ¥, ¢ : (0,00) — (—00, 00) satisfy
the following conditions:
(i) forall og € A, there exists o1 € T(0y) such that f(oo,01) > 1;

(i) W is nondecreasing, and ¢(y) < ¥ (y) for all y > 0;

(iii) infyse ¥ (o) > —00;

(iv) ifthe sequences {yr (o)} and {¢(0,)} converge to the same limit and {y(0,,)} is

strictly decreasing, then lim,,_, o, 0, = 0;
(v) limsup,_, . ¢(o) <liminf,_., ¥ (o) for all € > 0;
(vi) limsup,_, ., ¢(0) <liminf,_.. (o) for all €,€, > 0.

Then T has a unique fixed point in A.

Proof For the proof, the first four conditions (i)—(iv) are needed to prove that T is asymp-
totically regular. Condition (v) is required to prove that {g,} is a Cauchy sequence, and
condition (vi) is helpful to show the existence of a fixed point.

By assumption (i), for any oy € A, there exists o1 € T(0p) such that f(og,01) > 1. Since
T is an f-admissible mapping, there exist o, € T(07) such that f(o1,07) > 1 and 03 € T(03)
such that f(o,,03) > 1. In general, there exist 0,,; € T(0,) such that f(o,,0,,1) > 1 for all
n > 0. Note that if 0, € T(0,), then o, is a fixed point of T for all # > 0. We assume that
on & T(oy,) for all n > 0. Thus H(T'0,-1, To,) > 0; otherwise, o, € Toy,. Since f(0,,0,41) >
1 and T(0,), T(0441) are closed bounded sets for all # > 0, by Lemma 1.11 there exists
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Ous1 € T(04) (04 # 0i1) such that d(oy, 0,41) Sf(o'n—l» 0,)H(T (04-1), T(0,)) for all m > 1.
By the first part of (ii) and (2.1) we have that for all n > 1,

lﬁ(d(O'n, O'n+1)) <y (f(an—ly GH)H(T(Gn—l)» T(Un)))
= W(d(ffn—h(fn)) < 1/f(('i(o'n—lio'n))~ (2.3)

Inequality (2.3) shows that {y/(d(0,_1,0,))} is a strictly decreasing sequence. Then it
is either bounded below or not. If it is not bounded below, then by assumption (iii)
and Lemma 1.6(1) we infer that lim,_ . d(0,_-1,0,) = 0. If it bounded below, then
{v(d(0,-1,0y))} is a convergent sequence, and by (2.3) the sequence {¢(d(0,-1,0,))} also
converges, and both have the same point of convergence. Thus by assumption (iv) we have
lim,_, o d(0,,-1,0,) = 0. Hence T is asymptotically regular.

Following Step 2 of the proof of Theorem 2.3, we have

V(ax) < @(by), foranyk>1. (2.4)
By (1.3) and (1.4) we have limy_, », ay = €+ and limy_, o, b = €. By (2.4) we infer that

lim inf (o) <lim inf ¥(ax) <lim sup @(by) < lim sup ¢(o).
o—e+ k=00 ko0 o—e
This is a contradiction to (v), and hence {0} is a Cauchy sequence in (A, d). Since (A, d)
is a complete metric space, there exists o* € A such that o, - o* as n — oo.

Now we have to prove that the point of convergence ¢ * is a fixed point of T'. We consider
two cases.

Case 1. If (0,41, To*) = 0 for some n > 0, then by the triangle property of d we obtain
d(a*, To*) < d(a*,a,,+1) + d(a,,+1, Ta*) = d(o*,o,,+1).

Taking the limit as # — oo on both sides, we have d(c* To*) < 0. This implies
d(o*,T(c*)) = 0. Since T(c*) is closed, 0* € T(c*).

Case 2. If d(0,41, To*) > 0 for all n > 0, then by the f-regularity of the space (A,d) we
have f(0,,,0*) > 1. By contractive condition (2.1) we have

Y (d(0ns1, To*)) <Y (f (o0, 0*)H(T0,, To*)) < ¢(d(on,0*)) foralln>0.
Let a, = d(0y+1, To*) and b, = d(0y,, 0*). Then the last inequality reduces to
Y(a,) <@(b,) foralln>0. (2.5)

Let € = d(0*, To*). Then we observe that a, — ¢ and b, — 0 as n — oco. Applying the
limits on (2.5), we have

lim inf ¥ (o) <lim inf ¥(a,) <lim sup ¢(b,) <lim inf ¢(o).
o—€ n—00 H—>00 oc—0

The last inequality is a contradiction to assumption (vi) if € > 0. Thus we have
d(c*,To*) =0. Hence 0* € To*, that is, o* is a fixed point of T. The uniqueness of o* is
obvious from the contractive condition (2.1). O
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Note that Theorems 2.3 and 2.4 reduce to the Nadler fixed point theorem [15] if y(y) = ¥
and ¢(y) = Ay forall y>0and 0 < A < 1. If (y) = y for all y > 0, then they reduce to the
multivalued version of the Boyd—Wong fixed point theorem (Theorem 1.1). By substitut-
ing ¢(y) = ¥ (y) —  into Theorems 2.3 and 2.4 we obtain an improvement of fixed point
theorems established in [2, 22] and of the results presented by Secelean [36] and Lukacs
and Kajanto [27] as follows.

Corollary 2.5 Let (A, d) be an f-regular complete metric space, and let T : A — P(A)
be a set-valued strictly f-admissible mapping satisfying the following inequality:

w(f(x,y)H(Tx, Ty)) < w(d(x,y))) -1 Vx,y € A, provided that H(Tx, Ty) > 0,

where y : (0,00) — R is a nondecreasing mapping, and t > 0. If for any initial guess op € A,

there exists o1 € T(0o) such that f(0o,01) > 1, then T has a unique fixed point in A.

If ¢ is lower semicontinuous and ¢ is upper semicontinuous, then Theorem 2.4 is an
improvement of the Amini—Harandi—Petrusel fixed point theorem [10]. If we take ¢(y) =

h(¥ (y)) in Theorem 2.3, we obtain the following improvement of Moradi’s theorem [28].

Corollary 2.6 Let (A,d) be a f-regular complete metric space, and let T : A — P.,(A) be
a set-valued strictly f-admissible mapping satisfying the following inequality:

v (f (%, 9)H(Tx, Ty)) < h(l/f (d(x,y))) Vx,y € A, provided H(Tx, Ty) > 0,

where
(i) h:1— [0,00) is an upper semicontinuous mapping such that h(y) <y for all
yel CR;
(i) ¥ :(0,00) — I is nondecreasing.
If for any initial guess oy € A, there exists 01 € T(0y) such that f(0y,01) > 1, then T has a
unique fixed point in A.

Taking h(y) = y" with r € (0, 1) in Corollary 2.6, we obtain the following result.

Corollary 2.7 Let (A, d) be an f-regular complete metric space, and let T : A — P(A)
be a set-valued strictly f-admissible mapping satisfying the following inequality:

w(f(x,y)H(Tx, Ty)) < (w (d(x,y)))r Vx,y € A, provided that H(Tx, Ty) > 0,

where, ¥ : (0,00) — (0, 1) is a nondecreasing mapping. If for any initial guess oy € A, there
exists o1 € T(0y) such that f(0o,01) > 1. Then T has a unique fixed point in A.

It is obvious that Corollary 2.7 improves the Jleli-Samet fixed point theorem [24] and
the results presented by Ahmad et al. [7] and Li and Jiang [26].

We also note that an improvement of particular case of the Skof fixed point theorem
[37] can be obtained by taking ¢(y) = A1/ (y) in Theorems 2.3 and 2.4 as follows.
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Corollary 2.8 Let (A, d) be an f-regular complete metric space, and let T : A — P.(A)
be a set-valued strictly f-admissible mapping satisfying the following inequality:

v (f (%, 9)H(Tx, Ty)) < Mp(d(x, y)) Vx,y € A, provided that H(Tx, Ty) > 0,

where r : (0,00) — (0, 00) is a nondecreasing mapping, and . € (0, 1). If for any initial guess
0o € A, there exists o1 € T(0o) such that f(0o,01) > 1, then T has a unique fixed point in A.

Let us consider a nondecreasing mapping v : (0,00) — (0,00) and a mapping B :
(0,00) — (0,1) satisfying limsup,_, ., B(y) < 1 for any € > 0. Then taking ¢(y) = B(»)¥ ()
and ¥(y) = y for all y > 0 in Theorem 2.3, we obtain an improvement of the well-known

Geraghty fixed point theorem [23].

3 Theorems on generalized (¥, @)s-contractions

Since the generalized (i, ¢);-contractions are not (¥, ¢)s-contractions in general, in this
section, we give some fixed-point results for the class of generalized (i, ¢);-contractions
defined below.

Definition 3.1 Let (A, d) be a metric space. A mapping T : A — P(A) is said to be a set-
valued generalized (y, ¢)s-contraction if there exists f : A x A — [0, 00) such that

v (f(g:s)H(T(q), T(s))) < 9(Alg, <)) (3.1)

for all ¢, ¢ € A with f(q,¢) > 1 and H(T(g), T(s)) > 0, where

Alg, ¢) = max{d(q, 5),d(q, Tq),d(s, T<), (d(q, Ts) + d(Tq, 5))/2}.

The following theorems generalize many fixed point theorems involving Ciric type con-

tractions. For Ciri¢ contraction and related fixed-point results, see ([3, 21, 41]).

Theorem 3.2 Let (A, d) be an f-regular complete metric space. Let T : A — C(A) be an
f-admissible mapping satisfying (3.1). Suppose mappings ¥, ¢ : (0,00) — (—00, 00) satisfy
the following conditions:
(i) for all go € A, there exists q1 € T(qo) such that f(qo,q1) > 1;
(i) W is nondecreasing, and ¢(y) < ¥ (y) for all y > 0;
(iii) limsup,._,,, ¢(y) <¥(r+) forall r>0.
Then T admits a fixed point in A.

Proof Let go € A be an arbitrary initial guess. Following the arguments in Step 1 of the

proof of Theorem 2.3, we have d(q,, qn+1) <f(Gn-1,9:)H(T(gn-1), T(qy,)) for all n > 1. By
the first part of (ii) and (3.1) we have

W(d(q;ﬂq;ﬁ-l)) = 1ﬁ(f(qn—l: QM)H(T(QH—I): T(qn))) = §0(A(q;1—1¢qn))-
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Since T(x) is compact for all x € A, there exists g, € T(g,-1) such that d(q,_1,¢,) =
d(gu-1,T(qu-1)) forall n > 1 and

¥ (d(qn Gni1))
< 0(A(Gn-1,490))
= @ (max{d(qu-1,qn) d(qn-1, T(qn-1)) A(qn T(qn)), d(qn-1, T(qn))
+d(qn T(qs-1))/2})

= (p(max{d(qn_b qn), a(qn Qnu)})«

If d(gu-1,91) < A(Gn> Gus1), then ¥ (d(qu, gue1)) < 9(d(gn, Gus1)), which is a contradiction to
the second part of assumption (ii). Thus we have d(q,,_1,4,) > d(q, g4+1) and

1#(61(%, %+1)) = 90(61(%71, qu))

By the second part of assumption (ii) we have

1/f (d(qnv qn+1)) =< (P(d(%—l; qn)) < I/I (d(qn—l: qn)) (32)
Since ¥ is a nondecreasing mapping, d(q., 4u+1) < d(gn-1,qn) for every n > 1. This shows
that the sequence {d(g,-1,4.)} is positively decreasing. Thus there exists L > 0 such that

lim,,, o0 d(gn-1,91) = L+. If L > 0, then by (3.2) we obtain a contradiction to assumption
(iii) as follows:

W(L+) = nll>nolo W (d(qn: qn+1)) = n]ngo sup 90(61(%:—1, qn)) = J]LHL]Jr sup (P(G)
Hence L = 0, and, consequently, T is an asymptotically regular mapping.

Now we show that {g,} is a Cauchy sequence. Assume on the contrary that the sequence
{4} is not Cauchy. In this case, by Lemma 1.5 there exist two subsequences {g,, }, {gm, } of
{gx} and € > 0 such that (1.3) and (1.4) hold. By (1.3) we infer that d(g,,+1,gm,+1) > € and

f(@n»qm) > 1 forall k > 1. Letting g = g, and ¢ = g, in (3.1), we have

w(d(qﬂkJrl) qu+1)) S w(f(an} qu)H(ank, Tqu)) 5 (O(A(an’ qu)) for all k Z 1
If ay = d(qm(ﬂ,quﬂ) and by = A(an’qu)r then

Y(ax) < @(bk) < ¥ (bx) for any k > 1 implies that ay < by.
Since limy_, o @y = €+, limy_, o, by = €+. Thus

Y(e+) = lim Y(ax) < lim supp(by) < lim ¢(o).

k—o00 k— 00 o—€+

This is a contradiction to assumption (iii), and, consequently, {g,} is a Cauchy sequence

in (A, d). Since (A, d) is a complete metric space, there exists g* € A such that g, — ¢*
as n — 00, and the f-regularity of the space (A, d) implies f(g,,q*) > 1. We claim that
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d(q*, T(g*)) = 0. On the contrary, assume that d(g*, T(g*)) > 0. Then there exists n; € N
such that d(g,, T(g*)) > 0 for each n > n;. By (3.1)

Y (d(gni1, T(q%))) < ¥ (f(gna*)H(T(n), T(q%))) < 0(A(gn,q")) < ¥ (A(gn q%))-

By the first part of assumption (ii) we have d(g,.1, T(q")) < A(qu, q*). Applying the limit as
n — oo on both sides of the last inequality, we have d(q*, T(q*)) < d(q*, T(q*)), a contra-
diction, and thus d(g*, T(g*)) = 0. Since T(g*) is compact, g* € T(g"). O

Theorem 3.3 Let (A, d) be an f-regular complete metric space. Let T : A — C(A) bean f-
admissible mapping satisfying (3.1). Suppose the mappings yr, ¢ : (0,00) — (—00, 00) satisfy
the following conditions:
(i) forall o € A, there exists 01 € T(0o) such that f(oo,01) > 1;

(i) W is nondecreasing, and ¢(y) < ¥ (y) for all y > 0;

(iii) infy.e ¥ (o) > —00;

(iv) if the sequences {(0,)} and {¢(o,)} converge to the same limit and {(c,,)} is

strictly decreasing, then lim,_, o, 0, = 0;

(v) limsup,_,, ¢(o) <liminf,_ ., ¥ (o) for all € > 0;

(vi) limsup,_, ., ¢(0) <liminf,_.. (o) for all €,€, > 0.
Then T has a fixed point in A.

Proof This proof can be obtained by following the proofs of Theorems 2.4 and 3.2. We
omit the details. O

For single-valued mappings, we have the following result.

Theorem 3.4 Let (A, d) be an f-regular complete metric space, and let T : X — X be a
strictly f-admissible mapping satisfying following inequality:

T+ 9 (flo,9)d(T(0), T(s))) < ¥ (Ao, ) (3.3)

forallo,c € Awithd(T(0),T(s)) >0, where ¥ : (0,00) — R is a nondecreasing mapping,
and t > 0. If for any initial guess oy € A, there exists o1 = T(0y) such that f(co,01) > 1, then
T admits a unique fixed point.

Proof Setting ¢(y) = ¥ (y) — 7 for all y > 0 and letting T'(x) to be a singleton set for all x € A
in Theorem 3.2, we have required result. d

Remark 3.5 Itis noted in [27] that the Riech and Hardy—Roger contractions are reducible
to the Ciri¢ contraction (also called generalized contraction). Thus Theorems 3.2, 3.3, and
3.4 remains true if we replace A(o, ¢) by anyone of the following:

(1) max{d(o,c),d(o,T(0)),d(s, T(c))},

(2) max{d(c, T(0)),d(s, T(s))}

(3) max{d(o, ¢), L TENTE) deTENde.Tie))
(

(

)

4) ad(o,¢)+bld(o, T(0)) +d(c,T(g))) +c(d(c,T(0)) +d(o,T(g))) witha+b+c<1,
5) ad(o,¢)+bd(o,T(0)) +cd(c, T(c)) witha+b+c< 1.
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4 Applications to fractional differential equations
Lacroix (1819) introduced and investigated several applicable properties of fractional dif-
ferentials. Recently, various new models involving the Caputo—Fabrizio derivative (CFD)
were discovered and analyzed [8, 14, 38, 39]. In the following, we investigate one of these
models in metric spaces. We introduce some notations for this purpose.

Let C,1 be the space of continuous functions w: [0, 1] — R. Define the metric d: Cy; x
Co1 — [0,00) by

dw,g) = |lw—gllso = vgl[gﬁ]W(V) -gW)| forw,geCoy.

Then the space (Co1,d) is a complete metric space. Let f : Co1 X Co1 — (1, 00) be defined
by

f(r,t) =l forr,teCo,.
Let K; : [0,1] x R — R be a continuous mapping. We will investigate the CFDE
“DPq(v) = Ki(v,q(v)) (4.1)
with boundary conditions
q(0)=0,  Ig(1)=4(0).
Here D? denotes the CFD of order 8 defined by
D) = o [ - K
L(n-pB) Jo
where
n-1<B<n and n=[B]+1,
and I?K; is given by
1 v
IPKiv) = —f (v-n)f1Ki(n)dn with B>0.
' ') Jo '

Then equation (4.1) can be modified to

__ 1
- T(B)

2v

q(v) R0

v 1 n
/ (v -n)P"'Ki(n,q(n)) dn + / / (n - w)’ Ky (u, q(w)) dudy.
0 o Jo
Theorem 4.1 Equation (4.1) admits a solution in Cy; provided that:
(D) there exists T > 0 such that for all q, ¢ € Co 1, we have

K1 (n,q(m) = Ki(n, s ()]

- eI (B+1)

== a0 - s)|(M = min{f(g, 6)lg, s € Coa});
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(1) there exists qo € Co1 such that for all v € [0,1], we have

do(v) < %ﬁ) /0 (v =P K (mr qolm)) dn

+

1 rn
F2<2>/0 fo (0~ 0K (1, qo () dus .

Proof Consistently with the notations introduced, define the mapping R: Cy; — Co,1 by

R(qv) = %ﬂ) /0 (v = )" K (m,q(m))

2v 1 prn
7 oy _ )81
’ F(,B)/o _/(; (n - w)~ Ky (u, q(w)) dudn.

By (1) there exists go € Co,1 such that g, = R"(go)). The continuity of the mapping K; leads
to the continuity of the mapping R on Cy;. It is easy to verify the assumptions of Theo-

rem 3.4. Let us verify the contractive condition (3.3) of Theorem 3.4.

5 Jo (v = )P 1K (1, q(n)) dn
— L Y —n)B1Ki(n, c(n))dn
R(g(v)) -R - i Jo 0 -G
RN =REON=1 L 2l 0K g0

- % /01 fo"(n - u)P K (u, 6 (w) dudn

implies

[R(q(v)) = R(s(m))]

R U R P
< /0 (r(,s)(v nP Ky (n,q(n)) lﬂ(ﬁ)(v n) Kl(n,s(n)))dn'

1 prn
[/ (%ﬁ)w = 0K (1, () = e (1 — 1)K (1, g(u))) du dn’

) T'(p)
1 e—TF(ﬂ_'_l) v 51
= Tﬂ)T'/O (v =" (q(n) - s(m) dn
2 e—fr(ﬁ + 1) 1 n 41
v D [ -0 (500 - gw)duc
1 T+

L . N
< a9 [ ooy
2 e T(B)-T(B+1)
T T(B) 4MT(s) T(B+1)

3 (e‘zl"(ﬁ)'l“(ﬁﬂ)
—\4MIr(B)-T(B+1)

1 rn
dgs)- f / (- )" dudy
0 0

rg)-T(B+1)
4MT(B)-T(B +1)

) (g )+ 26" B( + 1,1) dq <)

_ T _

e’ e e’
4Md(q, S)+ ZMd(q, g)< ﬁd(q, )

=

where B is the beta mapping. The last inequality can be written as

Md(R(q),R(5)) <f(q,5)d(R(q),R(5)) < e ¥(q,5). (4.2)

Page 13 0of 15
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Define the mapping ¥ (g(v)) = In(g(v)) for g, ¢ € Cp1. Then inequality (4.2) can be written
as

T+ ¥ (f(g,5)d(R(q),R(5))) < ¥ (¥(g,5)).

By Theorem 3.4 the self-mapping R admits a fixed point, and hence equation (4.1) has a
solution. O

5 Conclusion

The (1, ¢)r-contractions are general enough to contain famous contractions. The theo-
rems give a general criterion for the existence of unique fixed points of the self-mappings
satisfying (1, ¢)s-contractions. We investigated the existence of a solution to a fractional
differential equation through fixed point methodology.
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