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Abstract
In this work, we consider the solvability of a fractional-order p-Laplacian boundary
value problem on the half-line where the fractional differential operator is nonlinear
and has a kernel dimension equal to two. Due to the nonlinearity of the fractional
differential operator, the Ge and Ren extension of Mawhin’s coincidence degree
theory is applied to obtain existence results for the boundary value problem at
resonance. Two examples are used to validate the established results.
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1 Introduction
In this paper, we obtain existence results for the following fractional-order p-Laplacian
boundary value problem at resonance on the half-line with integral boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

(ϕp(Da
0+u(t)))′ + v(t)w(t, u(t), Da

0+u(t)) = 0, t ∈ (0, +∞),

ϕp(Da
0+u(0)) =

∫ +∞
0 v(t)ϕp(Da

0+u(t)) dt,

ϕp(Da
0+u(+∞)) =

∫ +∞
0 v(t)ϕp(Da

0+u(t)) dt,

(1.1)

where Da
0+ is the Riemann–Liouville fractional derivative of order a, 0 < a ≤ 1, w :

[0, +∞) × R
2 → R is a v-Carathéodory function, and v(t) ∈ L1[0, +∞), v(t) > 0, with

∫ +∞
0 v(t) dt = 1, ϕp(r) = |r|p–2r, p > 1, ϕ–1

p = ϕq.
Recently, fractional calculus has become popular because it is nonlocal and has many

real life applications like in signal processing, viscoelasticity, bioengineering, and fluid dy-
namics [14]. Fractional-order derivatives have been found to handle models more accu-
rately than integer-order ones because they have higher degree of freedom. Moreover,
fractional-order derivatives contain a memory term which makes it suited to describe the
memory and hereditary properties of various processes and materials [16].

Boundary value problems with p-Laplacian operator arise in the modeling of many nat-
ural phenomena like in unsteady flow of fluid through a semi-infinite porous medium.
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They are also encountered in combustion theory, nonlinear elasticity, population biology,
glaciology, non-Newtonian mechanics, plasma physics, and the study of drain flows (see
[1, 10, 15]).

Boundary value problem (1.1) is said to be at resonance if the corresponding homoge-
neous problem

⎧
⎨

⎩

(ϕp(Da
0+u(t)))′ = 0, t ∈ (0, +∞),

ϕp(Da
0+u(0)) =

∫ +∞
0 v(t)ϕp(Da

0+u(t)) dt, ϕp(Da
0+u(+∞)) =

∫ +∞
0 v(t)ϕp(Da

0+u(t)) dt,

has nontrivial solutions.
p-Laplacian resonant boundary value problems can be expressed in the abstract form

Lu = Nu, where L is a non vertible fractional-order differential operator. When p = 2, the
differential operator L is linear, and Mawhin’s coincidence degree theory [13] can be ap-
plied, for example, see [2, 3, 8, 9, 15]. However, when p > 2, Mawhin’s coincidence degree
can no longer be applied directly, hence the Ge and Ren extension of the coincidence de-
gree [4] becomes an efficient tool for the investigation, see [6, 11, 17–19] and the references
therein.

Imaga and Iyase [7] obtained existence results for the following p-Laplacian boundary
value problem at resonance on the half-line:

⎧
⎪⎪⎨

⎪⎪⎩

(ϕp(u′(t)))′ + g(t, u(t), u′(t)) = 0, t ∈ (0, +∞),

ϕp(u′(0)) =
∫ +∞

0 v(t)ϕp(u′(t)) dt,

ϕp(u′(+∞)) =
∑m

j=1 βj
∫ ηj

0 ϕp(u′(t)) dt,

where g : [0, +∞) ×R
2 →R is an L1-Carathéodory function, 0 < η1 < η2 < · · · ≤ ηm < +∞,

βj ∈ R, j = 1, 2, . . . , m, v ∈ L1[0, +∞), v(t) > 0 on [0, +∞), and ϕp(s) = |s|p–2s, p > 1.
In [15] the authors obtained existence conditions for the fractional-order p-Laplacian

boundary value problem at resonance

⎧
⎨

⎩

(Da
0+ϕp(Db

0+u(t)) = f (t, u(t), Db
0+u(t)), 0 ≤ t ≤ 1,

u(0) = 0 Db
0+u(0) = Db

0+u(1),

where 0 < a, b ≤ 1, 1 < a + b ≤ 2, f is a continuous function, p = 2, Da
0+ and Db

0+ are Caputo
fractional derivatives.

Chen et al. [2] obtained the existence of solution for the fractional-order p-Laplacian
boundary value problem

⎧
⎨

⎩

Da
0+ϕp(Db

0+u(t)) = f (t, u(t), Db
0+u(t)), 0 ≤ t ≤ 1,

Db
0+u(0) = Db

0+u(1) = 0,

where 1 < a ≤ 2, p = 2.
In [19], the authors studied the following fractional-order boundary value problem:

⎧
⎨

⎩

Da
0+u(t) = f (t, u(t), Da–1

0+ u(t)), t ∈ (0, +∞)

u(0) = 0, lim
t→+∞ D0+u(t) = βu(η),
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where 0 < a, b ≤ 1, 1 < a + b ≤ 2, p = 2, f is a continuous function, Da
0+ and Db

0+ are Caputo
fractional derivatives.

Motivated by the above results, we study the solvability for the fractional-order p-
Laplacian boundary value problem at resonance on the half-line with integral boundary
conditions. We also note that p-Laplacian fractional boundary value problems with inte-
gral boundary conditions have not been given much attention in literature. In Sect. 2 of
this work, the required lemmas, theorem, and definitions are given; Sect. 3 is dedicated
to stating and proving the conditions for existence of solutions. An example is given in
Sect. 4 to illustrate the results obtained.

2 Preliminaries
In this section, we give definitions, lemmas, and theorems that will be used in this work.

Definition 2.1 ([5]) Let (U ,‖ · ‖U ) and (Z,‖ · ‖Z) be any two Banach spaces and M : U ∩
dom M → Z be a continuous operator. If M(X ∩dom M) is a closed subset of Z and ker M =
{u ∈ U ∩ dom M : Mu = 0} is linearly homeomorphic to R

n, n < ∞, then M is quasi-linear.

Let U1 = ker M and U2 be the complement of U1 in U such that U = U1 ⊕ U2. Also,
let Z1 ⊂ Z and Z2 be the complement of Z1 in Z such that Z = Z1 ⊕ Z2. Similarly, let
E : U → U , F : Z → Z be continuous projectors and � ⊂ U be open and bounded with
the origin θ ∈ �.

Definition 2.2 ([5]) Let Nk : � → Z, k ∈ [0, 1] be a continuous operator, and let
∨

k =
{u ∈ � : Mu = Nku}. We denote N1 by N . Nk is said to be M-compact in � if there exists
a vector subspace Z1 of Z with dim Z1 = dim U1 and a continuous and compact operator,
P : � × [0, 1] → U2 such that, for k ∈ [0, 1],

(ρ1) (I – F)Nk(�) ⊂ Im M ⊂ (I – F)Z;
(ρ2) FNku = θ , k ∈ (0, 1) ⇔ FNu = θ ;
(ρ3) P(·, k) is the zero operator and P(·, k)|∨k = (I – E)|∨k ;
(ρ4) M[E + P(·, k)] = (I – F)Nk .

Theorem 2.1 ([5]) Let (U ,‖ · ‖U ) and (Z,‖ · ‖Z) be any two Banach spaces and � ⊂ U be
bounded, open, and nonempty. Assume that M : U ∩dom M → Z is a quasi-linear operator
and Nk : � → Z, k ∈ [0, 1] is M-compact on �. Suppose that the following hold:

(τ1) Mu �= Nku, ∀(u, k) ∈ ∂� × (0, 1),
(τ2) FNu �= 0, ∀u ∈ ker M ∩ ∂�,
(τ3) deg(JFN , ker M ∩�, 0) �= 0, where F : Z → Im F is a projector and J : Im F → ker M is

a homeomorphism with J(θ ) = θ .
Then at least one solution exists for the abstract equation Mu = Nu in dom M ∩ �, where
N = N1.

Definition 2.3 ([17]) A map w : [0, +∞) × R
2 → R is v-Carathéodory if the following

conditions are satisfied:
(i) for each (d, e) ∈R

2, the mapping t → w(t, d, e) is Lebesgue measurable;
(ii) for a.e. t ∈ [0,∞), the mapping (d, e) → w(t, d, e) is continuous on R

2;
(iii) for each k > 0 and v ∈ L1[0, +∞), there exists ψk(t) : [0, +∞) → [0, +∞) satisfying

∫ +∞
0 v(t)ψk(t) dt < +∞ such that, for a.e. t ∈ [0,∞) and every (d, e) ∈ [–k, k], we
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have

∣
∣w(t, d, e)

∣
∣ ≤ ψk(t).

Definition 2.4 ([1]) Let K = {u ∈ C[0, +∞), limt→+∞ u(t) exist} and T ⊂ K . Then T is said
to be relatively compact if all functions from T are bounded, equicontinuous on any com-
pact subinterval of [0, +∞), and equiconvergent at ∞.

Definition 2.5 ([5]) Let a > 0, the Riemann–Liouville fractional-order integral of a func-
tion z : (0, +∞) →R is defined by

Ia
0+z(t) =

1
�(a)

∫ t

0
(t – r)a–1z(r) dr

provided that the right-hand side is pointwise defined on (0, +∞).

Definition 2.6 ([5]) Let a > 0, the Riemann–Liouville fractional-order derivative of a
function z : (0, +∞) →R is defined by

Da
0+z(t) =

dn

dtn In–a
0+ z(t) =

1
�(n – a)

dn

dtn

∫ t

0
(t – r)n–a–1z(r) dr,

where n = [a] + 1, provided that the right-hand side is pointwise defined on (0, +∞).

Lemma 2.1 ([12]) Let a ∈ (0, +∞), then the general solution of the fractional differential
equation

Da
0+w(t) = 0

is w(t) = b1ta–1 + b2ta–2 + · · · + bnta–n, where bj ∈ R, j = 1, 2 . . . , n, and n = [a] + 1 is the
smallest integer greater than or equal to a.

Lemma 2.2 ([12]) Let a ∈ (0, +∞) and i = 1, 2, . . . , n. Assume that w ∈ L1[0, +∞) with a
fractional integration of order n – a which belongs to ACn[0, +∞), then

(
Ia

0+Da
0+w

)
(t) = w(t) –

n∑

i=1

((In–a
0+ u)(t))(n–i)|t=0

�(a – i + 1)
ta–i

holds almost everywhere on [0, +∞).

Lemma 2.3 ([12]) Let a > 0, ρ > –1, t > 0, then

Ia
0+tρ =

�(ρ + 1)
�(ρ + 1 + a)

ta+ρ , Da
0+tρ =

�(ρ + 1)
�(ρ + 1 – a)

,

in particular Da
0+ta–m = 0, m = 1, 2, . . . , n, where n = [a] + 1.

Lemma 2.4 ([12]) Let a > b > 0. If w(t) ∈ (0, +∞), then

Da
0+Ia

0+w(t) = w(t), Db
0+Ia

0+w(t) = Ia–b
0+ w(t).
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Remark 2.1 ([4]) We will use the following properties of ϕp. For d, e ≥ 0,
(i) ϕp(d + e) ≤ ϕp(d) + ϕp(e), if 1 < p < 2;

(ii) ϕp(d + e) ≤ 2p–2(ϕp(d) + ϕp(e)), if p ≥ 2.

Let

U =
{

u : Da
0+u(t) ∈ C

(
[0, +∞)

,R), lim
t→+∞

|u(t)|
1 + ta , and lim

t→+∞
∣
∣Da

0+u(t)
∣
∣ exists

}

with the norm ‖u‖ = max{‖u‖0,‖Da
0+u(t)‖∞} defined on U , where

‖u‖0 = sup
t∈[0,+∞)

|u(t)|
1 + ta , ‖u‖∞ = sup

t∈[0,+∞)

∣
∣Da

0+u
∣
∣.

Let Z = {z : [0, +∞) →R :
∫ +∞

0 v(t)|z(t)|dt < +∞} with the norm ‖z‖Z =
∫ +∞

0 v(s)|z(s)|ds.
Then the spaces (U ,‖ · ‖) and (Z,‖ · ‖Z) by the standard argument are Banach Spaces.

We define M : dom U → Z as Mu = 1
v(t) (ϕp(Da

0+u))′ and Nk : U → Z as = –kw(t, u(t),
Da

0+u(t)), k ∈ [0, 1], where

dom L =
{

u ∈ U : ϕp
(
Da

0+u(t)
) ∈ AC[0, +∞),ϕp

(
Da

0+u(0)
)

=
∫ +∞

0
v(t)ϕp

(
Da

0+u(t)
)

dt,

lim
t→+∞ϕp

(
Da

0+u(t)
)

=
∫ +∞

0
v(t)ϕp

(
Da

0+u(t)
)

dt
}

.

Then boundary value problem (1.1) in an abstract form is Mu = Nku.
Throughout this paper, we assume that

D =
(
Q1e–t · Q2te–t) –

(
Q2e–t · Q1te–t) := (d11 · d22) – (d21 · d12) �= 0,

where

Q1z =
∫ +∞

0
v(t)

∫ +∞

t
v(r)z(r) dr dt

and

Q2z =
∫ +∞

0
v(t)

∫ +∞

t
v(r)z(r) dr dt –

∫ +∞

0
v(r)z(r) dr.

Lemma 2.5 Im M = {z ∈ Z : Q1z = Q2z = 0} and M is a quasi-linear operator.

Proof By simple calculation, we can see that ker L = {b1ta–1 + b2ta : b1, b2 ∈R, t ∈ [0, +∞)}.
Suppose z ∈ Im M, then there exists u ∈ dom M such that (ϕp(Da

0+u(t)))′ = –v(t)z(t). There-
fore

ϕp
(
Da

0+u(t)
)

= ϕp
(
Da

0+u(+∞)
)

+
∫ +∞

t
v(r)z(r) dr. (2.1)

As t → +∞, then

Q1z =
∫ ∞

0
v(t)

∫ +∞

t
v(r)z(r) dr dt = 0, (2.2)
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while, when t = 0, we have

Q2z =
∫ +∞

0
v(t)

∫ +∞

t
v(r)z(r) dr –

∫ +∞

0
v(r)z(r) dr = 0. (2.3)

From (2.1), we obtain

u(t) = b1ta–1 + Ia
0+ϕq

(

ϕp
(
Da

0+u(+∞)
)

+
∫ +∞

t
v(r)z(r) dr

)

. (2.4)

Conversely, if (2.2) and (2.3) hold for u ∈ dom M and u is as defined in (2.4), then
ϕp(Da

0+u(t)) = ϕp(Da
0+u(+∞)) +

∫ +∞
t v(r)z(r) dr. Since

∫ +∞
0 v(t) dt = 1, we have

ϕp
(
Da

0+u(+∞)
)

= ϕp
(
Da

0+u(+∞)
)

=
∫ +∞

0
v(t)ϕp

(
Da

0+u(+∞)
)

dt +
∫ ∞

0
v(t)

∫ +∞

t
v(r)z(r) dr dt

=
∫ +∞

0
v(t)ϕp

(
Da

0+u(t)
)

dt

and

ϕp
(
Da

0+u(0)
)

= ϕp
(
Da

0+u(+∞)
)

+
∫ +∞

0
v(r)z(r) dr

=
∫ +∞

0
v(t)ϕp

(
Da

0+u(+∞)
)

dt +
∫ +∞

0
v(r)z(r) dr

+
∫ +∞

0
v(t)

∫ +∞

t
v(r)z(r) dr –

∫ +∞

0
v(r)z(r) dr

=
∫ +∞

0
v(t)ϕp

(
Da

0+u(t)
)

dt.

Hence,

Im M = {z ∈ Z : Q1z = Q2z}.

For u ∈ dom M, it is clearly seen that dim ker L = 2 and Im M, a subset of Z is closed. Hence,
M is a quasi-linear operator. �

We define the projector E : U → U1 as

Eu(t) =
Da

0+u(0)
�(a)

ta–1 +
Da

0+u(+∞)
�(a + 1)

ta

and F : Z → Z1 as

Fz = D1z(t) · ta–1 + D2z(t) · ta,

where D1z = d22F1z–d21F2z
D e–t and D2z = –d12F1z+d11F2z

D e–t . F can easily be shown to be a semi-
projector.
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Lemma 2.6 Let P : U × [0, 1] → U2 be defined as

P(u, k) = Ia
0+ϕq

(

ϕp
(
Da

0+u(+∞)
)

+
∫ +∞

t
v(r)(I – F)Nku(r) dr

)

–
Da

0+u(+∞)
�(a + 1)

ta.

If w is v-Caratheodory, then P is M-compact.

Proof Let � ⊂ U , then, for u ∈ �, ‖u‖ < j with j > 0. Since w is a v-Caratheodory func-
tion, then, for a.e t ∈ [0, +∞) and k ∈ [0, 1], there exists ψj : [0, +∞) → [0, +∞) such that
∫ +∞

0 v(t)ψj(t) dt < +∞, |w(t, u(t), Da
0+u(t))| ≤ ψj(t), and

∫ +∞

0
v(r)

∣
∣(I – F)Nku(r)

∣
∣dr ≤ ‖ψj‖Z + ‖FNu‖Z .

Hence, for u ∈ �,

∥
∥P(u, k)

∥
∥

0 = sup
t∈[0,+∞)

|P(u, k)(t)|
1 + ta

≤ sup
t∈[0,+∞)

[
Ia

0+ϕq(ϕp(j) + ‖ψj‖Z + ‖FNu‖Z)
1 + ta +

ta

(1 + ta)�(a + 1)
j
]

= sup
t∈[0,+∞)

1
1 + ta

[

ϕq
(
ϕp(j) + ‖ψj‖Z + ‖FNu‖Z

)
∫ t

0

(t – r)a–1

�(a)
dr +

jta

�(a + 1)

]

≤ 1
�(a + 1)

(
ϕq

(
ϕp(j) + ‖ψj‖Z + ‖FNu‖Z

)
+ j

)

≤ ϕq
(
ϕp(j) + ‖ψj‖Z + ‖FNu‖Z

)
+ j

and

∥
∥Da

0+P(u, k)
∥
∥∞ = sup

t∈[0,+∞)

∣
∣Da

0+P(u, k)u(t)
∣
∣

≤ sup
t∈[0,+∞)

ϕq
(
ϕp(j) + ‖ψj‖Z + ‖FNu‖Z

)
+ j

≤ ϕq
(
ϕp(j) + ‖ψj‖Z + ‖FNu‖Z

)
+ j.

Hence P(u, k)� is uniformly bounded in U . We will next show the equicontinuity of P(u, k)
on any compact interval of [0, +∞). Let G > 0, t1, t2 ∈ [0, G], u ∈ �, and k ∈ [0, 1], we obtain

∣
∣
∣
∣
P(u, k)(t1)

1 + ta
1

–
P(u, k)(t2)

1 + ta
2

∣
∣
∣
∣

≤
[

ϕq(ϕp(j) + ‖ψj‖Z + ‖FNu‖Z) + j
�(a)

[∫ t1

0

∣
∣
∣
∣
(t1 – r)a–1

1 + ta
1

–
(t2 – r)a–1

1 + ta
2

∣
∣
∣
∣dr +

1
a

(t2 – t1)a

1 + ta
2

]

+
j

�(a + 1)

∣
∣
∣
∣

t2

1 + ta
2

–
t1

1 + ta
1

∣
∣
∣
∣

]

→ 0 as t1 → t2
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and

∣
∣Da

0+P(u, k)(t1) – Da
0+P(u, k)(t2)

∣
∣

=
∣
∣
∣
∣ϕq

(

ϕp
(
Da

0+u(+∞)
)

+
∫ t2

t1

v(r)(I – F)Nku(r) dr +
∫ +∞

t2

v(r)(I – F)Nku(r) dr
)

– ϕq

(

ϕp
(
Da

0+u(+∞)
)

+
∫ +∞

t2

v(r)(I – F)Nku(r) dr
)∣

∣
∣
∣ → 0 as t1 → t2.

Thus, P(u, k)� is equicontinuous on [0, G]. We now establish that P(u, k)� is equiconver-
gent at +∞. Let u ∈ �, since

∣
∣
∣
∣ϕp

(
Da

0+u(+∞)
)

+
∫ +∞

t
v(r)(I – F)Nku(r) dr)

∣
∣
∣
∣ ≤ ϕp(j) + ‖ψj‖Z + ‖FNu‖Z ,

then ϕq(u) is uniformly continuous on [–y, y] where y = ϕp(j) + ‖ψj‖Z + ‖FNu‖Z . Thus,
given any ε > 0, and for all u ∈ �, there exists l > 0 such that if r ≥ l, then

∣
∣
∣
∣ϕq

(

ϕp
(
Da

0+u(+∞)
)

+
∫ +∞

r
v(x)(F – I)Nku(x) dx

)∣
∣
∣
∣ < ε.

Conversely, since limt→+∞ ta–1

1+ta = 0, limt→+∞ ta

1+ta = 0, and limt→+∞ 1
1+ta = 0, then for same

ε > 0 above, there exists l1 > l > 0 such that, for any t1, t2 ≥ x1 and r ∈ [0, l], we have

∣
∣
∣
∣
(t1 – r)a–1

1 + ta
1

–
(t2 – r)a–1

1 + ta
2

∣
∣
∣
∣ ≤ ta–1

1
1 + ta

1
+

ta–1
2

1 + ta
2

< ε,

∣
∣
∣
∣

ta
1

1 + ta
1

–
ta
2

1 + ta
2

∣
∣
∣
∣ ≤ ta

1
1 + ta

1
+

ta
2

1 + ta
2

< ε

and
∣
∣
∣
∣

1
1 + ta

1
–

1
1 + ta

2

∣
∣
∣
∣ ≤ 1

1 + ta
1

+
1

1 + ta
2

< ε.

Hence, for t1, t2 ≥ l, we have

∣
∣
∣
∣
P(u, k)(t1)

1 + ta
1

–
P(u, k)(t2)

1 + ta
2

∣
∣
∣
∣

=
∣
∣
∣
∣

Ia
0+ϕq(ϕp(Da

0+u(+∞)) +
∫ +∞

t1
v(r)(I – F)Nku(r) dr)

1 + ta
1

–
Da

0+u(+∞)ta
t1

(1 + ta
1 )�(a + 1)

–
Ia

0+ϕq(ϕp(Da
0+u(+∞)) +

∫ +∞
t2

v(r)(I – F)Nku(r) dr)
1 + ta

2
+

Da
0+u(+∞)ta

t2

(1 + ta
2 )�(a + 1)

∣
∣
∣
∣

≤ ϕq(ϕp(j) + ‖ψj‖Z + ‖FNu‖Z)
�(a)

[∫ l1

0

∣
∣
∣
∣
(t1 – r)a–1

1 + ta
1

–
(t2 – r)a–1

1 + ta
2

∣
∣
∣
∣dr

+
∫ t1

l1

(t1 – r)a–1

1 + ta
1

dr +
∫ t2

l1

(t2 – r)a–1

1 + ta
s

dr
]

+
j

�(a + 1)

∣
∣
∣
∣

ta
1

1 + ta
1

–
ta
2

1 + ta
2

∣
∣
∣
∣

≤ ϕq(ϕp(j) + ‖ψj‖Z + ‖FNu‖Z)
�(a)

l1ε +
1

�(a + 1)
[
2ϕq

(
ϕp(j) + ‖ψj‖Z + ‖FNu‖Z

)
+ j

]
ε
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and

|Da
0+P(u, k)(t1) –

∣
∣Da

0+P(u, k)(t2)
∣
∣

=
∣
∣
∣
∣ϕq

(

ϕp
(
Da

0+u(+∞)
)

+
∫ +∞

t1

v(r)(I – F)Nku(r) dr
)

– ϕq

(

ϕp
(
Da

0+u(+∞)
)

+
∫ +∞

t2

v(r)(I – F)Nku(r) dr
)∣

∣
∣
∣ < 2ε. �

Thus, P(u, k)� is equiconvergent at +∞. Therefore, by Lemma 2.4, P : � × [0, 1] → U2

is relatively compact.
Let u ∈ ∨

k = {u ∈ � : Mu = Nku}, then 1
v(t) (ϕp(Da

0+u(t)))′ = –Nku(t) ∈ Im M = ker F . We
will now prove that (ρ3) and (ρ4) of Definition 2.2 hold. Clearly, (ρ3) holds since P(u, 0) = 0
and

P(u, k)(t) = Ia
0+ϕq

(

ϕp
(
Da

0+u(+∞)
)

+
∫ +∞

t
v(r)Nku(r) dr

)

–
Da

0+u(+∞)
�(a + 1)

ta

= Ia
0+ϕq

(

ϕp
(
Da

0+u(+∞)
)

+
∫ +∞

t
–
(
ϕp

(
Da

0+u(r)
))′ dr

)

–
Da

0+u(+∞)
�(a + 1)

ta

= Ia
0+Da

0+u(t) –
Da

0+u(+∞)
�(a + 1)

ta.

Hence, from Lemma 2.2 we have

P(u, k)(t) = u(t) –
(

Da
0+u(0)
�(a)

ta–1 +
Da

0+u(+∞)
�(a + 1)

ta
)

=
[
(I – E)u

]
(t).

Also, for u ∈ �,

M
[
Eu + P(u, k)

]
(t)

= M
[

Da
0+u(0)
�(a)

ta–1 + Ia
0+ϕq

(

ϕp
(
Da

0+u(+∞)
)

+
∫ +∞

t
v(r)(I – F)Nku(r) dr

)]

=
1

v(t)

(

ϕp
(
Da

0+u(+∞)
)

+
∫ +∞

t
v(t)(I – F)Nku(r) dr

)′

= (I – F)Nku(r) dr.

Hence, Nk is M-compact on �.

3 Main results
Theorem 3.1 Suppose that D �= 0, w is v-Caratheodory, and the following hold:

(i) There exist functions m1(t) > 0, m2(t) > 0, m3(t) > 0 in Z such that

∣
∣w(t, u, v)

∣
∣ ≤ m1(t) + m2(t)

|u|p–1

(1 + ta)p–1 + m3(t)|v|p–1, ∀t ∈ [0, +∞), (u, v) ∈R
2;

(ii) There exists constant B1 > 0 such that |Da
0+u(t0)| > B1 for every t0 ∈ [0, +∞), then

either F1Nu �= 0 or F2Nu �= 0;
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(iii) There exists C1 > 0 such that, if |b1| > C1 or |b2| > C1, then either

b1F1N
(
b1ta–1 + b2ta) + b2F2N

(
b1ta–1 + b2ta) < 0 (3.1)

or

b1F1N
(
b1ta–1 + b2ta) + b2F2N

(
b1ta–1 + b2ta) > 0, (3.2)

where b1, b2 ∈ R, |b1| + |b2| > C1 and t ∈ [0, +∞). Then boundary value problem (1.1) has
at least one solution in U if

22q–4(‖m2‖q–1
Z + �(a + 1)‖m3‖q–1

Z
)

< 1, if 1 < p < 2, or

‖m2‖q–1
Z + �(a + 1)‖m3‖q–1

Z < 1, if p ≥ 2.

Before proving Theorem 3.1, we will state and prove two lemmas.

Lemma 3.1 Let �1 = {u ∈ dom M ker M : Mu = Nku, k ∈ [0, 1]}. Then �1 is bounded in U
if (i) and (ii) of Theorem 3.1 hold.

Proof Let u ∈ �1, then Mu = Nku and FNku = 0. Hence, from Lemma 2.5, we have

∣
∣u(t)

∣
∣ =

∣
∣
∣
∣b1ta–1 +

1
�(a)

∫ t

0
(t – r)a–1Da

0+u(r) dr
∣
∣
∣
∣, b1 ∈R.

Therefore,

‖u‖0 ≤ sup
t∈[0,+∞)

ta–1

1 + ta |b1| + sup
t∈[0,+∞)

ta

1 + ta
1

�(a + 1)
∥
∥Da

0+u
∥
∥∞

≤ |b1| +
1

�(a + 1)
∥
∥Da

0+u
∥
∥∞.

Thus, from (ii) of Theorem 3.1, there exist constants t0 ∈ [0,∞) such that |Da
0+u(t1)| < B1.

Also, by (i) of Theorem 3.1 and from 1
v(t) (ϕp(Da

0+u(t)))′ = –kw(t, u(t), Da
0+u(t)), we have

∣
∣ϕp

(
Da

0+u(t)
)∣
∣ =

∣
∣
∣
∣ϕp

(
Da

0+u(t0)
)

–
∫ t

t0

kv(r)w
(
r, u(r), Da

0+u(r)
)

dr
∣
∣
∣
∣

≤ ∣
∣ϕp

(
Da

0+u(t0)
)∣
∣ +

∣
∣
∣
∣

∫ t

t0

kv(r)w
(
r, u(r), Da

0+u(r)
)

dr
∣
∣
∣
∣

≤ ϕp(B1) +
∫ +∞

0
v(r)

[

m1(r) + m2(r)
|u|p–1

(1 + ta)p–1 + m3(r)
∣
∣Da

0+u
∣
∣p–1

]

dr

≤ ϕp(B1) + ‖m1‖Z + ‖m2‖Zϕp
(‖u‖0

)
+ ‖m3‖Zϕp

(∥
∥Da

0+
∥
∥∞

)

≤ ϕp(B1) + ‖m1‖Z + ‖m2‖Zϕp

(

|b1| +
1

�(a + 1)
∥
∥Da

0+u
∥
∥∞

)

+ ‖m3‖Zϕp
(∥
∥Da

0+
∥
∥∞

)
.
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Then

ϕp
(∥
∥Da

0+u
∥
∥∞

) ≤ ϕp(B1) + ‖m1‖Z + ‖m2‖Zϕp

(

|b1| +
1

�(a + 1)
∥
∥Da

0+u
∥
∥∞

)

+ ‖m3‖Zϕp
(∥
∥Da

0+
∥
∥∞

)
.

If 1 < p < 2, then

∥
∥Da

0+u
∥
∥∞ ≤ 22q–4

(

B1 + ‖m1‖q–1
Z + ‖m2‖q–1

Z

(

|b1| +
1

�(a + 1)
∥
∥Da

0+u
∥
∥∞

)

+ ‖m3‖q–1
Z

∥
∥Da

0+
∥
∥∞

)

,

and hence,

∥
∥Da

0+u
∥
∥∞ ≤ 22q–4�(a + 1)(B1 + ‖m1‖q–1

Z + ‖m2‖q–1
Z |b1|)

1 – 22q–4(‖m2‖q–1
Z – �(a + 1)‖m3‖q–1

Z )
. �

Similarly, if p ≥ 2, then

∥
∥Da

0+u
∥
∥∞ ≤ B1 + ‖m1‖q–1

Z + ‖m2‖q–1
Z

(

|b1| +
1

�(a + 1)
∥
∥Da

0+u
∥
∥∞

)

+ ‖m3‖q–1
Z

∥
∥Da

0+
∥
∥∞.

Thus

∥
∥Da

0+u
∥
∥∞ ≤ �(a + 1)(B1 + ‖m1‖q–1

Z + ‖m2‖q–1
Z |b1|)

1 – ‖m2‖q–1
Z – �(a + 1)‖m3‖q–1

Z
.

Hence,

‖u‖ = max
{‖u‖0,

∥
∥Da

0+u
∥
∥∞

} ≤ |b1| +
∥
∥Da

0+u
∥
∥∞.

Therefore �1 is bounded in U1.

Lemma 3.2 If (iii) of Theorem 3.1 holds, then �2 = {u ∈ ker M : Nu ∈ Im M} is bounded.

Proof Let u ∈ �2, then u = b1ta–1 + b2ta, where b1, b2 ∈ R. Since Nu ∈ Im M, then F1Nu =
F2Nu = 0. From (iii) of Theorem 3.1, we have |b1| < C1 and |b2| < C1, then

‖u‖ = max
{‖u‖0,

∥
∥Da

0+u
∥
∥∞

}

= max

{

sup
t∈[0,+∞)

ta–1

1 + ta |b1| + sup
t∈[0,+∞)

ta

1 + ta |b2|, sup
t∈[0,+∞)

∣
∣Da

0+
(
b1ta–1 + b2ta)∣∣

}

= max

{

|b1| + |b2|, �(a + 1)
�(1)

|b2|
}

≤ |b1| + |b2| + �(a + 1)|b2|.

Therefore, �2 is bounded. �
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Proof of Theorem 3.1 We have previously proved that M is quasi-linear and Nk is M-
compact on �. Also, from Lemma 3.1 and Lemma 3.2 we proved that (τ1) and (τ1) of Theo-
rem 2.1 hold. Finally, we will prove that (τ3) of Theorem 2.1 also holds. Let J : Im F → ker M
be defined as

J
(
b1ta–1 + b2ta) =

1
D

((
d22|b1| – d21|b2|

)
ta–1 +

(
–d12|b1| + d11|b2|

)
ta)e–t .

If (3.1) holds for any u ∈ dom ∂�∩ker M, where u = b1ta–1 + b2ta �= 0. We define the home-
omorphism by

H(u, k) = –ku + (1 – k)JFNU , k ∈ [0, 1]. �

Then H(u, 1) = –u �= 0 and H(u, 0) = JFNu �= 0 since Nu /∈ Im M. For k ∈ (0, 1) and by way
of contradiction, we assume H(u, k) = 0, then

d22
(
–k|b1| + (1 – k)F1N

(
b1ta–1 + b2ta))

– d21
(
–k|b2| + (1 – k)F1N

(
b1ta–1 + b2ta)) = 0,

–d12
(
–k|b1| + (1 – k)F1N

(
b1ta–1 + b2ta))

+ d11
(
–k|b2| + (1 – k)F1N

(
b1ta–1 + b2ta)) = 0.

Since D �= 0, we have

k|b1| = (1 – k)F1N
(
b1ta–1 + b2ta)),

k|b2| = (1 – k)F1N
(
b1ta–1 + b2ta)).

Hence,

|b1| + |b2| =
1 – k

k
(
F1N

(
b1ta–1 + b2ta)) + F2N

(
b1ta–1 + b2ta))) < 0,

which contradicts |b1| + |b2| ≥ 0. If (3.2) holds, then we define

H(u, k) = –ku – (1 – k)JFNU , k ∈ [0, 1].

Then

|b1| + |b2| = –
1 – k

k
(
F1N

(
b1ta–1 + b2ta)) + F2N

(
b1ta–1 + b2ta))) < 0,

which is also a contradiction. Hence, by the homotopy property of Brouwer degree, we
have

deg(JFN ,� ∩ M, 0) = deg
(
H(·, 1),� ∩ ker M, 0

)

= deg
(
H(·, 0),� ∩ ker M, 0

)

= deg(I,� ∩ ker M, 0) �= 0.

Therefore, at least one solution of (1.1) exists in �.
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4 Example
Example 4.1 Consider the following boundary value problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(ϕ1/2(D1/2
0+ u(t)))′ + 4e–4t( 7

2 + 5 sin–1
√

|u(t)|
3
√

1+t1/2 + 3ϕ1/2(D1/2
0+ u(t))) = 0,

t ∈ [0, +∞)

ϕ1/2(D1/2
0+ u(0)) = 4

∫ +∞
0 e–4tϕ1/2(D1/2

0+ u(t)) dt,

ϕ1/2(D1/2
0+ u(+∞)) = 4

∫ +∞
0 e–4tϕ1/2(D1/2

0+ u(t)) dt,

(4.1)

where p = q = 1
2 ,

∫ +∞
0 4e–t dt = 1, D = ( 16

45 )(– 68
625 ) – (– 4

9 )( 32
625 ) = –0.016 �= 0. m2 = 5

3 , m3 = 3,

then 22q–4(‖m2‖q–1
Z + �(a + 1)‖m3‖q–1

Z ) = 1
8 (

√
3
5 +

√
π

2
1√
3 ) = 0.161 < 1.

Conditions (i), (ii), and (iii) of Theorem 3.1 can also be shown to hold. Hence, there
exists at least one solution of (4.1).

Example 4.2 Consider the following boundary value problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(ϕ3(D
1
3
0+u(t)))′ + e–t( 1

1+2t2 + sin t|u(t)|2
7(1+t1/3)2 + 1

15ϕ3(D
1
3
0+u(t))) = 0, t ∈ [0, +∞),

ϕ3(D
1
3
0+u(0)) =

∫ +∞
0 e–tϕ3(D

1
3
0+u(t)) dt,

ϕ3(D
1
3
0+u(+∞)) =

∫ +∞
0 e–tϕ3(D

1
3
0+u(t)) dt,

(4.2)

where p = 3, q = 3
2 ,

∫ +∞
0 e–t dt = 1, D = ( 1

6 )(– 1
6 ) – (– 1

3 )( 1
12 ) = –0.0694 �= 0. m2 = sin t

7 , m3 = 1
15 .

Then ‖m2‖q–1
Z + �(a + 1)‖m3‖q–1

Z ) =
√

1
7 + (0.8923)

√
1

15 = 0.0.6085 < 1.
Conditions (i), (ii), and (iii) of Theorem 3.1 also hold. Hence, there exists at least one

solution of (4.2).

5 Conclusion
Fractional differential equations are an efficient tool for describing the memory of differ-
ent substances and have become popular recently. In order to further enrich this subject
area, this work considers existence results for fractional-order p-Laplacian boundary value
problem on the half-line at resonance where the differential operator is nonlinear and has
a kernel dimension equal to two. The proof of the main result is based on the Ge and Ren
coincidence degree theory, and the results obtained are new and extend some current re-
sults to the two-dimensional kernel. Examples were given to demonstrate the practicability
and validity of our main results.
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