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Abstract
In this paper, we establish some sufficient conditions which ensure that the solutions
of the third order delay difference equation with a negative middle term

�(an�(�wn)α) – pn(�wn+1)α – qnh(wn–l) = 0, n ≥ n0,

are oscillatory. Moreover, we study the asymptotic behavior of the nonoscillatory
solutions. Two illustrative examples are included for illustration.
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1 Introduction
In this paper, we are concerned with the asymptotic behavior of solutions of third order
delay difference equations with a negative middle term of the form

�
(
an�(�wn)α

)
– pn(�wn+1)α – qnh(wn–l) = 0, n ≥ n0, (1.1)

where n0 is a nonnegative integer and α is a quotient of odd positive integers. Throughout
this paper, we assume without further mention that: {an} is a positive real sequence, {pn}
is a nonnegative real sequence, and {qn} is a positive real sequence for all n ≥ n0, l is a
positive integer, h is a continuous, nondecreasing real-valued function such that ηh(η) > 0
for η �= 0, and h(ηξ ) ≥ h(η)h(ξ ) for ηξ > 0.

By a solution of equation (1.1) we mean a nontrivial real sequence {wn} that is defined
for all n ≥ n0 – l and satisfies equation (1.1) for all n ≥ n0. A nontrivial solution {wn} of
equation (1.1) is said to be nonoscillatory if it is either eventually positive or eventually
negative, and oscillatory otherwise. A difference equation is called nonoscillatory (oscil-
latory) if all its solutions are nonoscillatory (oscillatory). Following the terms used in [6],
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we define

L0wn = wn, L1wn = (�wn)α , L2wn = an�(L1wn) and

L3wn = �(L2wn), ∀n ≥ n0.

Using these notations, one can write equation (1.1) as

L3wn – pnL1wn – qnh(wn–l) = 0.

We introduce the following class of nonoscillatory (without loss of generality we say pos-
itive) solutions which give the sign structure of possible nonoscillatory solutions to equa-
tion (1.1):

wn ∈ W1 ⇔ wn > 0, L1wn > 0, L2wn < 0, L3wn > 0;

wn ∈ W3 ⇔ wn > 0, L1wn > 0, L2wn > 0, L3wn > 0,

for all n ≥ n1 ≥ n0. In Lemma 2.3, we will prove that if

∞∑

n=n1

P
1
α
n = ∞, where Pn =

n–1∏

s=n1

(

1 –
1
as

∞∑

t=s
pt

)

, (1.2)

then the set W of all positive solutions of equation (1.1) has the following decomposition:

W = W1 ∪ W3.

According to the well-known results in [1, 2], the oscillation criteria are often accom-
plished by introducing the concepts having property (A) and/or (B). Equation (1.1) is said
to have property (B) if W = W3.

In recent years the asymptotic behavior of nonoscillatory solutions and the oscillatory
behavior of solutions to different classes of third order difference equations have been the
interest of many researchers, see for example [3–8, 10, 12–19] and the references cited
therein. Recently, in the papers [6, 16], the authors used the comparison method and the
summation averaging technique to establish some sufficient conditions for oscillation of
all solutions of the third order delay difference equation

�
(
an�

(
bn(�wn)α

))
+ pn(�wn+1)α + qnh(wn–l) = 0, (1.3)

where {pn} and {qn} are positive real sequences, and the auxiliary equation of second order

�(an�zn) +
pn

bn+1
zn+1 = 0

is nonoscillatory. In [11] the authors used the oscillation of a third order difference equa-
tion of the form

�
(
an�(dn�wn)γ

)
+ qnh(dn–τ wn–τ+1) = 0 (1.4)
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to obtain oscillation conditions for solutions of second order neutral delay difference equa-
tions.

Following this trend, in this paper, we study the asymptotic behavior of solutions of
equation (1.1). Our approach depends on the application of a technique imposing one
restrictive condition on the coefficients of the corresponding auxiliary equation. We show
that any nonoscillatory solution {wn} of equation (1.1) satisfies wn�wn > 0. Further, we
obtain new sufficient conditions for all solutions of equation (1.1) to have property (B).
Two examples are provided to illustrate the main results.

2 Main results
For the sake of simplicity, we define the following:

P̄n =
∞∑

s=n

1
as

∞∑

t=s
qt , R1(n, n1) =

n–1∑

s=n1

1
as

, Qn = pnP̄n + qn,

Q̄n =
1
an

∞∑

s=n
Qs, B(n, n1) =

n–1∑

s=n1

R
1
α
1 (s, n1)

for s ≥ n ≥ n1, where n1 ≥ n0. Throughout we assume that R1(n, n1) → ∞ as n → ∞. To
make sense of the definitions Pn and P̄n, we also assume that

∞∑

n=n0

pn < ∞, and
∞∑

n=n0

qn < ∞.

In the sequel, and without loss of generality, we can deal only with the positive solutions of
equation (1.1), since the proof for the opposite case is similar. From our technique, which
will be described later, we will see that the properties of solutions to equation (1.1) are
closely related to nonoscillatory solutions of an auxiliary second order difference equation

�(an�zn) – pnzn+1 = 0. (2.1)

First, we prove the following lemmas which will be used in the proofs of the main results.

Lemma 2.1 Let {zn} be a positive solution of (2.1) for all n ≥ n0. Then (1.1) can be written
in the form

�

(
anznzn+1�

(
1
zn

(�wn)α
))

– qnzn+1h(wn–l) = 0 (2.2)

for all n ≥ n0.

Proof It is easy to see that

1
zn+1

�

(
anznzn+1�

(
1
zn

(�wn)α
))

=
1

zn+1
�

(
anzn+1�

(
(�wn)α

)
– an(�wn+1)α�zn

)
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= �
(
an�

(
(�wn)α

))
+

1
zn+1

an+1�
(
(�wn+1)α

)
�zn+1

–
1

zn+1
an+1�

(
(�wn+1)α

)
�zn+1 –

1
zn+1

(�wn+1)α�(an�zn)

= �
(
an�

(
(�wn)α

))
– pn(�wn+1)α ,

where we have used (2.1). Using the above equality in equation (1.1) and rearranging, we
obtain equation (2.2). This completes the proof. �

We recall that equation (2.1) (see Theorem 6.3.4 of [1]) always has a couple of nonoscil-
latory solutions {zn} such that either

zn�zn > 0 (2.3)

or

zn�zn < 0 (2.4)

for all n ≥ n0.
To find the structure of positive nonoscillatory solutions of equation (1.1), the following

property of a nonoscillatory solution {zn} satisfying (2.4) plays a crucial role.

Lemma 2.2 If (1.2) holds, then (2.1) has a positive solution {zn} satisfying

∞∑

n=n1

1
anznzn+1

=
∞∑

n=n1

z
1
α
n = ∞. (2.5)

Proof Let {zn} be a positive solution of equation (2.1) such that (2.4) holds for all n ≥ n1 ≥
n0. It is clear from the fact that �zn < 0, there is a constant M > 0 such that zn ≤ M. Hence

∞∑

n=n1

1
anznzn+1

= ∞.

On the other hand, since

�(an�zn) = pnzn+1 ≥ 0,

then an�zn is increasing and there exists a constant c ≤ 0 such that limn→∞ an�zn = c. We
claim that c = 0, if not, then

zn ≤ zn1 + c
n–1∑

s=n1

1
as

→ –∞, as n → ∞,

a contradiction. Hence c = 0. Summing (2.1) from n to ∞, we have

–an�zn =
∞∑

s=n
pszs+1 ≤ zn

∞∑

s=n
ps



Saker et al. Advances in Difference Equations        (2021) 2021:248 Page 5 of 12

or

zn+1

zn
≥ 1 –

1
an

∞∑

s=n
ps. (2.6)

Then from (2.6) we obtain

zn ≥ zn1

n–1∏

s=n1

(

1 –
1
as

∞∑

t=s
pt

)

,

which yields

z
1
α
n ≥ z

1
α
n1 P

1
α
n . (2.7)

Now summing (2.7) from n1 to n–1 and then combining with (1.2) implies that the second
summation in (2.5) is divergent. This completes the proof. �

Lemma 2.3 Assume that condition (1.2) holds. If {wn} is a positive solution of (1.1) for all
n ≥ n0, then there is an integer n1 such that either wn ∈ W1 or wn ∈ W3 for all n ≥ n1 ≥ n0.

Proof Assume that {wn} is a positive solution of equation (1.1) for all n ≥ n0. By
Lemma 2.1, we may write (1.1) in an equivalent form (2.2). From Lemma 2.2, there is
a positive sequence {zn} of (2.1) which satisfies (2.5), and so we see that

�

(
anznzn+1�

(
1
zn

(�wn)α
))

> 0.

Then, by discrete Kneser’s theorem [1], we have

wn > 0, (�wn)α > 0, �

(
1
zn

(�wn)α
)

< 0,

or

wn > 0, (�wn)α > 0, �

(
1
zn

(�wn)α
)

> 0,

for all n ≥ n1 ≥ n0. Note that in both cases we have �wn > 0, and by virtue of (1.1) we see
that L3wn > 0. The rest sign properties of Liwn, i = 1, 2, immediately follow from discrete
Kneser’s theorem. The proof is now complete. �

Next, we state and prove some useful estimates which will play an important role in the
proofs of our main results.

Lemma 2.4 Let wn ∈ W1 be a positive solution of (1.1) for all n ≥ n1 ≥ n0. Then

wn

(n – n1)
is nonincreasing, (2.8)

and there is an integer n2 > n1 such that

L1wn ≥ P̄nh(wn–l) for all n > n2. (2.9)
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Proof Let wn ∈ W1 be a positive solution of equation (1.1) for n ≥ n1. From the mono-
tonicity of L1wn, we have

wn ≥ wn – wn1 =
n–1∑

s=n1

(L1ws)1/α ≥ (n – n1)L1/α
1 wn. (2.10)

Therefore

�

(
wn

n – n1

)
=

(n – n1)L1/α
1 wn – wn

(n – n1)(n + 1 – n1)
≤ 0,

and so wn/(n – n1) is nonincreasing. Next, summing (1.1) from n to ∞, we obtain

–L2wn ≥
∞∑

s=n
psL1ws +

∞∑

s=n
qsh(ws–l) ≥ h(wn–l)

∞∑

s=n
qs.

Again summing, we obtain

L1wn ≥
∞∑

s=n

h(ws–l)
as

∞∑

t=s
qt ≥ P̄nh(wn–l).

This completes the proof. �

Lemma 2.5 Let wn ∈ W3 be a positive solution of (1.1) for all n ≥ n1 ≥ n0. If

∞∑

n=n1

[
pnR1(s, n1) + qnh

(
B(n – l, n1)

)]
= ∞, (2.11)

and there is an integer n2 > n1 such that

wn

B(n, n1)
is nondecreasing for all n ≥ n2. (2.12)

Proof Let wn ∈ W3 be a positive solution of (1.1) for all n ≥ n1. Since L2wn is increasing,
there is a constant M > 0 such that L2wn ≥ M for all n ≥ n1. Clearly,

L1wn ≥ MR1(n, n1) and wn ≥ M1/αB(n, n1) for n ≥ n1.

We claim that condition (2.11) implies limn→∞ L2wn = ∞. Using the above estimates into
(1.1), we obtain

L3wn ≥ MpnR1(n, n1) + h
(
M1/α)

qnh
(
B(n – l, n1)

)
. (2.13)
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By summing (2.13) from n1 to ∞, we see that the claim holds. Therefore, for any n ≥ n2 ≥
n1, we have

L1wn = L1wn2 +
n–1∑

s=n2

L2ws

as
≤ L1wn2 + R1(n, n2)L2wn

= L1wn2 – R1(n2, n1)L2wn + R1(n, n1)L2wn

≤ R1(n, n1)L2wn,

which yields

�

(
L1wn

R1(n, n1)

)
=

R1(n, n1)L2wn – L1wn

anR1(n, n1)R1(n + 1, n1)
≥ 0,

and hence L1wn/R1(n, n2) is nondecreasing for all n ≥ n2. Again for any n ≥ n3 ≥ n2, we
have

wn = wn3 +
n–1∑

s=n3

(
R1(s, n1)L1ws

R1(s, n1)

) 1
α

≤ wn3 + B(n, n3)
(

L1wn

R1(n, n1)

) 1
α

≤ wn3 – B(n3, n1)
(

L1wn

R1(n, n1)

) 1
α

+ B(n, n1)
(

L1wn

R1(n, n1)

) 1
α

.

It follows from discrete L’Hospital rule [1] that

lim
n→∞

L1wn

R1(n, n1)
= lim

n→∞ L2wn = ∞,

and so we have

wn ≤ B(n, n1)
(

L1wn

R1(n, n1)

) 1
α

, n ≥ n3.

Then

�

(
wn

B(n, n1)

)
=

B(n, n1)(L1wn)1/α – R1/α
1 (n, n1)wn

B(n, n1)B(n + 1, n1)
≥ 0.

Thus wn/B(n, n1) is nondecreasing for all n ≥ n3. The proof is complete. �

We conclude this section with the following remark.

Remark 2.6 It is easy to see that from Lemma 2.5, if (1.1) has property (B), then any posi-
tive solution of (1.1) satisfies

lim
n→∞

wn

B(n, n1)
= ∞,

which gives us information about the rate of convergence of possible positive solutions.
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In the following, we present some sufficient conditions which ensure that equation (1.1)
has property (B).

Theorem 2.7 Let condition (1.2) hold for all n ≥ n1. If the first order delay difference equa-
tion

�xn + Q̄nh(n – l – n1)h
(
x1/α

n–l
)

= 0, n ≥ n1, (2.14)

is oscillatory, then (1.1) has property (B).

Proof Let {wn} be a positive solution of (1.1) for n ≥ n0. From Lemma 2.3 there exists an
integer n1 ≥ n0 such that either wn ∈ W1 or wn ∈ W3 for all n ≥ n1. If wn ∈ W1, then by
equation (1.1) and (2.9), we have

L3wn ≥ (pnP̄n + qn)h(wn–l) = Qnh(wn–l). (2.15)

Summing (2.15) from n to ∞, we find

–L2wn ≥
∞∑

s=n
Qsh(ws–l) ≥

( ∞∑

s=n
Qs

)

h(wn–l). (2.16)

Using (2.10) in the above inequality, we obtain

–�(L1wn) ≥ 1
an

( ∞∑

s=n
Qs

)

h(n – l – n1)h
(
L1/α

1 wn–l
)
.

Letting xn = L1wn, we see that the difference inequality

�xn + Q̄nh(n – l – n1)h
(
x1/α

n–l
) ≤ 0

has a positive solution. By Lemma 2.7 of [19], we see that equation (2.14) also has a positive
solution, which is a contradiction. Therefore wn ∈ W3, which implies that equation (1.1)
has property (B). This completes the proof. �

Applying some known criteria for oscillation of first order delay difference equation
(2.14), one can easily obtain criteria for equation (1.1) to have property (B). The following
one is given in [9].

Corollary 2.8 Assume that h(u) = uα and condition (1.2) hold. If

lim
n→∞ inf

n–1∑

s=n–l

Q̄s(s – l – n1)1/α >
(

l
l + 1

)l+1

, (2.17)

then (1.1) has property (B).

Finally, we present another result for equation (1.1) to have property (B) which is appli-
cable even to the ordinary equation.
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Theorem 2.9 Let condition (1.2) hold for all n ≥ n1. Assume that

∞∑

n=n1

( ∞∑

s=n

1
as

∞∑

t=s
Qt

) 1
α

= ∞, (2.18)

and the function h satisfies

lim
u=±∞

u
h1/α(u)

= M < ∞. (2.19)

If

lim
n→∞ sup

{

h1/α
(

1
n – n1

) n–1∑

s=n1

(

h(s – l – n1)
∞∑

t=s
Q̄t

) 1
α
}

> M, (2.20)

then (1.1) has property (B).

Proof Let {wn} be a positive solution of (1.1) for all n ≥ n0. Then from Lemma 2.3 there
exists an integer n1 ≥ n0 such that either wn ∈ W1 or wn ∈ W3 for all n ≥ n1. If wn ∈ W1,
then as in the proof of Theorem 2.6 we obtain (2.16), and by summing it from n to ∞, we
find that

L1wn ≥
∞∑

s=n
h(ws–l)

∞∑

t=s
Qt ≥

( ∞∑

s=n
Q̄s

)

h(wn–l). (2.21)

Now, summing (2.21) from n1 to n – 1, one can easily see that

wn ≥
n–1∑

s=n1

(

h(ws–l)
∞∑

t=s
Q̄t

) 1
α

. (2.22)

Using the monotonicity property (2.8) in (2.22), we have

wn ≥ h1/α
(

wn–l

(n – l – n1)

) n–1∑

s=n1

(

h(s – l – n1)
∞∑

t=s
Q̄t

)1/α

≥ h1/α
(

wn

(n – n1)

) n–1∑

s=n1

(

h(s – l – n1)
∞∑

t=s
Q̄t

)1/α

.

Applying hypothesis (H3) assumed on the function h and then dividing both sides of the
last inequality by h1/α(wn), we see that

wn

h1/α(wn)
≥ h1/α

(
1

(n – n1)

) n–1∑

s=n1

(

h(s – l – n1)
∞∑

t=s
Q̄t

)1/α

. (2.23)

It follows from (2.18) that limn→∞ wn = ∞. Taking the limit supremum on both sides of
(2.23), we are led to a contradiction with (2.20). Thus wn ∈ W3, which means that equation
(1.1) has property (B). This completes the proof. �
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We conclude this section with the following remark.

Remark 2.10 If all conditions of Theorem 2.7 (Theorem 2.9) are satisfied, then one can
conclude that all bounded solutions of equation (1.1) are oscillatory.

3 Applications
In the following, we present two examples to illustrate the main results.

Example 3.1 Consider the third order delay difference equation

�3wn –
1

(n + 1)(n + 2)
�wn+1 –

1
n(n + 1)

wn–1 = 0, n ≥ 1. (3.1)

Here

pn =
1

(n + 1)(n + 2)
, qn =

1
n(n + 1)

, α = 1, and l = 1.

A simple calculation shows that

Pn =
1
n

, P̄n =
∞∑

s=n

1
s

>
1
n

,

Qn >
1

n(n + 1)(n + 2)
+

1
n(n + 1)

, Q̄n >
1

2n(n + 1)
+

1
n

,

and

lim
n→∞ inf

n–1∑

s=n–1

Q̄s(s – 2) > 1 >
1
4

.

Hence all conditions of Corollary 2.8 are satisfied, and therefore (3.1) has property (B).

Example 3.2 Consider the third order delay difference equation

�2((�wn)3) –
(�wn+1)3

(n + 1)(n + 2)
–

w3
n–1

n(n + 1)(n + 2)
= 0, n ≥ 1. (3.2)

Here

pn =
1

(n + 1)(n + 2)
, qn =

2
n(n + 1)(n + 2)

, α = 3, and l = 1.

A simple calculation shows that

Pn =
1
n

, P̄n =
1
n

, Qn =
3

n(n + 1)(n + 2)
, Q̄n =

3
2

(
1

n(n + 1)

)
, M = 1.
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Since

∞∑

n=1

( ∞∑

s=n

∞∑

t=s
Qt

) 1
3

=
∞∑

n=1

( ∞∑

s=n

∞∑

t=s

3
t(t + 1)(t + 2)

) 1
3

=
(

3
2

) 1
3 ∞∑

n=1

(
1
n

) 1
3

= ∞

and

lim
n→∞ sup

{
1

n – 1

n–1∑

s=1

(s – 2)

( ∞∑

t=s

3
2

(
1

t(t + 1)

)) 1
3
}

= lim
n→∞ sup

{
1

(n – 1)

n–1∑

s=1

(
3
2

) 1
3 (s – 2)

s1/3

}

= ∞ > 1,

we see that all conditions of Theorem 2.9 are satisfied, and hence (3.2) has property (B).
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