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1 Introduction and background
The development of applications of the q-calculus has been of great interest recently. It
has an especially important role in the different areas of mathematics, such as orthogonal
polynomials, mathematical physics, the calculus of variations, statistical mechanics, the-
ory of various operators of convergence, quantum theory. More detailed concepts of the
q-calculus can be obtained from books [1, 2]. For a general introduction to the q-calculus,
very useful studies have been done in [3–9].

It is well known that eigenfunction expansion problems are important for solving vari-
ous problems, and there are lots of techniques for obtained (see [3, 10, 11]). On the other
hand, many researchers have focused on certain generalizations of Sturm–Liouville prob-
lems. In particular, q-Sturm–Liouville eigenvalue problems were studied and a self-adjoint
q-difference operator was formulated in a Hilbert space in [7, 12].

In [13] authors also studied the eigenfunction expansion for a certain q- Sturm–Liouville
problem by using Titchmarch’s technique and defined some concepts for deriving eigen-
function expansion problems.

Sturm–Liouville problems with transmission conditions have been investigated by many
authors [5, 14, 15] who gave asymptotic formulas for eigenvalues and the corresponding
eigenfunction for these problems.

The existence of a spectral function for singular q-Sturm–Liouville operators on semi-
unbounded interval was proved in [4], and also they obtained the Parseval identity and on
the expansion formula.

In this study, we consider a q-Sturm–Liouville expression as follows:

�(y) := –
1
q

Dq–1 Dqy(ζ ) + u(ζ )y(ζ ), ζ ∈ J := [–1, 0) ∪ (0, 1].
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Here, we denote J1 := [–1, 0), J2 := (0, 1], and so J := J1 ∪ J2. Suppose that the points –1,
1 and 0 are q-regular for the differential expression �. u is a real, Lebesque measurable
function in J and u ∈ L1

q(Jk), k = 1, 2. Recall that 0 is a q-regular point of the function u
which belongs to L1

q[0 – ε, 0 + ε] for some ε > 0.
The rest of the study is arranged as follows. In Sect. 2, we give some preliminaries for

q-calculus. In Sect. 3, we investigate the existence of a spectral function. The Parseval
identity and an expansion formula with eigenfunctions for a singular q-Sturm–Liouville
problem with transmission conditions are obtained.

2 Preliminaries
We begin with some preliminary facts and notations for quantum calculus (see [2, 6]). Our
main tools are q-derivative and q-integral. Let q be any fixed constant with q ∈ (0, 1). We
say that a set A ⊂R is q-geometric if, for every a ∈ A, qa ∈ A. Also a q-difference equation
is an equation which includes q-derivatives of a function defined on a q-geometric set A.
The q-difference operator is denoted by Dq, the Jackson q-derivative of a function ϕ : A →
C is defined by

Dqϕ(a) =
ϕ(qa) – ϕ(a)

qa – a
, ∀a ∈ A\{0}.

We say that the point 0 in A is the Jackson q-derivative at zero if the limit

Dqϕ(0) = lim
n→∞

ϕ(qna) – ϕ(0)
qna

(a ∈ A)

exists and belongs to C. Here, note that the value of the limit is independent of a (see [8]).
The Jackson q-integral is given by

∫ a

0
ϕ(ζ ) dqζ = a(1 – q)

∞∑
k=0

qkϕ
(
qka

)
(a ∈ A),

where the series is convergent in [9]. Additionally, the following result is satisfied:

∫ b

a
ϕ(ζ ) dqζ =

∫ b

0
ϕ(ζ ) dqζ –

∫ a

0
ϕ(ζ ) dqζ , ∀a, b ∈ A.

The Jackson q-integration of ϕ on [0,∞) is defined in [16] by the formula

∫ ∞

0
ϕ(ζ ) dqζ =

∞∑
n=–∞

qnϕ
(
qna

)
, (a ∈ A)

provided that some converges absolutely. A function ϕ is q-regular at the point zero if the
limit

lim
n→∞ϕ

(
aqn) = ϕ(0),

(
a ∈ A ∪ {0})

exists. Throughout the study, the functions will be assumed to be q-regular at zero. If ϕ

and ψ are q-regular at zero, then the following equality holds:
∫ a

0
ψ(ζ )Dqϕ(ζ ) dqζ +

∫ a

0
ϕ(qζ )Dqψ(ζ ) dqζ = ϕ(a)ψ(a) – ϕ(0)ψ(0).
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The separable Hilbert space is L2
q(0,∞) := {ϕ | ∫ ∞

0 |ϕ(ζ )|2 dqζ < ∞,ϕ : (0,∞) → C} with
the norm

‖ϕ‖ :=
(∫ ∞

0

∣∣ϕ(ζ )
∣∣2 dqζ

) 1
2

< ∞

and given with the inner product

〈ϕ,ψ〉 :=
∫ ∞

0
ϕ(ζ )ψ(ζ ) dqζ , ϕ,ψ ∈ L2

q(0,∞)

(see [13]).
We call the q-Wronskian of ϕ, ψ on A if

Wq[ϕ,ψ](a) := ϕ(a)Dqψ(a) – ψ(a)Dqϕ(a) (2.1)

exists.

3 Main results
In this section, we begin with the q-Sturm–Liouville equations as follows:

�(y) := –
1
q

Dq–1 Dqy(ζ ) + u(ζ )y(ζ ) = λy, ζ ∈ J (3.1)

with the boundary conditions

y(–1) cosα + Dq–1 y(–1) sinα = 0, (3.2)

y(1) cosβ + Dq–1 y(1) sinβ = 0 (3.3)

and the transmission conditions

y(0+) – γ1y(0–) – γ2Dqy(0–) = 0, (3.4)

Dqy(0+) – γ3y(0–) – γ4Dqy(0–) = 0, (3.5)

where λ is a complex eigenparameter, the potential function u ∈ L1
q(J), and notice that it

guarantees that y(0∓) and Dqy(0∓) in (3.4)–(3.5) make sense; here we assume that

γ =

∣∣∣∣∣
γ1 γ2

γ3 γ4

∣∣∣∣∣ > 0. (3.6)

Furthermore, the class Hq = L2
q(J1)⊕L2

q(J2) is introduced as a Hilbert space with the inner
product

〈ϕ,ψ〉Hq :=
∫ 0

–1
ϕ1ψ1 dqζ +

1
γ

∫ 1

0
ϕ2ψ2 dqζ ,

where

ϕ(ζ ) =

⎧⎨
⎩

ϕ1(ζ ), ζ ∈ J1,

ϕ2(ζ , ζ ∈ J2,
ψ(ζ ) =

⎧⎨
⎩

ψ1(ζ ), ζ ∈ J1,

ψ2(ζ ), ζ ∈ J2.
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It can be easily obtained by direct manipulation from [17], (p.217). A compact resolvent
of the regular self-adjoint boundary value problem (3.1)–(3.3), (3.4)–(3.5) with transmis-
sion was proved by authors in [18, 19], and they also showed that it has a completely dis-
crete spectrum.

Let λm;1, (m ∈ N) denote the eigenvalues of this problem and by

φm;1(ζ ) =

⎧⎨
⎩

φ
(1)
m;1(ζ ), ζ ∈ J1,

φ
(2)
m;1(ζ ), ζ ∈ J2,

φm;1(ζ ) := φ(ζ ,λm;1)

the corresponding real-valued eigenfunctions which satisfy conditions (3.2)–(3.5).
If ϕ ∈ Hq is a real-valued function with

ϕ(ζ ) =

⎧⎨
⎩

ϕ1(ζ ), ζ ∈ J1,

ϕ2(ζ ), ζ ∈ J2,

then

‖ϕ‖2
Hq =

∫ 0

–1

(
ϕ1(ζ )

)2 dqζ +
1
γ

∫ 1

0

(
ϕ2(ζ )

)2 dqζ

=
∞∑

m=1

1
α2

m;1

[∫ 0

–1
ϕ1(ζ )φ(1)

m;1(ζ ) dqζ +
1
γ

∫ 1

0
ϕ2(ζ )φ(2)

m;1(ζ ) dqζ

]2

, (3.7)

where

α2
m;1 =

∫ 0

–1

(
φ

(1)
m;1

)2 dqζ +
1
γ

∫ 1

0

(
φ

(2)
m;1

)2 dqζ

is obtained. Here equality (3.7) is called the Parseval identity (see [5]).
Now we give a monotone increasing step function on R:

σ1(λ) =

⎧⎪⎨
⎪⎩

–
∑

λ<λm;1<0
1

α2
m;1

for λ < 0,
∑

0≤λm;1<λ
1

α2
m;1

for λ ≥ 0.
(3.8)

Thus, we can write (3.7) as

∫ 0

–1

(
ϕ1(ζ )

)2 dqζ +
1
γ

∫ 1

0

(
ϕ2(ζ )

)2 dqζ =
∫ +∞

–∞
2(λ) dσ1(λ), (3.9)

where

(λ) =
∫ 0

–1
ϕ1(ζ )φ(1)

m;1(ζ ) dqζ +
1
γ

∫ 1

0
ϕ2(ζ )φ(2)

m;1(ζ ) dqζ .

We will obtain the Parseval identity for (3.1)–(3.5) from (3.9) by letting 1 → ∞.
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The function ϕ is said to be of bounded variation on the interval [a, b] if and only if there
exists a positive constant M such that

n∑
k=1

∣∣ϕ(ζk) – ϕ(ζk–1)
∣∣ ≤ M

for all finite partitions P = {ζ0, ζ1, . . . , ζn} of [a, b].
If ϕ : [a, b] → R is of bounded variation on [a, b], then the total variation of ϕ on [a, b]

is defined to be

V b
a (ϕ) := sup

n∑
k=1

∣∣ϕ(ζk) – ϕ(ζk–1)
∣∣,

where the supremum is taken over all partitions of [a, b] (see [5]).

Lemma 3.1 For arbitrary M, the formula

V M
–M

(
σ1(λ)

)
=

∑
–M<λm;1<M

1
α2

m;1
= σ1(M) – σ1(–M) < ϒ (3.10)

holds for a positive constant ϒ = ϒ(M).

Proof Assume first that sinα �= 0. Since φ(ζ ,λ) is continuous on the domain [–1, 0] x
[–M, M] with the condition φ(–1,λ) = sinα, there exists a positive number k such that

(
1
k

∫ k

–1
φ

(1)
m;1(ζ ,λ) dqζ

)2

>
sin2 α

2
. (3.11)

Let us define

ϕk(ζ ) :=

⎧⎨
⎩

1
k , –1 ≤ ζ < k,

0, ζ ≥ k.

From (3.9) and (3.11), we get

∫ k

–1
ϕ2

k (ζ ) dqζ =
k + 1

k2

=
∫ ∞

–∞

(
1
k

∫ k

–1
φ

(1)
m;1(ζ ,λ) dqζ

)2

dσ1(λ)

≥
∫ M

–M

(
1
k

∫ k

–1
φ

(1)
m;1(ζ ,λ) dqζ

)2

dσ1(λ)

>
1
2

sin2 α

∫ M

–M
dσ1(λ)

=
1
2

sin2 α
[
σ1(M) – σ1(–M)

]
,

so it satisfies inequality (3.10).
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If sinα = 0, we give a formula for the function ϕk(ζ ) by

ϕk(ζ ) :=

⎧⎨
⎩

1
k2 , –1 ≤ ζ < k,

0, ζ ≥ k.

Thus, we obtain (3.10) by applying the Parseval identity. �

Let us now mention the following well-known Helly’s first and second theorems in [20].
Firstly, recall Helly’s first theorem that given a uniformly bounded sequence {ψn} of

monotone increasing real functions on [a, b], there exists a subsequence {ψnk } of {ψn}
converging to a monotone increasing real function ψ on [a, b].

Secondly, given a sequence {ψn} of monotone increasing real functions on [a, b], con-
verging to a monotone increasing real function ψ , for every continuous function ϕ on
[a, b], we have

lim
n→∞

∫ b

a
ϕ(λ) dψn(λ) =

∫ b

a
ϕ(λ) dψ(λ).

We introduce the Hilbert space H := L2
q(J1) ⊕ L2

q(J3), (J1 := [–1, 0), J3 := (0,∞)) with the
inner product

〈ϕ,ψ〉H :=
∫ 0

–1
ϕ1ψ1 dqζ +

1
γ

∫ ∞

0
ϕ2ψ2 dqζ ,

where

ϕ(ζ ) =

⎧⎨
⎩

ϕ1(ζ ), ζ ∈ J1,

ϕ2(ζ ), ζ ∈ J3,
ψ(t) =

⎧⎨
⎩

ψ1(ζ ), ζ ∈ J1,

ψ2(ζ ), ζ ∈ J3.

We assume that σ is any nondecreasing function for –∞ < λ < ∞. Let us define all mea-
surable real functions of Hilbert space by L2

σ (R) which satisfies

∫ ∞

–∞
ϕ2(λ) dσ (λ) < ∞,

with the inner product

〈ϕ,ψ〉σ :=
∫ ∞

–∞
ϕ(λ)ψ(λ) dσ (λ).

The fundamental result of the study is given as follows.

Theorem 3.2 The nondecreasing function σ (λ) on –∞ < λ < ∞ for q-Sturm–Liouville
problem (3.1)–(3.5) satisfies the following properties:

(i) If

ϕ(ζ ) =

⎧⎨
⎩

ϕ1(ζ ), ζ ∈ J1,

ϕ2(ζ ), ζ ∈ J3
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is a real-valued function and ϕ belongs to H , then there is a function  ∈ L2
σ (R) such that

lim
n→∞

∫ ∞

–∞

[
(λ) –

∫ 0

–1
ϕ1(ζ )φ(1)

m;1(ζ ,λ) dqζ

–
1
γ

∫ n

0
ϕ2(ζ )φ(2)

m;1(ζ ,λ) dqζ

]2

dσ (λ) = 0 (3.12)

and the Parseval identity

‖ϕ‖2
H =

∫ 0

–1

(
ϕ1(ζ )

)2 dqζ +
1
γ

∫ ∞

0

(
ϕ2(ζ )

)2 dqζ =
∫ ∞

–∞
2(λ) dσ (λ). (3.13)

(ii) The integral
∫ ∞

–∞ (λ)φ(ζ ,λ) dσ (λ) converges to ϕ in H ; that is,

lim
n→∞

[∫ 0

–1

(
ϕ1(ζ ) –

∫ n

–n
(λ)φ(1)

m;1(ζ ,λ) dσ (λ)
)2

dqζ

+
1
γ

∫ ∞

0

(
ϕ2(ζ ) –

∫ n

–n
(λ)φ(2)

m;1(ζ ,λ) dσ (λ)
)2

dqζ

]
= 0.

It should be known that the function σ is said to be a spectral function for boundary
value problem (3.1)–(3.5).

Proof We may assume that

ϕξ (ζ ) =

⎧⎨
⎩

ϕ1;ξ (ζ ), ζ ∈ [–1, 0),

ϕ2;ξ (ζ ), ζ ∈ (0, ξ ]

satisfies three conditions as follows:
(a) Let ϕξ (ζ ) be identically zero outside the set [–1, 0) ∪ (0, ξ ] with ξ < 1.
(b) Let ϕξ (ζ ) and Dqϕξ (ζ ) be q-regular functions at zero.
(c) Let ϕξ (ζ ) satisfy boundary conditions (3.1)–(3.5).
Applying Parseval identity (3.9) to the function ϕξ (ζ ), we obtain

∫ 0

–1

(
ϕ1;ξ (ζ )

)2 dqζ +
1
γ

∫ ξ

0

(
ϕ2;ξ (ζ )

)2 dqζ =
∫ ∞

–∞
2

ξ (λ) dσ (λ), (3.14)

where

ξ (λ) =
∫ 0

–1
ϕ1;ξ (ζ )φ(1)

m;1(ζ ,λ) dqζ +
1
γ

∫ ξ

0
ϕ2;ξ (ζ )φ(2)

m;1(ζ ,λ) dqζ . (3.15)

Because φ(ζ ,λ) satisfies (3.1), it is clear that

φ(ζ ,λ) =
1
λ

[
–

1
q

Dq–1 Dqφ(ζ ,λ) + u(ζ )φ(ζ ,λ)
]

.
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From (3.14) we get

ξ (λ) =
1
λ

∫ 0

–1
ϕ1;ξ (ζ )

[
–

1
q

Dq–1 Dqφ
(1)
m;1(ζ ,λ) + u(ζ )φ(1)

m;1(ζ ,λ)
]

dqζ

+
1
γ

1
λ

∫ ξ

0
ϕ2;ξ (ζ )

[
–

1
q

Dq–1 Dqφ
(2)
m;1(ζ ,λ) + u(ζ )φ(2)

m;1(ζ ,λ)
]

dqζ .

Since ϕξ (ζ ) is identically zero in a neighborhood of the point 1 and both ϕξ (ζ ) and φ(ζ ,λ)
satisfy boundary conditions (3.1)–(3.3), taking by q-integration by parts, we obtain

ξ (λ) =
1
λ

∫ 0

–1
φ

(1)
m;1(ζ ,λ)

[
–

1
q

Dq–1 Dqϕ1;ξ (ζ ) + u(ζ )ϕ1;ξ (ζ )
]

dqζ

+
1
γ

1
λ

∫ 1

0
φ

(2)
m;1(ζ ,λ)

[
–

1
q

Dq–1 Dqϕ2;ξ (ζ ) + u(ζ )ϕ2;ξ (ζ )
]

dqζ .

For any finite M > 0, from (3.9) we have

∫
|λ|>M

2
ξ (λ) dσ1(λ)

≤ 1
M2

∫
|λ|>M

{∫ 0

–1
φ

(1)
m;1(ζ ,λ)

[
–

1
q

Dq–1 Dqϕ1;ξ (ζ ) + u(ζ )ϕ1;ξ (ζ )
]

dqζ

+
1
γ

∫ 1

0
φ

(2)
m;1(ζ ,λ)

[
–

1
q

Dq–1 Dqϕ2;ξ (ζ ) + u(ζ )ϕ2;ξ (ζ )
]

dqζ

}2

dσ1(λ)

≤ 1
M2

∫ +∞

–∞

{∫ 0

–1
φ

(1)
m;1(ζ ,λ)

[
–

1
q

Dq–1 Dqϕ1;ξ (ζ ) + u(ζ )ϕ1;ξ (ζ )
]

dqζ

+
1
γ

∫ 1

0
φ

(2)
m;1(ζ ,λ)

[
–

1
q

Dq–1 Dqϕ2;ξ (ζ ) + u(ζ )ϕ2;ξ (ζ )
]

dqζ

}2

dσ1(λ)

=
1

M2

∫ 0

–1

[
–

1
q

Dq–1 Dqϕ1;ξ (ζ ) + u(ζ )ϕ1;ξ (ζ )
]2

dqζ

+
1

M2
1
γ

∫ ξ

0

[
–

1
q

Dq–1 Dqϕ2;ξ (ζ ) + u(ζ )ϕ2;ξ (ζ )
]2

dqζ .

From (3.14), we obtain that

∣∣∣∣
∫ 0

–1

(
ϕ1;ξ (ζ )

)2 dqζ +
1
γ

∫ ξ

0

(
ϕ2;ξ (ζ )

)2 dqζ –
∫ M

–M
2

ξ (λ) dσ1(λ)
∣∣∣∣

<
1

M2

∫ 0

–1

[
–

1
q

Dq–1 Dqϕ1;ξ (ζ ) + u(ζ )ϕ1;ξ (ζ )
]2

dqζ

+
1

M2
1
γ

∫ ξ

0

[
–

1
q

Dq–1 Dqϕ2;ξ (ζ ) + u(ζ )ϕ2;ξ (ζ )
]2

dqζ . (3.16)

We know that the set {σ1(λ)} is bounded from Lemma 3.1. A sequence {ψk} (ψk → ∞)
such that the function σ1;ψk (λ) converges to a monotone function σ (λ) can be found from
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Helly’s first and second theorems. By taking limit with respect to {ψk} in (3.16), we get

∣∣∣∣
∫ 0

–1

(
ϕ1;ξ (ζ )

)2 dqζ +
1
γ

∫ ξ

0

(
ϕ2;ξ (ζ )

)2 dqζ –
∫ M

–M
2

ξ (λ) dσ (λ)
∣∣∣∣

<
1

M2

∫ 0

–1

[
–

1
q

Dq–1ϕ1;ξ (ζ ) + u(ζ )ϕ1;ξ (ζ )
]2

dqζ

+
1

M2
1
γ

∫ ξ

0

[
–

1
q

Dq–1ϕ2;ξ (ζ ) + u(ζ )ϕ2;ξ (ζ )
]2

dqζ .

Therefore, letting M → ∞, we get

∫ 0

–1

(
ϕ1;ξ (ζ )

)2 dqζ +
1
γ

∫ ξ

0

(
ϕ2;ξ (ζ )

)2 dqζ =
∫ +∞

–∞
2

ξ (λ) dσ (λ).

Let ϕ be any real function on H . It is known that there is a sequence of functions {ϕξ (ζ )}
satisfying conditions (3.1)–(3.5) and such that

lim
ξ→∞

[∫ 0

–1

(
ϕ1(ζ ) – ϕ1;ξ (ζ )

)2 dqζ +
1
γ

∫ ξ

0

(
ϕ2(ζ ) – ϕ2;ξ (ζ )

)2 dqζ

]
= 0.

Let

ξ (λ) =
∫ ∞

–1
ϕ1;ξ (ζ )φ(1)

m;1(ζ ,λ) dqζ +
1
γ

∫ ∞

–1
ϕ2;ξ (ζ )φ(2)

m;1(ζ ,λ) dqζ .

Then from this we can get

∫ 0

–1

(
ϕ1;ξ (ζ )

)2 dqζ +
1
γ

∫ ∞

0

(
ϕ2;ξ (ζ )

)2 dqζ =
∫ +∞

–∞
2

ξ (λ) dσ (λ).

Since

∫ 0

–1

(
ϕ1;ξ1 (ζ ) – ϕ1;ξ2 (ζ )

)2 dqζ +
1
γ

∫ ∞

0

(
ϕ2;ξ1 (ζ ) – ϕ2;ξ2 (ζ )

)2 dqζ → 0

as ξ1, ξ2 → ∞, we have

∫ +∞

–∞

(
ξ1 (λ) – ξ2 (λ)

)2 dσ (λ) → 0

as ξ1, ξ2 → ∞. Accordingly there is a limit function  such that

∫ 0

–1

(
ϕ1(ζ )

)2 dqζ +
1
γ

∫ ∞

0

(
ϕ2(ζ )

)2 dqζ =
∫ +∞

–∞
2(λ) dσ (λ)

holds by the completeness of the space L2
σ (R).

Our next aim is to see that

Kξ (λ) =
∫ 0

–1
ϕ1(ζ )φ(1)

m;1(ζ ,λ) dqζ +
1
γ

∫ ξ

0
ϕ2(ζ )φ(2)

m;1(ζ ,λ) dqζ
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converges to  as ξ → ∞ in the space L2
σ (R). Let ψ be another real-valued function in H .

By the same way, let �(λ) be defined by ψ . It is clear that for

ψ(ζ ) :=

⎧⎨
⎩

ψ1(ζ ), ζ ∈ [–1, 0) ∪ [0, ξ ],

ψ2(ζ ), ζ ∈ (ξ ,∞),
∫ 0

–1

(
ϕ1(ζ ) – ψ1(ζ )

)2 dqζ +
1
γ

∫ ∞

0

(
ϕ2(ζ ) – ψ2(ζ )

)2 dqζ =
∫ +∞

–∞

[
(λ) – �(λ)

]2 dσ (λ).

Let us define

ψ(ζ ) =

⎧⎨
⎩

ϕ(ζ ), ζ ∈ [–1, 0) ∪ [0, ξ ],

0, ζ ∈ (ξ ,∞)

then
∫ +∞

–∞

[
(λ) – Kξ (λ)

]2 dσ (λ) =
1
γ

∫ ∞

ξ

(
ϕ2(ζ )

)2 dqζ → 0,

as ξ → ∞, which proves that Kξ converges to  in L2
σ (R) as ξ → ∞. This gives us (i).

Now let us give the proof of (ii). Assume that the real functions ϕ,ψ ∈ H and (λ), �(λ)
are their Fourier transforms respectively (see [10]). Then  ∓ � are transforms of ϕ ∓ ψ .
Consequently, by (3.13) we have

∫ 0

–1

[
ϕ1(ζ ) + ψ1(ζ )

]2 dqζ +
1
γ

∫ ∞

0

[
ϕ2(ζ ) + ψ2(ζ )

]2 dqζ =
∫ +∞

–∞

[
(λ) + �(λ)

]2 dσ (λ),

∫ 0

–1

[
ϕ1(ζ ) – ψ1(ζ )

]2 dqζ +
1
γ

∫ ∞

0

[
ϕ2(ζ ) – ψ2(ζ )

]2 dqζ =
∫ +∞

–∞

[
(λ) – �(λ)

]2 dσ (λ).

Let us subtract the resulting two equations side by side, we have

∫ 0

–1
ϕ1(ζ )ψ1(ζ ) dqζ +

1
γ

∫ ∞

0
ϕ2(ζ )ψ2(ζ ) dqζ =

∫ +∞

–∞
(λ)�(λ) dσ (λ), (3.17)

which may be called the generalized Parseval identity. Set

ϕ(j)
τ (ζ ) =

∫ +τ

–τ

(λ)φ(j)
m;1(ζ ,λ) dσ (λ), j = 1, 2,

where  is the function defined in (3.12). Let ψ ∈ H be a real function which equals zero
outside the set [–1, 0) ∪ (0,μ]. Thus we obtain

∫ 0

–1
ϕ(1)

τ (ζ )ψ1(ζ ) dqζ +
1
γ

∫ μ

0
ϕ(2)

τ (ζ )ψ2(ζ ) dqζ

=
∫ 0

–1

[∫ τ

–τ

(λ)φ(1)
m;1(ζ ,λ) dσ (λ)

]
ψ1(ζ ) dqζ

+
1
γ

∫ μ

0

[∫ τ

–τ

(λ)φ(2)
m;1(ζ ,λ) dσ (λ)

]
ψ2(ζ ) dqζ (3.18)
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=
∫ τ

–τ

(λ)
[∫ 0

–1
φ

(1)
m;1(ζ ,λ)ψ1(ζ ) dqζ +

1
γ

∫ μ

0
φ

(2)
m;1(ζ ,λ)ψ2(ζ ) dqζ

]
dσ (λ)

=
∫ τ

–τ

(λ)�(λ) dσ (λ).

Subtracting (3.17) and (3.18), we have

∫ 0

–1

(
ϕ1(ζ ) – ϕ(1)

τ (ζ )
)
ψ1(ζ ) dqζ +

1
γ

∫ ∞

0

(
ϕ2(ζ ) – ϕ(2)

τ (ζ )
)
ψ2(ζ ) dqζ

=
∫

|λ|>τ

(λ)�(λ) dσ (λ).

Using the Cauchy–Schwarz inequality, we obtain

(∫ 0

–1

(
ϕ1(ζ ) – ϕ(1)

τ (ζ )
)
ψ1(ζ ) dqζ +

1
γ

∫ ∞

0

(
ϕ2(ζ ) – ϕ(2)

τ (ζ )
)
ψ2(ζ ) dqζ

)2

≤
∫

|λ|>τ

2(λ) dσ (λ)
∫

|λ|>τ

�2(λ) dσ (λ).

If we carry out this inequality to the function

ψ(ζ ) =

⎧⎨
⎩

ϕτ (ζ ) – ϕ(ζ ), ζ ∈ [–1, 0) ∪ (0,μ],

0, ζ ∈ (μ,∞),

we get

∫ 0

–1

(
ϕ1(ζ ) – ϕ(1)

τ (ζ )
)2 dqζ +

1
γ

∫ ∞

0

(
ϕ2(ζ ) – ϕ(2)

τ (ζ )
)2 dqζ

≤
∫

|λ|>τ

2(λ) dσ (λ).

Since the above inequality is not dependent on μ, the result is achieved by letting τ →
∞. �

4 Conclusion
In this study, we investigate the existence of a spectral function for the singular q-Sturm–
Liouville problem with transmission conditions on a closed interval. We prove the Parseval
identity with the help of the inner product in class Hq = L2

q(J1) ⊕ L2
q(J2) as Hilbert space.

We also give the expansion formula in the eigenfunctions.
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