
Arciga-Alejandre et al. Advances in Difference Equations        (2021) 2021:255 
https://doi.org/10.1186/s13662-021-03413-w

R E S E A R C H Open Access

A Neumann problem for a diffusion equation
with n-dimensional fractional Laplacian
Martin P. Arciga-Alejandre1, Jorge Sanchez-Ortiz1*, Francisco J. Ariza-Hernandez1 and
Eduard Garcia-Murcia1

*Correspondence:
jsanchezmate@gmail.com
1Facultad de Matemáticas,
Universidad Autónoma de Guerrero,
Av. Lázaro Cárdenas S/N Cd.
Universitaria, Chilpancingo,
Guerrero, C.P. 39087, México

Abstract
We study an initial-boundary value problem for a n-dimensional stochastic diffusion
equation with fractional Laplacian on R

n
+. In order to prove existence and uniqueness,

we generalize the Fokas method to construct the Green function for the associated
linear problem and then we apply a fixed point argument. Also, we present an
example where the explicit solutions are given.
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1 Introduction
The classical diffusion phenomenon is governed by a second order linear partial differen-
tial equation, whose Green function is given by a Gaussian probability density function
and which describes the movement of energy through a medium in response to a gradi-
ent of energy. On the other hand, the diffusion processes in various systems with complex
structure, such as liquid crystals, glasses, polymers, biopolymers, and proteins, usually
do not follow a Gaussian density, as a consequence the phenomenon is described by a
fractional partial differential equation [7]. Dipierro et al., [4] have studied the asymptotic
behavior of the solutions of the time-fractional diffusion equation.

There is some previous work for the initial-boundary value problem on the first quad-
rant R2

+ for fractional diffusion equations, where the Green function has been constructed
and an integral representation of the solution was found [3, 6]. In this note, we consider
the equation

ut = �αu, (1)

where the operator �α is defined via the Riesz fractional derivative, for each coordinate.
Let us notice that the generalization of the Laplacian most commonly used [1, 9] is differ-
ent from the one we use in this work.

However, Eq. (1) is an idealized version because many aspects are missing in the model-
ing; such as the inhomogeneity of the medium, external sources, and measurement errors.
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Then a more realistic version is obtained by considering a stochastic version with additive
noise. For example, Balanzario and Kaikina [2] studied the stochastic nonlinear Landau–
Ginzburg equations on the half-line with Dirichlet white-noise boundary conditions, Shi
and Wang [11] studied the solution for a stochastic fractional partial differential equation
driven by an additive fractional space–time white noise. In Sanchez et al. [10], studied
the stochastic version of (1) for the 2-dimensional case; however, the n-dimensional case
on R

n
+ := {x = (x1, . . . , xn) : xj ≥ 0, j = 1, . . . n} has not been studied. In the present work we

tackle this problem via the main ideas of the Fokas method (unified transform) [5], this
method is a technique for solving initial-boundary value problems for partial differential
equations. Moreover, it generates integral representation formulas for solutions, where
the integrals converge uniformly on the boundary.

2 Preliminaries
Let us give some known definitions and results.

Definition 1 The n-dimensional Fourier–Laplace transform is defined as follows:

û(k, t) =
∫

R
n
+

e–ik·xu(x, t) dx,

where x ∈R
n
+, k ∈C

n = {k = (k1, . . . , kn) : kj ∈ C, j = 1, . . . n} and �m(kj) ≤ 0, k ·x is the usual
inner product, and its inverse is defined by

u(x, t) =
1

(2π )n

∫

Rn
eik·xû(k, t) dk.

Definition 2 The Riesz fractional operator is defined by

Dα
xj

u(x, t) = –
1

2�(3 – α) cos( π
2 α)

∫ ∞

0

sgn(xj – yj)
|xj – yj|α–2 ∂3

yj
u(xj, t) dyj.

Here, α ∈ (2, 3), xj ∈R
n
+ is the vector x, where the jth coordinate is yj, j = 1, . . . n.

Note that the operator, using integration by parts, Dα
xj

can be represented in the follow-
ing form [8]:

(–�)αj u(x, t) =
α

2�(1 – α) cos( π
2 α)

∫ ∞

0

u(xj, t) – u(x, t)
|xj – yj|1+α

dyj.

Lemma 1 If �α , α ∈ (2, 3), is the fractional n-dimensional Laplace operator

�α = Dα
x1 + Dα

x2 + · · · + Dα
xn ,

then, for �m(kl) ≤ 0,

̂�αu(k) = |k|αû(k, t) –
n

∑

l=1

2
∑

j=0

|kl|α
(ikl)j+1 ∂ j

xl
û(k[–l], t).

Here, |k|α :=
∑n

l=1 |kl|α and k[–l] ∈ C
n is the k vector, where its lth coordinate is zero.
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Proof The theorem follows from the linearity of the operator �α and the well-known
equation

̂Dα
x u(k) = |k|αû(k, t) –

2
∑

j=0

|k|α
(ik)j+1 ∂ j

xû(0, t).
�

3 Green function
We consider a linear problem for an evolution equation with initial condition u0 and
boundary conditions hj, j = 1, . . . , n,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ut = �αu,

u(x, 0) = u0(x),

uxj (x[–j], t) = hj(x[–j], t),

(2)

where α ∈ (2, 3), t > 0, x[–j] ∈ R
n
+ means that the jth coordinate of x is zero, with the com-

patibility conditions hj(x[–j,–l], t) = hl(x[–j,–l], t) where x[–j,–l] ∈ R
n
+ is such that jth and lth

coordinates, xl and xj, are equal to zero for j �= l.

Theorem 1 Let the initial data u0(x) ∈ L1(Rn
+) and the boundary data hj(x[–j], t) ∈

C(R+; L1(Rn
+)). Suppose that there exists some function u(x, t), which satisfies (2). Then

u(x, t) has the following integral representation:

u(x, t) = GI(t)u0 –
n

∑

l=1

∫ t

0
GBl (t – s)hl ds,

where the Green operators are given by

GI(t)u0 =
∫

R
n
+

GI(x, y, t)u0(y) dy,

GBl (t)hl =
∫

R
n–1
+

GBl (x, y[–l], t)hl(y[–l], s) dy[–l], (3)

and the Green functions are

GI(x, y, τ ) =
2n

πn

∫

R
n
+

e–kατ

n
∏

l=1

cos[klxl] cos[klyl] dk,

GBl (x, yl, τ ) =
2n

πn

∫

R
n
+

e–kατ kα–2
l cos[klxl]

n
∏

m=1
m�=l

cos[kmxm] cos[kmym] dk.

Here, kα =
∑n

l=1 kα
l .

Proof Applying Theorem 1 to Eq. (2), we obtain

ût(k, t) + |k|αû(k, t) =
n

∑

l=1

2
∑

j=0

|kl|α
(ikl)j+1 ∂ j

xl
û(k[–l], t).
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Now, we multiply the above equation by e|k|α t and integrate from 0 to t,

e|k|α t û(k, t) – û0(k) =
n

∑

l=1

2
∑

j=0

|kl|α
(ikl)j+1 gl

j
(|k|α , k[–l], t

)

(4)

for �m(kl) ≤ 0, where

gl
j (σ , k[–l], t) =

∫ t

0
eσ s∂ j

xl
û(k[–l], s) ds.

Now, we initially consider 2-dimensional case. Thus, Eq. (4) is expressed as

e|k|α t û(k, t) – û0(k) =
2

∑

j=0

|k1|α
(ik1)j+1 g1

j
(|k|α , k[–1], t

)

+
2

∑

j=0

|k2|α
(ik2)j+1 g2

j
(|k|α , k[–2], t

)

. (5)

Applying the inverse transform in (5) with respect to k1 and moving the contour of inte-
gration for the terms with g1

j in the integrand, we obtain

û(x1, k2, t) =
1

2π

∫

R

eik1x1–|k|α t

[

û0(k) +
2

∑

j=0

|k2|α
(ik2)j+1 g2

j
(|k|α , k[–2], t

)

]

dk1

+
1

2π

∫

∂D+
1

eik1x1–|k|α t
2

∑

j=0

|k1|α
(ik1)j+1 g1

j
(|k|α , k[–1], t

)

dk1, (6)

where D+
1 = {k1 ∈ C : 0 ≤ �m(k1) ≤ π

2α
|�e(k1)|}. Let us note the following: if we substitute

k1 by –k1, the functions g1
j from Eq. (5) are invariant. Then, making this change of variables

in (5), we get

e|k|α t û(–k1, k2, t) – û0(–k1, k2) =
2

∑

j=0

|k1|α
(–ik1)j+1 g1

j
(|k|α , k[–1], t

)

+
2

∑

j=0

|k2|α
(ik2)j+1 g2

j
(|k|α , –k[–2], t

)

, (7)

for �m(–k1),�m(k2) ≤ 0. Substituting g1
2 from Eq. (7) in (6) and using the fact that

∫

∂D+
1

eik1x1 û(–k1, k2, t) dk1 = 0,

by the Cauchy theorem, we obtain the following integral representation:

û(x1, k2, t) =
1

2π

∫

R

eik1x1–|k|α t

[

û0(k) + û0(–k1, k2) –
2|k1|α

k2
1

g1
1
(|k|α , k[–1], t

)

+
2

∑

j=0

|k2|α
(ik2)j+1

[

g2
j
(|k|α , k[–2], t

)

+ g2
j
(|k|α , –k[–2], t

)]

]

dk1. (8)
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Applying the inverse transform in (8) with respect to k2 and moving the contour of inte-
gration for the terms with g2

j in the integrand, we obtain

u(x, t) =
1

(2π )2

∫

R2
eik·x–|k|α t[û0(k) + û0(–k1, k2)

]

–
1

(2π )2

∫

R2
eik·x–|k|α t 2|k1|α

k2
1

g1
1
(|k|α , k[–1], t

)

dk

+
1

(2π )2

∫

∂D+
2

∫

R

eik·x–|k|α t
2

∑

j=0

|k2|α
(ik2)j+1

× [

g2
j
(|k|α , k[–2], t

)

+ g2
j
(|k|α , –k[–2], t

)]

dk, (9)

where D+
2 = {k2 ∈ C : 0 ≤ �m(k2) ≤ π

2α
|�e(k2)|}. Let us note the following: if we substitute

k2 by –k2, the functions g2
j from Eq. (8) are invariant. Then, making this change of variables

in (7), we get

û(x1, –k2, t) =
1

2π

∫

R

eik1x1–|k|α t[û0(k1, –k2) + û0(–k)
]

–
1

2π

∫

R

eik1x1–|k|α t

[

2|k1|α
k2

1
g1

1
(|k|α , –k[–1], t

)

(10)

+
2

∑

j=0

|k2|α
(–ik2)j+1

[

g2
j
(|k|α , k[–2], t

)

+ g2
j
(|k|α , –k[–2], t

)]

]

dk1,

for �m(k1),�m(k2) ≥ 0. Substituting g2
2 (|k|α ,±k[–2], t) from Eq. (10) in (9) and using the

fact that
∫

∂D+
2

eik2x2 û(x1, –k2, t) dk2 = 0,

by the Cauchy theorem, we obtain the following integral representation:

u =
1

(2π )2

∫

R2
eik·x–|k|α t

[

∑

r∈S2

û0(r) – 2
2

∑

l=1

∑

r[–l]∈S2

|kl|α
k2

l
gl

1
(|k|α , r[–l], t

)

]

dk, (11)

where r ∈ S2 = {(±k1,±k2)} and r[–l] is such that the lth coordinate is equal to zero. In
Eq. (11) we have, after interchanging the integration order, integrals of the form

∫

R2

∫

R
2
+

eik·(x1±y1,x2±y2)–|k|α tu0(y) dy dk,

∫

R2

∫ t

0

∫

R+

eik·(x1,x2±y2)–|k|α (t–s) |k1|α
k2

1
ux1 (0,±y2, s) dy2 ds dk,

and

∫

R2

∫ t

0

∫

R+

eik·(x1±y1,x2)–|k|α (t–s) |k2|α
k2

2
ux2 (±y1, 0, s) dy1 ds dk.



Arciga-Alejandre et al. Advances in Difference Equations        (2021) 2021:255 Page 6 of 10

We notice that all the integrals above are absolutely integrable, then using the Fubini the-
orem, after some simplifications, we arrive from Eq. (11) at the following equation:

u(x, t) = GI(t)u0 –
2

∑

l=1

∫ t

0
GBl (t – s)hl ds,

where the Green operators are given by

GI(t)u0 =
∫

R
2
+

GI(x, y, t)u0(y) dy,

GBl (t)hl =
∫

R+

GBl (x, y[–l], t)hl(y[–l], s) dy[–l],

and the Green functions are

GI(x, y, τ ) =
(

2
π

)2 ∫

R
2
+

e–kατ

2
∏

l=1

cos[klxl] cos[klyl] dk,

GBl (x, y[–l], τ ) =
(

2
π

)2 ∫

R
2
+

e–kατ cos[klxl]kα–2
l

2
∏

m=1
m�=l

cos[kmxm] cos[kmym] dk,

where kα = kα
1 + kα

2 . Now, following the previous arguments we can tackle the n-
dimensional case. This can be achieved, via mathematical induction over n, passing from
Eq. (4) to Eq. (12), through the steps that we describe in the 2-dimensional case. Analogous
to Eq. (11), we obtain an integral representation for u,

u(x, t) =
1

(2π )n

∫

Rn
eik·x–|k|α t

[

∑

r∈Sn

û0(r)

– 2
n

∑

l=1

∑

r[–l]∈Sn

|kl|α
k2

l
gl

1
(|k|α , r[–l], t

)

]

dk, (12)

where r ∈ Sn = {(±k1,±k2, . . . ,±kn)} and r[–l] is such that the lth coordinate is equal to
zero. Interchanging the integrals in the above equation, by Fubini’s theorem, we obtain
the desired result. �

4 Stochastic nonlinear problem
In order to state the problem, we define the Brownian sheet Ḃ on R

n
+ × [0, T] on a complete

probability space (	,F ,Ft , P), hereF is a σ -algebra, {Ft}t≥0 is a right-continuous filtration
on (	,F ) such that F0 contains all P-negligible subsets and P is a probability measure. We
consider a center Gaussian field B = {B(x, t)|x ≥ 0, t ≥ 0} with covariance function given
by

K
(

(x, t), (y, s)
)

= min{t, s}diag
(

min{x1, y1}, . . . , min{xn, yn}
)

.

We suppose that B generates a (Ft , t ≥ 0)-martingale measure in the sense of Walsh [12].
Let the initial condition u0 be F0 × B(Rn

+) measurable, where B(Rn
+) is the Borelian σ -

algebra over Rn
+.
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Now, we consider the following initial-boundary value problem for a nonlinear equation:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ut – �αu = Nu + Ḃ,

u(x, 0) = u0(x),

uxj (x[–j], t) = hj(x[–j], t),

(13)

where x ∈R
n
+, t > 0, α ∈ (2, 3), N is a Lipschitzian operator; i.e., |Nu –N v| ≤ C|u – v|, C >

0, and the compatibility conditions hj(x[–j,–l], t) = hl(x[–j,–l], t) are satisfied. We understand
the solutions for the problem (13) in the following sense: u is a solution if, for all x ∈ R

n
+

and t > 0, the following equation is fulfilled:

u(x, t) = GI(t)u0 +
n

∑

l=1

∫ t

0
GBl (t – s)hl ds

+
∫ t

0

∫

R
n
+

G(x – y, t – s)Nu(y, s) dy ds,

+
∫ t

0

∫

R
n
+

G(x – y, t – s) dB(y, s), (14)

where the Green operators GI(t), GBl (t) are given in Eq. (3) and the Green function is

G(x, t) =
1

(2π )n

∫

R
n
+

eik·x–|k|α t dk. (15)

Theorem 2 Let the initial data u0(x) ∈ L1(Rn
+) and the boundary data hj(x[–j], t) ∈

C(R+; L1(Rn
+)). Suppose that, for each T > 0, there exists a constant C > 0 such that, for

each x ∈R
n
+, t ∈ [0, T] and u, v ∈R

n, |Nu – N v| ≤ C|u – v|, and for some p ≥ 1,

sup
x≥0

E
(∣

∣u0(x)
∣

∣

p) < ∞. (16)

Then, there exists a unique solution u(x, t) to Eq. (13). Moreover, for all T > 0 and p ≥ 1,

sup
x≥0

t∈[0,T]

E
(∣

∣u(x, t)
∣

∣

p) < ∞.

Proof First, we define a Picard succession:

un+1(x, t) = u0(x, t) +
n

∑

l=1

∫ t

0

∫

R
n–1
+

GBl (x, y[–l], t – s)hl(y[–l], s) dy[–l] ds

+
∫ t

0

∫

R
n
+

G(x – y, t – s)Nun(y, s) dy ds

+
∫ t

0

∫

R
n
+

G(x – y, t – s) dB(y, s) (17)

where

u0(x, t) =
∫

R
n
+

GI(x, y, t)u0(y) dy.
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Now, let us prove that {un(x, t)}n≥0 converges in Lp(	). Using the fact that, for all t ≥ 0,
G(x, t) from Eq. (15) is a probability density function with respect to x, we obtain, for n ≥ 2,

E
(∣

∣un+1(x, t) – un(x, t)
∣

∣

p)

= E

(∣

∣

∣

∣

∫ t

0

∫

R
n
+

G(x – y, t – s)
[

Nun(y, s) – Nun–1(y, s)
]

dy ds
∣

∣

∣

∣

p)

≤ C(p)
∫ t

0

∫

R
n
+

G(x – y, t – s)E
(∣

∣un(y, s) – un–1(y, s)
∣

∣

p)dy ds

≤ C(p)
∫ t

0
sup
x≥0

E
(∣

∣un(y, s) – un–1(y, s)
∣

∣

p)ds

and by (16) and Burkholder’s inequality we have

sup
x≥0

E
(|u1(x, t) – u0(x, t)|p)

≤ C(p)
(

sup
x≥0

E
(∣

∣u1(x, t)
∣

∣

p) + sup
x≥0

E
(∣

∣u0(x, t)
∣

∣

p)
)

< ∞.

Then, by Gronwall’s lemma we obtain

∑

n≥0

sup
x≥0

t∈[0,T]

E
(∣

∣un(x, t) – un–1(x, t)
∣

∣

p) < ∞.

Hence, {un(x, t)}n≥0 is a Cauchy sequence in Lp(	). Let

u(x, t) = lim
n→∞ un(x, t).

Thus,

sup
x≥0

t∈[0,T]

E
(∣

∣u(x, t)
∣

∣

p) < ∞.

Taking n → ∞ in Lp(	) at both sides of (17) shows that u(x, t) satisfies the problem (2).
Finally, we have to prove the uniqueness of the solution. Let u and v be the two solutions
of problem (2), then

E
(∣

∣u(x, t) – v(x, t)
∣

∣

p)

= E

(∣

∣

∣

∣

∫ t

0

∫

R
n
+

G(x – y, t – s)
[

Nu(y, s) – N v(y, s)
]

dy ds
∣

∣

∣

∣

p)

≤ C(p)
∫ t

0

∫

R
n
+

G(x – y, t – s)E
(∣

∣u(y, s) – v(y, s)
∣

∣

p)dy ds

≤ C(p)
∫ t

0
sup
y≥0

E
(∣

∣u(y, s) – v(y, s)
∣

∣

p)ds.

Therefore, Gronwall’s lemma yields

E
(∣

∣u(x, t) – v(x, t)
∣

∣

p) = 0. �
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Figure 1 Anomalous diffusion for α = 2.5
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5 Example
In this section, we consider an example for the case n = 2, with the initial condition

u0(x1, x2) =

⎧

⎨

⎩

1, 1 ≤ x1, x2 ≤ 2,

0, in the other case,

and the boundary conditions, for l = 1, 2,

hl(x[–l], t) =

⎧

⎨

⎩

(–1)l+1, 3/4 ≤ x[–l] ≤ 5/4,

0, in the other case.

In Fig. 1, we present the plot of the solution u(x, t) for t = 0.02, 0.1, 0.5, 1, and α = 2.5.
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