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Abstract
This paper considers the Clifford-valued recurrent neural network (RNN) models, as an
augmentation of real-valued, complex-valued, and quaternion-valued neural network
models, and investigates their global exponential stability in the Lagrange sense. In
order to address the issue of non-commutative multiplication with respect to Clifford
numbers, we divide the original n-dimensional Clifford-valued RNN model into 2mn
real-valued models. On the basis of Lyapunov stability theory and some analytical
techniques, several sufficient conditions are obtained for the considered
Clifford-valued RNN models to achieve global exponential stability according to the
Lagrange sense. Two examples are presented to illustrate the applicability of the main
results, along with a discussion on the implications.

Keywords: Clifford-valued neural network; Exponential stability; Lyapunov
functional; Lagrange stability

1 Introduction
Recurrent neural network (RNN) models have been successfully employed for solving
problems of optimization, control, associative memory, and signal and image process-
ing. Recently, the dynamic analysis of RNN models has attracted deep interest from var-
ious researchers, and many scientific papers with respect to the stability theory of RNNs
have been published [1–6]. Due to the limited speed of signal propagation, time delays
(either constant or time-varying) are often encountered in neural network (NN) models
employed for solving real-world applications. Time delays are the main source of various
dynamics such as chaos, divergence, poor functionality, and instability [4–9]. Therefore,
studies on NN dynamics that incorporate either constant or time-varying delays are nec-
essary. On the other hand, complex-valued and quaternion-valued NN models are im-
portant in light of their potential applications in many fields including color night vision,
radar imaging, polarized signal classification, 3D wind forecasting, and others [9–13]. Re-
cently, many important results have been published concerning different dynamics of the
complex-valued and quaternion-valued NN models [14–20]. Particularly, stability analy-
sis [14, 18–20], synchronization analysis [15], stabilizability and instabilizability analysis
[16], controllability and observability [21], optimization [22, 23], and so on.
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Clifford algebra provides a powerful theory for solving problems in geometry problems.
In addition, Clifford algebra has been applied to numerous areas of science and engineer-
ing such as neural computation, computer and robot vision, and control problems [24–
28]. In dealing with high-dimensional data and spatial geometric transformation, Clifford-
valued NN models are superior to real-valued, complex-valued, and quaternion-valued
NN models [26–29]. Recently, theoretical and applied studies on Clifford-valued NN mod-
els have become a new research subject. However, the dynamic properties of Clifford-
valued NN models are usually more complex than those of real-valued, complex-valued
and quaternion-valued NN models. Due to the issue of non-commutativity of multiplica-
tion with respect to Clifford numbers, studies on Clifford-valued NN dynamics are still
limited [30–39].

By using the linear matrix inequality approach, the authors in [30] derived the global ex-
ponential stability criteria for delayed Clifford recurrent NN models. For Clifford-valued
NN models with time delays, their global asymptotic stability problems were investigated
in [31] by a decomposition method. Using a direct approach, the presence and global ex-
ponential stability conditions pertaining to almost periodic solutions were extracted for
Clifford-valued neutral high-order Hopfield NN models with leakage delays in [34]. Us-
ing the Banach fixed point theorem and the Lyapunov functional, the global asymptotic
almost periodic synchronization problems for the Clifford-valued NN cellular models
were examined in [35]. The weighted pseudo-almost automorphic solutions for neutral
type fuzzy cellular Clifford NN models were discussed in [37]. In [39], the authors ex-
plored the presence of an anti-periodic solution to the problem of Clifford-valued inertial
Cohen-Grossberg NN models by using suitable Lyapunov functional. Recently, the effects
of neutral delay and discrete delays have been considered in a class of Clifford-valued NNs
[40], and the associated existence, uniqueness and global stability criteria have been ob-
tained.

It is worth noting that many previous NNs studies focus mostly on the global stabil-
ity in the Lyapunov sense. In many real physical systems, however, the equilibrium point
may not exist. Besides, computationally restrictive and multi-stability dynamics have been
found to be necessary for dealing with critical neural computation in applications [41, 42].
As an example, when employing NN models for associative memory or pattern recogni-
tion, multiple equilibrium points are often required. In these cases, NN models are no
longer globally stable in the Lyapunov sense. In dealing with multi-stable models, more
realistic concepts of stability are necessary [43–46]. It should be noticed that in Lyapunov
stability of NN models, the existence and uniqueness of the equilibrium points are re-
quired. In contrast, the Lagrange stability, which is concerned with stability of the total
model, does not require the information of equilibrium points. Therefore, the Lagrange
stability or the attractive sets of NN models is useful, and many studies have been pub-
lished [45–48].

Motivated by the above discussions, we investigate the exponential stability in the La-
grange sense for Clifford-valued RNNs with time delays in this paper. To the best of our
knowledge, there is no result on the topic of Lagrange stability of Clifford-valued NNs.
Undoubtedly, this interesting topic is still an open challenge. Therefore, our main objec-
tive of this paper is to derive new sufficient conditions to ensure the Lagrange exponen-
tial stability for Clifford-valued RNNs. The main contributions of this work are as fol-
lows: (1) This is the first paper to study such a problem for global exponential stability
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of Clifford-valued RNN models in the Lagrange sense, which encompasses real-valued,
complex-valued, and quaternion-valued NN models as special cases. (2) By using the Lya-
punov functional and some analytical methods, new sufficient conditions for ascertaining
the exponential stability of the considered Clifford-valued RNN models in the Lagrange
sense are derived. This is achieved by decomposing the n-dimensional Clifford-valued
RNN model into 2mn-dimensional real-valued RNN models. (3) The results obtained can
be used for the study of monostable, multi-stable, and other complex NN models. In ad-
dition, the obtained results are new and different compared with those in the existing
literature. The usefulness of the obtained results is validated with two numerical exam-
ples.

We organize this paper as follows. The proposed Clifford-valued RNN model is formally
defined in Sect. 2. The new global Lagrange exponential stability criterion is presented in
Sect. 3, while two numerical examples are given in Sect. 4. The conclusions of the results
are given in Sect. 5.

2 Mathematical fundamentals and problem formulation
2.1 Notations
A is defined as the Clifford algebra and has m generators over the real number R. Let Rn

and A
n be an n-dimensional real vector space and an n-dimensional real Clifford vector

space, respectively; whileRn×n andA
n×n denote the set of all n×n real matrices and the set

of all n×n real Clifford matrices, respectively. We define the norm of Rn as ‖r‖ =
∑n

i=1 |ri|,
and for A = (aij)n×n ∈ R

n×n, denote ‖A‖ = max1≤i≤n{∑n
j=1 |aij|}. While r =

∑
A rAeA ∈ A,

denote |r|A =
∑

A |rA|, and for A = (aij)n×n ∈ A
n×n, denote ‖A‖A = max1≤i≤n{∑n

j=1 |aij|A}.
Superscripts T and ∗, respectively, denote the matrix transposition and matrix involution
transposition. For any matrix, P > 0 (< 0) denotes a positive (negative) definite matrix.
Let C C F + be the set of all nonnegative continuous functionals L : C → [0,∞). For ϕ ∈
C([–τ , 0],An), ‖ϕ‖τ ≤ sup–τ≤s≤0 ‖ϕ(t + s)‖.

2.2 Clifford algebra
The Clifford real algebra over Rm is defined as

A =
{ ∑

A⊆{1,2,...,m}
aAeA, aA ∈R

}

,

where eA = el1 el2 . . . elν with A = {l1, l2, . . . , lν}, 1 ≤ l1 < l2 < · · · < lν ≤ m.
Moreover, e∅ = e0 = 1 and el = e{l}, l = 1, 2, . . . , m, are denoted as the Clifford generators,

and they fulfill the following relations:

⎧
⎪⎪⎨

⎪⎪⎩

eiej + ejei = 0, i 
= j, i, j = 1, 2, . . . , m,

e2
i = –1, i = 1, 2, . . . , m,

e2
0 = 1.

(1)

For simplicity, when an element is the product of multiple Clifford generators, its sub-
scripts are incorporated together, e.g., e4e5e6e7 = e4567.



Rajchakit et al. Advances in Difference Equations        (2021) 2021:256 Page 4 of 21

Let � = {∅, 1, 2, . . . , A, . . . , 12 . . . m}, and we have

A =
{∑

A

aAeA, aA ∈ R

}

,

where
∑

A denotes
∑

A∈� and A is isomorphic to R
2m .

For any Clifford number r =
∑

A rAeA, the involution of r is defined by

r̄ =
∑

A

rAēA,

where ēA = (–1)
σ [A](σ [A]+1)

2 eA, and

σ [A] =

⎧
⎨

⎩

0, if A = ∅,

ν, if A = l1l2 . . . lν .

From the definition, we can directly deduce that eAēA = ēAeA = 1. For a Clifford-valued
function r =

∑
A rAeA : R → A, where rA : R → R, A ∈ �, its derivative is represented by

dr(t)
dt =

∑
A

drA(t)
dt eA.

Since eBēA = (–1)
σ [A](σ [A]+1)

2 eBeA, we can write eBēA = eC or eBēA = –eC , where eC is a ba-
sis of Clifford algebra A. As an example, el1l2 ēl2l3 = –el1l2 el2l3 = –el1 el2 el2 el3 = –el1 (–1)el3 =
el1 el3 = el1l3 . Therefore, it is possible to identify a unique corresponding basis eC for a given
eBēA. Define

σ [B.Ā] =

⎧
⎨

⎩

0, if eBēA = eC ,

1, if eBēA = –eC ,

and then, eBēA = (–1)σ [B.Ā]eC .
Moreover, for G =

∑
C G CeC ∈ A, we define G B.Ā = (–1)σ [B.Ā]G C for eBēA = (–1)σ [B.Ā]eC .

Therefore

G B.ĀeBēA = G B.Ā(–1)σ [B.Ā]eC = (–1)σ [B.Ā]G C(–1)σ [B.Ā]eC = G CeC .

2.3 Problem definition
The following Clifford-valued RNN model with discrete time-varying delays is considered:

⎧
⎨

⎩

ṙi(t) = –diri(t) +
∑n

j=1 aijhj(rj(t)) +
∑n

j=1 bijhj(rj(t – τj(t))) + ui, t ≥ 0,

ri(s) = ϕi(s), s ∈ [–τ , 0],
(2)

where i, j = 1, 2, . . . , n, and n corresponds to the number of neurons; ri(t) ∈ A represents
the state vector of the ith unit; di ∈R

+ indicates the rate with which the ith unit will reset
its potential to the resting state in isolation when it is disconnected from the network and
external inputs; aij, bij ∈ A indicate the strengths of connection weights without and with
time-varying delays between cells i and j, respectively; ui ∈ A is an external input on the
ith unit; hj(·) : An →A

n is the activation function of signal transmission; τj(t) corresponds
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to the transmission delay which satisfies 0 ≤ τj(t) ≤ τ , where τ is a positive constant and
τ = max1≤j≤n{τj(t)}. Furthermore, ϕi ∈ C([–τ , 0],An) is the initial condition for NN model
(1).

For convenience of discussion, we rewrite (1) in the vector form

⎧
⎨

⎩

ṙ(t) = –Dr(t) + Ah(r(t)) + Bh(r(t – τ (t))) + U , t ≥ 0, t 
= tk ,

r(s) = ϕ(s), s ∈ [–τ , 0],
(3)

where r(t) = (r1(t), r2(t), . . . , rn(t))T ∈ A
n; D = diag{d1, d2, . . . , dn} ∈ R

n with di > 0, i =
1, 2, . . . , n; and A = (aij)n×n ∈ A

n×n; B = (bij)n×n ∈ A
n×n; U = (u1, u2, . . . , un)T ∈ A

n;
h(r(t)) = (h1(r1(t)), h2(r2(t)), . . . , hn(rn(t)))T ∈ A

n; h(r(t – τ (t))) = (h1(r1(t – τ (t))), h2(r2(t –
τ (t))), . . . , hn(rn(t – τ (t))))T ∈A

n.
(A1) Function hj(·) fulfills the Lipschitz continuity condition with respect to the n-

dimensional Clifford vector. For each j = 1, 2, . . . , n, there exists a positive constant kj such
that, for any x, y ∈ A,

∣
∣hj(x) – hj(y)

∣
∣
A

≤ kj|x – y|A, j = 1, 2, . . . , n, (4)

where kj (j = 1, 2, . . . , n) is known as the Lipschitz constant and hj(0) = 0. In addition, there
exists a positive constant kj such that |h(x)|A ≤ kj for any x ∈A.

According to Assumption (A1), it is clear that

(
h(x) – h(y)

)∗(h(x) – h(y)
) ≤ (x – y)∗KTK(x – y), (5)

where K = diag{k1, k2, . . . , kn}.

Remark 2.1 There exists a constant kj > 0 (j = 1, 2, . . . , n) such that ∀x = (x1, x2, . . . , x2m )T ∈
R

2m and ∀y = (y1, y2, . . . , y2m )T ∈R
2m

∣
∣hA

j (x) – hA
j (y)

∣
∣ ≤ kj

2m
∑

�=1

|x� – y�|, A ∈ �, j = 1, 2, . . . n.

Remark 2.2 The proposed system model in this paper is more general than the system
model proposed in previous works [4, 6, 19]. For example, when we consider m = 0 in NN
model (3), then the model can be reduced to the real-valued NN model proposed in [4].
If we take m = 1 in NN model (3), then the model can be reduced to the complex-valued
NN model proposed in [6]. If we choose m = 2 in NN model (3), then the model can be
reduced to the quaternion-valued NN model proposed in [19].

3 Main results
In order to overcome the issue of non-commutativity of multiplication of Clifford num-
bers, we transform the original Clifford-valued model (3) into multidimensional real-
valued model. This can be achieved with the help of eAēA = ēAeA = 1 and eBēAeA = eB. Given
any G ∈A, unique G C that is able to satisfy G CeChAeA = (–1)σ [B.Ā]G ChAeB = G B.ĀhAeB can
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be identified. By decomposing (3) into ṙ =
∑

A ṙAeA, we have

⎧
⎨

⎩

ṙA(t) = –DrA(t) +
∑

B AA.B̄hB(r(t)) +
∑

B BA.B̄hB(r(t – τ (t))) + UA, t ≥ 0,

rA(s) = ϕA(s), s ∈ [–τ , 0], A, B ∈ �,
(6)

where

r(t) =
∑

A∈�

rA(t)eA,

U =
∑

A∈�

UAeA,

hB(
r(t)

)
=

(
hB

1
(
rC1

1 (t), rC2
1 (t), . . . , rC2m

1 (t)
)
, hB

2
(
rC1

2 (t), rC2
2 (t), . . . , rC2m

2 (t)
)
,

. . . , hB
n
(
rC1

n (t), rC2
n (t), . . . , rC2m

n (t)
))T ,

hB(
r
(
t – τ (t)

))
= (hB

1
(
rC1

1
(
t – τ (t)

)
, rC2

1
(
t – τ (t)

)
, . . . , rC2m

1
(
t – τ (t)

))
,

hB
2
(
rC1

2
(
t – τ (t)

)
, rC2

2
(
t – τ (t)

)
, . . . , rC2m

2
(
t – τ (t)

))
,

. . . , hB
n
(
rC1

n
(
t – τ (t)

)
, rC2

n
(
t – τ (t)

)
, . . . , rC2m

n
(
t – τ (t)

))
)T ,

A =
∑

C∈�

ACeC , AA.B̄ = (–1)σ [A.B̄]AC ,

B =
∑

C∈�

BCeC , BA.B̄ = (–1)σ [A.B̄]BC ,

AA.B̄ =
(
aA.B̄

ij
)

n×n, BA.B̄ =
(
bA.B̄

ij
)

n×n,

eAēB = (–1)σ [A.B̄]eC .

Corresponding to the basis of Clifford algebra, the Clifford-valued NN model can be re-
formulated into novel real-valued ones. Define

r̃(t) =
((

r0(t)
)T ,

(
r1(t)

)T , . . . ,
(
rA(t)

)T , . . . ,
(
r12...m(t)

)T)T ∈R
2mn,

h̃
(
r̃(t)

)
=

((
h0(r(t)

))T ,
(
h1(r(t)

))T , . . . ,
(
hA(

r(t)
))T , . . . ,

(
h12...m(

r(t)
))T)T ∈R

2mn,

h̃
(
r̃
(
t – τ (t)

))
=

((
h0(r

(
t – τ (t)

)))T ,
(
h1(r

(
t – τ (t)

)))T , . . . ,
(
hA(

r
(
t – τ (t)

)))T , . . . ,
(
h12...m(

r
(
t – τ (t)

)))T)T ∈R
2mn,

Ũ =
((
U0)T ,

(
U1)T , . . . ,

(
UA)T , . . . ,

(
U12...m)T)T ∈ R

2mn,

D̃ =

⎛

⎜
⎜
⎜
⎜
⎝

D 0 . . . 0
0 D . . . 0
...

...
. . .

...
0 0 . . . D

⎞

⎟
⎟
⎟
⎟
⎠

2mn×2mn

,

Ã =

⎛

⎜
⎜
⎜
⎜
⎝

A0 A1 . . . AA . . . A12...m

A1 A1·1 . . . A1·A . . . A1·12...m

...
... · · · ... · · · ...

A12...m A12...m·1 . . . A12...m·A . . . A12...m·12...m

⎞

⎟
⎟
⎟
⎟
⎠

2mn×2mn

,
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B̃ =

⎛

⎜
⎜
⎜
⎜
⎝

B0 B1 . . . BA . . . B12...m

B1 B1·1 . . . B1·A . . . B1·12...m

...
... · · · ... · · · ...

B12...m B12...m·1 . . . B12...m·A . . . B12...m·12...m

⎞

⎟
⎟
⎟
⎟
⎠

2mn×2mn

,

and then (6) can be written as

˙̃r(t) = –D̃r̃(t) + Ãh̃
(
r̃(t)

)
+ B̃h̃

(
r̃
(
t – τ (t)

))
+ Ũ , t ≥ 0, (7)

with the initial value

r̃(s) = ϕ̃(s), s ∈ [–τ , 0], (8)

where ϕ̃(s) = ((ϕ0(s))T , (ϕ1(s))T , . . . , (ϕA(s))T , . . . , (ϕ12...m(s))T )T ∈R
2mn.

In addition, notice that (4) can be expressed as the following inequality:

(
h̃(r̃1) – h̃(r̃2)

)T(
h̃(r̃1) – h̃(r̃2)

) ≤ (r̃1 – r̃2)TK̃T (r̃1 – r̃2), (9)

where

K̃ =

⎛

⎜
⎜
⎜
⎜
⎝

KTK 0 . . . 0
0 KTK . . . 0
...

...
. . .

...
0 0 . . . KTK

⎞

⎟
⎟
⎟
⎟
⎠

2mn×2mn

.

Definition 3.1 ([47]) NN model (7) is said to be uniformly stable in the Lagrange sense if,
for any β > 0, there exists a constant L = L(β) > 0 such that ‖r̃(t, ϕ̃)‖ < L for any ϕ̃ ∈ Cβ =
{ϕ̃ ∈ C([–τ , 0],R2m ) | ‖ϕ̃‖ ≤ β} and t ≥ 0.

Definition 3.2 ([47]) Given a radially unbounded and positive definite function V(·), a
nonnegative continuous function L(·), and two constants ρ > 0 and υ > 0 such that, for
any solution r̃(t) of NN model (7), V(t) > ρ implies

V(t) – ρ ≤ L(ϕ̃)e–υt

for any t ≥ 0 and ϕ̃ ∈ Cβ . Then NN (7) is said to be globally exponentially attractive (GEA)
with respect to V(t), and the compact set � = {r̃(t) ∈ R

2mn|V(t) ≤ ρ} is said to be a GEA
set of NN model (7).

Definition 3.3 ([47]) NN model (7) is globally exponentially stable in the Lagrange sense
if it is both uniformly stable in the Lagrange sense and is globally exponentially attractive.
If there is a need to emphasize the Lyapunov-like function, NN model (7) becomes globally
exponentially stable in the Lagrange sense with respect to V .

Lemma 3.4 ([47]) For positive definite matrix P ∈R
2mn×2mn, positive real constant ε, and

x, y ∈R
2mn, it holds that xT y + yT x ≤ εxTPx + ε–1yTPy.
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Lemma 3.5 ([47]) Given S =
(S11 S12
S21 S22

) ∈R
2mn with ST

11 = S11, ST
22 = S22, ST

12 = S21, this is
equivalent to one of the following conditions: (i) S22 < 0, S11 – S12S–1

22 ST
12 < 0, (ii) S11 < 0,

S22 – ST
12S–1

11 S12 < 0.

Lemma 3.6 ([47]) Suppose that there exists ς1 > ς2 > 0, r̃(t) which satisfies D+r̃(t) ≤
–ς1r̃(t) + ς2 ˜̄r(t), a nonnegative continuous quantity function for all t ∈ [t0 – τ , t0], then
r̃(t) ≤ ˜̄r(t0)e(–λ(t–t0)) holds for any t ≥ t0, where ˜̄r(t) = supt–τ≤s≤t r̃(s), τ ≥ 0, and λ is the
unique positive root of λ = ς1 – ς2eλτ .

Lemma 3.7 ([47]) Given matrices E ∈ R
2mn×2mn, F ∈ R

2mn×2mn, G ∈ R
2mn×2mn, H ∈

R
2mn×2mn, and appropriate reversible matrices X , Y , then

(
E
F

)

X –1

(
E
F

)T

+

(
G
H

)

Y–1

(
G
H

)T

=

(
E G
F H

)(
X –1 0

0 Y–1

)(
E G
F H

)T

.

Lemma 3.8 ([48]) Given positive constants β and γ and suppose V (t) ∈ C([0, +∞),R), in
which

D+V (t) ≤ –βV (t) + γ , t ≥ 0,

then

V (t) –
γ

β
≤

(

V (0) –
γ

β

)

e–βt , t ≥ 0.

If V (t) ≥ γ

β
, t ≥ 0, then V (t) exponentially approaches γ

β
as t increases.

3.1 Exponential stability
Theorem 3.9 Under Assumption (A1), if there exist positive definite matrices P ,R,S ∈
R

2mn×2mn, positive diagonal matrices C,Q ∈R
2mn×2mn such that the following LMI hold:

⎛

⎜
⎜
⎜
⎝

� PÃ – D̃C PB̃ P
ÃTP – CTD̃ CÃ + ÃTC – Q CB̃ C

B̃TP B̃TC –R 0
P CT 0 –S

⎞

⎟
⎟
⎟
⎠

< 0, (10)

K̃RK̃≤ P , (11)

where � = P + CK̃ – PD̃ – D̃TP + K̃QK̃, then NN model (7) is globally exponentially
stable in the Lagrange sense. Moreover, the set

� =
{

r̃ ∈R
2mn

∣
∣
∣r̃T (t)P r̃(t) ≤ ŨTSŨ

ε

}

(12)

is a globally exponentially attractive set of NN model (7), where ε is a proper positive con-
stant.
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Proof Consider the following Lyapunov function which is positive definite and radially
unbounded

V(t) = r̃T (t)P r̃(t) + 2
n∑

i=1

ci

∫ r̃i(t)

0
h̃i(s) ds. (13)

Then, the Dini derivative D+V(t) can be computed along the solutions of NN model (7),
we get

D+V(t) = 2r̃T (t)P ˙̃r(t) + 2h̃T(
r̃(t)

)
C ˙̃r(t)

= 2r̃T (t)P
(
–D̃r̃(t) + Ãh̃

(
r̃(t)

)
+ B̃h̃

(
r̃
(
t – τ (t)

))
+ Ũ

)

+ 2h̃T(
r̃(t)

)
C
(
–D̃r̃(t) + Ãh̃

(
r̃(t)

)
+ B̃h̃

(
r̃
(
t – τ (t)

))
+ Ũ

)

= 2
(
r̃T (t)P + h̃T(

r̃(t)
)
C
)(

–D̃r̃(t) + Ãh̃
(
r̃(t)

))
+ 2

(
r̃T (t)PB̃

+ h̃T(
r̃(t)

)
CB̃

)
h̃
(
r̃
(
t – τ (t)

))
+ 2

(
r̃T (t)P + h̃T(

r̃(t)
)
C
)
Ũ . (14)

There exists a positive diagonal matrix Q, and through Assumption (A1) we have

2
(
r̃T (t)P + h̃T(

r̃(t)
)
C
)(

–D̃r̃(t) + Ãh̃
(
r̃(t)

))

≤ –2r̃T (t)(PD̃)r̃(t) + 2r̃T (t)(PÃ – D̃C)h̃
(
r̃(t)

)

+ 2h̃T(
r̃(t)

)
(CÃ)h̃

(
r̃(t)

)
+ r̃T (t)KQKr̃(t) – h̃T(

r̃(t)
)
Qh̃

(
r̃(t)

)

=

(
r̃(t)

h̃(r̃(t))

)T (
–PD̃ – D̃TP + KQK PÃ – D̃C

ÃTP – CTD̃ CÃ + ÃTC – Q

)(
r̃(t)

h̃(r̃(t))

)

. (15)

Using Assumption (A1) and Lemma 3.4, there exist positive defined matrices R and S
such that the following inequalities are true:

2
(
r̃T (t)PB̃ + h̃T(

r̃(t)
)
CB̃

)
h̃
(
r̃
(
t – τ (t)

))

≤ (
r̃T (t)PB̃ + h̃T(

r̃(t)
)
CB

)
R–1(r̃T (t)PB̃ + h̃T(

r̃(t)
)
CB̃

)T

+ h̃T(
r̃
(
t – τ (t)

))
Rh̃

(
r̃
(
t – τ (t)

))

≤
(

r̃(t)
h̃(r̃(t))

)T (
PB̃
CB̃

)

R–1

(
PB̃
CB̃

)T (
r̃(t)

h̃(r̃(t))

)

+ rT(
t – τ (t)

)
K̃RK̃r

(
t – τ (t)

)
, (16)

and

2
(
r̃T (t)P + h̃T(

r̃(t)
)
C
)
Ũ

≤ (
r̃T (t)P + h̃T(

r̃(t)
)
C
)
S–1(r̃T (t)P + h̃T(

r̃(t)
)
C
)T + ŨTSŨ

≤
(

r̃(t)
h̃(r̃(t))

)T (
P
C

)

S–1

(
P
C

)T (
r̃(t)

h̃(r̃(t))

)

+ ŨTSŨ . (17)
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Through Lemma 3.7 and (14)–(17), we have

D+V(t) ≤
(

r̃(t)
h̃(r̃(t))

)T (
–PD̃ – D̃TP + K̃QK̃ PÃ – D̃C

ÃTP – CD̃ CÃ + ÃTC – Q

)

×
(

r̃(t)
h̃(r̃(t))

)

+

(
r̃(t)

h̃(r̃(t))

)T (
PB̃
CB̃

)

R–1

(
PB̃
CB̃

)T (
r̃(t)

h̃(r̃(t))

)

+ rT(
t – τ (t)

)
K̃RK̃r

(
t – τ (t)

)
+

(
r̃(t)

h̃(r̃(t))

)T (
P
C

)

S–1

×
(
P
C

)T (
r̃(t)

h̃(r̃(t))

)

+ ŨTSŨ

=

(
r̃(t)

h̃(r̃(t))

)T

�1

(
r̃(t)

h̃(r̃(t))

)

+

(
r̃(t)

h̃(r̃(t))

)T

�2

(
r̃(t)

h̃(r̃(t))

)

+ rT(
t – τ (t)

)
K̃RK̃r

(
t – τ (t)

)
+ ŨTSŨ , (18)

where

�1 =

(
–PD̃ – D̃TP + K̃QK̃ PÃ – D̃C

ÃTP – CTD̃ CÃ + ÃTC – Q

)

and

�2 =

(
PB̃ P
CB̃ C

)(
R–1 0

0 S–1

)(
PB̃ P
CB̃ C

)T

.

There exists ε > 0, and from (10) we have

⎛

⎜
⎜
⎜
⎝

�̃ PÃ – D̃C PB̃ P
ÃTP – CTD̃ CÃ + ÃTC – Q CB̃ C

B̃TP B̃TC –R 0
P CT 0 –S

⎞

⎟
⎟
⎟
⎠

< 0, (19)

where �̃ = (1 + ε)(P + CK) – PD̃ – D̃TP + K̃QK̃.
According to Lemma 3.5, we have

(
(1 + ε)(P + CK) – PD̃ – D̃TP + K̃QK̃ PÃ – D̃C

ÃTP – CTD̃ CÃ + ÃTC – Q

)

+

(
PB̃ P
CB̃ C

)(
R–1 0

0 S–1

)(
PB̃ P
CB̃ C

)T

< 0.

This indicates that

�1 + �2 <

(
–(1 + ε)(P + CK) 0

0 0

)

. (20)
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By combining (11), (18), and (20), we have

D+V(t) ≤ –(1 + ε)r̃T (t)(P + CK)r̃(t)

+ rT(
t – τ (t)

)
K̃RK̃r

(
t – τ (t)

)
+ ŨTSŨ . (21)

Through (A1) and (13), we have

V(t) ≤ r̃T (t)(P + CK)r̃(t), t ≥ 0. (22)

From (21) and (22), we have

D+V(t) ≤ –(1 + ε)V(t) + Ṽ(t) + ŨTSŨ , t ≥ 0, (23)

where Ṽ(t) = supt–τ≤s≤t V(s).
According to (23), we have

D+(
V(t) – ϑ

) ≤ –(1 + ε)
(
V(t) – ϑ

)
+ Ṽ(t) – ϑ , t ≥ 0, (24)

where ϑ = ŨTSŨ
ε

.
We can derive V(t) – ϑ ≤ (Ṽ (t) – ϑ)e–λt from Lemma 3.6, where λ is the unique positive

root of λ = (1 + ε) – eλt .
As such, NN model (7) is globally exponentially stable in the Lagrange sense, and the set

� =
{

r̃ ∈R
2mn

∣
∣
∣r̃T (t)P r̃(t) ≤ ŨTSŨ

ε

}

is a globally exponentially attractive set of NN model (7). The proof of Theorem 3.9 is
completed. �

Now we have the following Corollary 3.10.

Corollary 3.10 Under (A1), if there exist positive definite matrices P ,R,S ∈ R
2mn×2mn,

positive diagonal matrix Q ∈R
2mn×2mn such that the following LMI hold:

⎛

⎜
⎜
⎜
⎝

�̂ PÃ PB̃ P
ÃTP –Q 0 0
B̃TP 0 –R 0
P 0 0 –S

⎞

⎟
⎟
⎟
⎠

< 0, (25)

K̃RK̃≤ P , (26)

where �̂ = P –PD̃–D̃TP +K̃QK̃. As such, NN model (7) is globally exponentially stable
in the Lagrange sense. Moreover, the set

� =
{

r̃ ∈R
2mn

∣
∣
∣r̃T (t)P r̃(t) ≤ ŨTSŨ

ε

}

is a globally exponentially attractive set of NN model (7).
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Proof Consider the following Lyapunov function which is positive definite and radially
unbounded:

V(t) = r̃T (t)P r̃(t). (27)

Corollary 3.10 can be proven by applying a similar approach pertaining to Theorem 3.9.
So, the proof is omitted here. �

Corollary 3.11 Suppose that the activation function hi(·) is bounded, i.e., |hi(·)|A ≤ ki,
where ki (i = 1, 2, . . . , n) is a positive constant, then NN (6) is globally exponentially stable
in the Lagrange sense. Moreover, the compact set

�̃1 =

{

rA
∣
∣
∣

n∑

i=1

∑

A

1
2
(
rA

i (t)
)2 ≤

∑n
i=1 N 2

i /μi

2 min1≤i≤n(di – μi)
, where 0 < μi < di

}

(28)

is the globally exponentially attractive set of (6), where

N〉 =
1
2

( n∑

i=1

n∑

j=1

∑

A

∑

B

(∣
∣aA.B̄

ij
∣
∣ +

∣
∣bA.B̄

ij
∣
∣
)
kj +

∣
∣uA

i
∣
∣

)

.

Proof First of all, we prove that NN model (6) is uniformly stable in the Lagrange sense.
Consider the following Lyapunov function which is positive definite and radially un-
bounded:

V(t) =
1
2

n∑

i=1

∑

A

(
rA

i (t)
)2. (29)

Let 0 < μi < di (i = 1, 2, . . . , n). Then the Dini derivative D+V(t) can be computed along the
positive half trajectory of NN model (6), and we have

D+V(t)|(6) =
n∑

i=1

∑

A

(
rA

i (t)
)(

ṙA
i (t)

)

=
n∑

i=1

∑

A

(
rA

i (t)
)
(

–di
(
rA

i (t)
)

+
n∑

j=1

∑

B

aA.B̄
ij hA

j
(
rj(t)

)

+
n∑

j=1

∑

B

bA.B̄
ij hA

j
(
rj
(
t – τj(t)

))
+ uA

i

)

≤ –
n∑

i=1

∑

A

di
(
rA

i (t)
)2 +

n∑

i=1

n∑

j=1

∑

A

∑

B

∣
∣aA.B̄

ij
∣
∣
∣
∣hA

j
(
rj(t)

)∣
∣
∣
∣rA

i (t)
∣
∣

+
n∑

i=1

n∑

j=1

∑

A

∑

B

∣
∣bA.B̄

ij
∣
∣
∣
∣hA

j
(
rj
(
t – τj(t)

))∣
∣
∣
∣rA

i (t)
∣
∣ +

n∑

i=1

∑

A

∣
∣uA

i
∣
∣
∣
∣rA

i (t)
∣
∣

≤ –
n∑

i=1

∑

A

di
(
rA

i (t)
)2 +

n∑

i=1

n∑

j=1

∑

A

∑

B

∣
∣aA.B̄

ij
∣
∣kj

∣
∣rA

i (t)
∣
∣
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+
n∑

i=1

n∑

j=1

∑

A

∑

B

∣
∣bA.B̄

ij
∣
∣kj

∣
∣rA

i (t)
∣
∣ +

n∑

i=1

∑

A

∣
∣uA

i
∣
∣
∣
∣rA

i (t)
∣
∣

= –
n∑

i=1

∑

A

di
(
rA

i (t)
)2 +

n∑

i=1

n∑

j=1

∑

A

∑

B

(∣
∣aA.B̄

ij
∣
∣kj +

∣
∣bA.B̄

ij
∣
∣kj +

∣
∣uA

i
∣
∣
)∣
∣rA

i (t)
∣
∣

= –
n∑

i=1

∑

A

di
(
rA

i (t)
)2 +

n∑

i=1

∑

A

2Ni
∣
∣rA

i (t)
∣
∣

≤ –
n∑

i=1

∑

A

di
(
rA

i (t)
)2 +

n∑

i=1

∑

A

μi
(
rA

i (t)
)2 +

n∑

i=1

N 2
i

μi

≤ – min
1≤i≤n

{di – μi}
n∑

i=1

∑

A

(
rA

i (t)
)2 +

n∑

i=1

N 2
i

μi

= –2 min
1≤i≤n

{di – μi}V(t) +
n∑

i=1

N 2
i

μi
. (30)

Through Lemma 3.8, for any t ≥ 0, we have

V(t) – ρ ≤ (
V(0) – ρ

)
e–υt , (31)

where ρ =
∑n

i=1 N 2
i /μi

2 min1≤i≤n(di–μi)
and υ = 2 min1≤i≤n{di – μi}.

This ensures that the solution of NN model (6) is uniformly bounded. Hence, NN model
(6) is uniformly stable in the Lagrange sense. Observe that

V(0) – ρ ≤ V(0) =
1
2

n∑

i=1

∑

A

(
rA

i (0)
)2,

=
1
2

n∑

i=1

∑

A

(
ϕA

i (0)
)2 �L

(
ϕA)

.

Then L ∈ C C F +, and (31) implies that, for any t ≥ 0,

V(t) – ρ ≤ L
(
ϕA)

e–υt . (32)

Through Definition 3.2, NN model (6) is globally exponentially stable and �̃1 is a globally
exponentially attractive set. This proves the global exponential stability in the Lagrange
sense of NN model (6). �

Corollary 3.12 If the activation function hi(·) is bounded, i.e., |hi(·)|A ≤ ki, where ki (i =
1, 2, . . . , n) is a positive constant, then NN (6) is globally exponentially stable in the Lagrange
sense. Moreover, the compact set

�̃2 =

{

rA
∣
∣
∣

n∑

i=1

∑

A

∣
∣rA

i (t)
∣
∣ ≤

n∑

i=1

Mi

min1≤i≤n di

}

(33)
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is a globally exponentially attractive set of NN model (6), where

Mi =
n∑

i=1

n∑

j=1

∑

A

∑

B

((∣
∣aA.B̄

ij
∣
∣ +

∣
∣bA.B̄

ij
∣
∣
)
kj +

∣
∣uA

i
∣
∣
)
.

Proof We first prove that �̃2 is a globally exponentially attractive set. We employ the pos-
itive definite and radially unbounded Lyapunov function

V(t) =
n∑

i=1

∑

A

∣
∣rA

i (t)
∣
∣. (34)

Then the Dini derivative D+V(t) can be computed along the positive half trajectory of NN
model (6), and we have

D+V(t)|(6) =
n∑

i=1

∑

A

ṙA
i (t) sign

{
rA

i (t)
}

=
n∑

i=1

∑

A

[

–dirA
i (t) +

n∑

j=1

∑

B

aA.B̄
ij hB

j
(
rj(t)

)
+

n∑

j=1

∑

B

bA.B̄
ij hB

j
(
rj
(
t – τj(t)

))

+ uA
i

]

sign
{

rA
i (t)

}

≤
n∑

i=1

∑

A

[

–di
∣
∣rA

i (t)
∣
∣ +

n∑

j=1

∑

B

∣
∣aA.B̄

ij
∣
∣
∣
∣hA

j
(
rj(t)

)∣
∣

+
n∑

j=1

∑

B

∣
∣bA.B̄

ij
∣
∣
∣
∣hA

j
(
rj
(
t – τj(t)

))∣
∣ +

∣
∣uA

i
∣
∣

]

≤ –
n∑

i=1

∑

A

di
∣
∣rA

i (t)
∣
∣ +

n∑

i=1

n∑

j=1

∑

A

∑

B

(∣
∣aA.B̄

ij
∣
∣kj +

∣
∣bA.B̄

ij
∣
∣kj +

∣
∣uA

i
∣
∣
)

≤ – min
1≤i≤n

di

n∑

i=1

∑

A

∣
∣rA

i (t)
∣
∣ +

n∑

i=1

Mi

= – min
1≤i≤n

diV(t) +
n∑

i=1

Mi. (35)

Similarly, we infer that �̃2 is a globally exponentially attractive set by Lemma 3.8 and Def-
inition 3.2. Thus, the proof procedure is omitted. �

Remark 3.13 It is worth mentioning that the Clifford number multiplication does not sat-
isfy commutativity, which complicates the investigation of Clifford-valued NNs’ dynam-
ics. On the other hand, the method of decomposition is very successful in overcoming
the difficulty of non-commutative Clifford numbers multiplication. Recent authors have
obtained sufficient conditions for global stability and periodic solutions of Clifford-valued
NN models by using the decomposition method [31, 33, 35, 39, 40].

Remark 3.14 In [30–39], the authors studied the global asymptotic stability or global ex-
ponential stability and periodic solutions of Clifford-valued NN models in the Lyapunov
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sense. Compared with some previous studies of Clifford-valued NN models [30–40], in
this paper, for the first time we have derived new sufficient conditions with respect to
the global exponential stability in the Lagrange sense for a class of Clifford-valued NNs.
Therefore, the proposed results in this paper are different and new compared with those
in the existing literature [30–40].

4 Numerical examples
Two numerical examples are presented to demonstrate the feasibility and effectiveness of
the results established in Sect. 3.

Example 1 For m = 2 and n = 2, a two-neuron Clifford-valued NN model can be described
by

ṙ(t) = –Dr(t) + Ah
(
r(t)

)
+ Bh

(
r
(
t – τ (t)

))
+ U , t ≥ 0. (36)

The multiplication generators are: e2
1 = e2

2 = e2
12 = e1e2e12 = –1, e1e2 = –e2e1 = e12, e1e12 =

–e12e1 = –e2, e2e12 = –e12e2 = e1, ṙ1 = ṙ0
1e0 + ṙ1

1e1 + ṙ2
1e2 + ṙ12

1 e12, ṙ2 = ṙ0
2e0 + ṙ1

2e1 + ṙ2
2e2 + ṙ12

2 e12.
Furthermore, we take

D =

(
10 0
0 10

)

, K =

(
1
4 0
0 1

4

)

,

A =

(
0.2e0 + e1 0.1e0 + 0.3e2 + 0.6e12

0.05e0 – 0.2e2 + 0.4e12 0.1e0 + 0.2e1 + 0.05e12

)

,

B =

(
0.3e0 + 0.01e1 0.1e0 + 0.02e2 + 0.3e12

0.05e0 – 0.2e2 + 0.05e12 0.2e0 + 0.2e1 + 0.05e12

)

,

U =

(
0.2e0 – 0.4e1 + 0.1e2 + 0.6e12

0.3e0 + 0.8e1 – 0.5e2 – 0.2e12

)

.

According to their definitions, we have

A0 =

(
0.2 0.1

0.05 0.1

)

, A1 =

(
1 0
0 0.2

)

,

A2 =

(
0 0.3

–0.2 0

)

, A12 =

(
0 0.6

0.4 0.05

)

,

B0 =

(
0.3 0.1

0.05 0.2

)

, B1 =

(
0.01 0

0 0.2

)

,

B2 =

(
0 0.02

–0.2 0

)

, B12 =

(
0 0.3

0.05 0.05

)

,
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and

Ã =

⎛

⎜
⎜
⎜
⎝

A0 A1̄ A2̄ A1̄2

A1 A1.1̄ A1.2̄ A1.1̄2

A2 A2.1̄ A2.2̄ A2.1̄2

A12 A12.1̄ A12.2̄ A12.1̄2

⎞

⎟
⎟
⎟
⎠

,

=

⎛

⎜
⎜
⎜
⎝

A0 –A1 –A2 –A12

A1 A0 –A12 A2

A2 A12 A0 –A1

A12 –A2 A1 A0

⎞

⎟
⎟
⎟
⎠

,

B̃ =

⎛

⎜
⎜
⎜
⎝

B0 B1̄ B2̄ B1̄2

B1 B1.1̄ B1.2̄ B1.1̄2

B2 B2.1̄ B2.2̄ B2.1̄2

B12 B12.1̄ B12.2̄ B12.1̄2

⎞

⎟
⎟
⎟
⎠

,

=

⎛

⎜
⎜
⎜
⎝

B0 –B1 –B2 –B12

B1 B0 –B12 B2

B2 B12 B0 –B1

B12 –B2 B1 B0

⎞

⎟
⎟
⎟
⎠

.

Then we choose the activation function for NN model (36) as follows: h1(r) = h2(r) = 1
4 (|r +

1| – |r – 1|) for all r = r0e0 + r1e1 + r2e2 + r12e12. It is obvious that the function satisfies
(A1) with k1 = k2 = 0.25. Let the time-varying delay τ (t) = 0.4| cos(t)| + 0.2 with τ = 0.6
and ε = 0.6. By using MATLAB, the LMI conditions of (10), (11) in Theorem 3.9 are true
with tmin = –0.1027. The feasible solutions of the existing positive definite matrices are as
follows:

P =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

5.0730 –0.0021 –0.0050 –0.0028 –0.0004 0.0167 0 –0.0054
–0.0021 5.0974 0.0023 0.0015 –0.0197 0 0.0053 0
–0.0050 0.0023 5.0754 –0.0022 0 –0.0111 –0.0004 –0.0195
–0.0028 0.0015 –0.0022 5.0986 0.0108 –0.0000 0.0167 0
–0.0004 –0.0197 0 0.0108 5.0757 –0.0022 0.0049 –0.0024
0.0167 0 –0.0111 0 –0.0022 5.0987 0.0028 –0.0013

0 0.0053 –0.0004 0.0167 0.0049 0.0028 5.0731 –0.0021
–0.0054 0 –0.0195 0 –0.0024 –0.0013 –0.0021 5.0981

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

R =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

22.4397 0.0464 –0.0134 –0.0123 –0.0043 –0.0028 0 –0.1101
0.0464 22.3761 0.0106 –0.0175 0.1232 –0.0007 0.1090 0

–0.0134 0.0106 22.4221 0.0463 0 –0.0920 –0.0054 0.1209
–0.0123 –0.0175 0.0463 22.3900 0.0880 –0.0001 –0.0028 –0.0007
–0.0043 0.1232 0 0.0880 22.4274 0.0463 0.0120 –0.0116
–0.0028 –0.0007 –0.0920 –0.0001 0.0463 22.3901 0.0122 0.0185

0 0.1090 –0.0054 –0.0028 0.0120 0.0122 22.4397 0.0464
–0.1101 0 0.1209 –0.0007 –0.0116 0.0185 0.0464 22.3758

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

S =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

35.9175 0.0030 –0.0014 –0.0005 0 0.0009 0 –0.0057
0.0030 35.9200 0.0004 –0.0001 0.0068 0 0.0056 0

–0.0014 0.0004 35.9192 0.0030 0 –0.0059 0 0.0066
–0.0005 –0.0001 0.0030 35.9181 0.0059 0 0.0009 0

0 0.0068 0 0.0059 35.9192 0.0030 0.0014 –0.0004
0.0009 0 –0.0059 0 0.0030 35.9181 0.0005 0.0001

0 0.0056 0 0.0009 0.0014 0.0005 35.9175 0.0031
–0.0057 0 0.0066 0 –0.0004 0.0001 0.0031 35.9197

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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Figure 1 The time responses of states r01(t), r
0
2(t) of NN model (36)

Figure 2 The time responses of states r11(t), r
1
2(t) of NN model (36)

and the positive diagonal matrices C = diag{2.5673, 2.5579, 2.5666, 2.5626, 2.5665, 2.5627,
2.5674, 2.5580}, and Q = diag{49.1714, 49.0520, 49.0625, 49.1578, 49.0658, 49.1574,
49.1719, 49.0450}. Calculating the eigenvalues of P , we have 5.0600, 5.0600, 5.0648,
5.0649, 5.1072, 5.1074, 5.1127, and 5.1130. Therefore, we establish that NN model (7)
is globally exponentially stable in the Lagrange sense, and the set

� =
{

r̃ ∈R
2mn

∣
∣
∣r̃T (t)P r̃(t) ≤ 58.9174

ε

}

is a globally exponentially attractive set of model (7) corresponding to Theorem 3.9, where
0 < ε ≤ 0.2491.

It is straightforward to verify that all conditions of Theorem 3.9 are fulfilled. Under 20
randomly selected initial values, the time responses of the states r0

1(t), r0
2(t), r1

1(t), r1
2(t),

r2
1(t), r2

2(t), r12
1 (t), and r12

2 (t) of model (36) are presented in Figures 1 to 4, respectively.

Example 2 Consider the Clifford-valued NN model (36) with the following parameters:

D =

(
2.2 0
0 2.4

)

,
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Figure 3 The time responses of states r21(t), r
2
2(t) of NN model (36)

Figure 4 The time responses of states r121 (t), r122 (t) of NN model (36)

A =

(
0.5e0 + 0.1e1 0.1e0 + 0.3e2 + 0.6e12

0.5e0 – 0.1e1 + 0.3e12 0.3e0 + 0.1e1 + 0.5e12

)

,

B =

(
0.1e0 + 0.2e1 + 0.5e2 0.3e0 + 0.1e2 + 0.4e12

0.6e0 – 0.2e1 + 0.3e12 0.4e0 + 0.1e12

)

,

U =

(
0.2e0 – 0.1e1 + 0.2e2 + 0.1e12

0.1e0 + 0.3e1 + 0.1e2 – 0.2e12

)

.

We choose the activation function of NN model (36) as follows: h1(r) = h2(r) = 1
2 (|r + 1| –

|r – 1|) for all r = r0e0 + r1e1 + r2e2 + r12e12. It is obvious that the function satisfies (A1)
with k1 = k2 = 0.5. The time-varying delay is considered as τ (t) = 0.2| cos(t)| + 0.03 with
τ = 0.23. Besides, it is easy to obtain d1 = 2.2, d2 = 2.4, aA.B̄

11 = 0.6, aA.B̄
12 = 0.9, aA.B̄

21 = 0.7,
aA.B̄

22 = 0.9, bA.B̄
11 = 0.8, bA.B̄

12 = 0.8, bA.B̄
21 = 0.7, bA.B̄

22 = 0.5, u1 = 0.4, u2 = 0.3.
Select μ1 = μ2 = 0.6 to satisfy 0 < μi < di (i = 1, 2). To obtain our global exponential

attractive set, we firstly calculateNi = 1
2 (

∑n
i=1

∑n
j=1

∑
A
∑

B(|aA.B̄
ij |+ |bA.B̄

ij |)kj + |uA
i |), i = 1, 2.

Furthermore, we calculate N1 = 1
2 (

∑2
j=1

∑
A
∑

B(|aA.B̄
1j | + |bA.B̄

1j |)kj + |uA
1 |) = 0.975 and N2 =

1
2 (

∑2
j=1

∑
A
∑

B(|aA.B̄
2j |+ |bA.B̄

2j |)kj + |uA
2 |) = 0.85. Then we obtain the set from Corollary 3.11:

�̃2 = {rA|∑A
(rA

1 (t))2+(rA
2 (t))2

2 ≤ 0.8714}.
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5 Conclusions
In this paper, the global exponential stability problem for Clifford-valued RNN models
with time-varying delays in the Lagrange sense has been examined with the use of Lya-
punov functional and LMI methods. The sufficient conditions have been obtained by de-
composing the n-dimensional Clifford-valued RNN model into a 2mn-dimensional real-
valued RNN model to ensure the global exponential stability of the considered NN model
in the Lagrange sense. Furthermore, the estimated global exponentially attractive set has
been obtained. In addition, the validity and feasibility of the results obtained have been
demonstrated with two numerical examples. The results obtained in this paper can be
further extended to other complex systems. We will be exploring the stabilizability and
instabilizability analysis of Clifford-valued NN models with the help of various control
systems. The corresponding results will be carried out in the near future.
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