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Abstract
The constant elasticity of substitution (CES for short) is a basic property widely used in
some areas of economics that involves a system of second-order nonlinear partial
differential equations. One of the most remarkable results in mathematical economics
states that under homogeneity condition i.e. the production function is a
homogeneous function of a certain degree, there are no other production models
with the CES property apart from the famous Cobb–Douglas and
Arrow–Chenery–Minhas–Solow production functions. In this paper we generalize this
classification result to a much wider framework of production functions under
quasi-homogeneity conditions, showing in particular the existence of three new
classes of production models with the CES property.
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1 Introduction
A fundamental concept used in the modeling of a production process P is that of pro-
duction function. Let us denote by n the number of inputs involved in the production
process (n ≥ 2), by x1, . . . , xn the factors of production (i.e. inputs - whatever is used in
the production process P , like natural resources, labor, capital, and entrepreneur), and by
f the resulting output of the process P . If R+ is the set of all real positive numbers and
R

n
+ = {(x1, . . . , xn) ∈ R

n : x1, . . . , xn > 0}, then a function f : Rn
+ → R+ with non-vanishing

first derivatives, defined by f = f (x1, . . . , xn), is said to be the production function associ-
ated with the production process P .

One of the most important economic indicators used in the analysis of changes in the
income shares of inputs is the Hicks elasticity of substitution (HES) independently intro-
duced by Hicks [1] and Robinson [2]. For two distinct inputs xi and xj (i, j ∈ {1, . . . , n}),
this economic indicator, usually denoted by Hij, is defined for all combinations of inputs
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(x1, . . . , xn) ∈R
n
+ by

Hij(x1, . . . , xn) =
1

xifxi
+ 1

xjfxj

– fxixi
f 2
xi

+
2fxixj
fxi fxj

–
fxjxj
f 2
xj

, (1)

where fxi , fxixj , . . . , etc. denote the partial derivatives ∂f
∂xi

, ∂2f
∂xi ∂xj

, . . . , etc. If the relation

Hij(x1, . . . , xn) = σ (2)

holds for all combinations of inputs (x1, . . . , xn) ∈R
n
+ and for all i, j ∈ {1, . . . , n}, i �= j, where

σ is a nonzero real constant, then f is said to have the CES property.
Notice that there are two important production models exhibiting the CES property

widely utilized in economics (see for instance the recent works [3–7]). The first one is
the Cobb–Douglas (CD) production function introduced in [8] for two inputs (labor and
capital). In the general case of n inputs, the CD production function is defined by [9–11]

f (x1, . . . , xn) = A ·
n∏

i=1

xαi
i ,

where A > 0 and α1, . . . ,αn �= 0.
A second production function having the CES property is the Arrow–Chenery–

Minhas–Solow (ACMS) production function originally introduced in [12] in order to
generalize the CD production function. In the case of n inputs, the ACMS production
function is given by [13–15]

f (x1, . . . , xn) = A

( n∑

i=1

kρ
i xρ

i

) γ
ρ

,

where A, k1, . . . , kn,γ > 0, ρ < 1, ρ �= 0. We recall that the CD production function can be
recovered from the ACMS production function as a limit case (see [16]).

It is known that for a CD production function we have Hij(x1, . . . , xn) = 1, while for an
ACMS production function we have Hij(x1, . . . , xn) = 1

1–ρ
�= 1.

Notice that both CD and ACMS production models are homogeneous functions. There
is a remarkable result in economic theory stating that, under homogeneity condition i.e.
the production function is a homogeneous function of some degree, there are no other
two-factor production models exhibiting the CES property apart from CD and ACMS
production functions [12]. A complete proof of this result can be found in Losonczi (see
[17, Theorem 10]), the precise statement being the following.

Theorem 1.1 ([17]) Let f : R2
+ → R+ be a twice differentiable production function with

two inputs, homogeneous of degree q �= 0. If f satisfies the constant elasticity of substitution
property (2) for a nonzero real constant σ , then

f (x, y) =

⎧
⎨

⎩
Cxαyq–α if σ = 1,

(β1x
q
β + β2y

q
β )β if σ �= 1,
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where α is any nonzero real constant with q – α �= 0, C, β1, β2 are positive constants, and
β = qσ

σ–1 .

We remark that the condition q �= 0 in the above theorem is a natural one, since in the
case q = 0 the Hicks elasticity of substitution is indeterminate (see [17, Remark 10]). The
generalization of Theorem 1.1 for an arbitrary number of production factors was obtained
by the second author of the present work in [18, Theorem 1]. It is important to note that
this interesting result is no longer true for other classes of production models. For example,
it has recently been demonstrated that in the class of composite production functions, also
known as quasi-product production models [19, 20], there are four different production
functions with the CES property (see [21, Theorem 4.1]).

By weakening the property of homogeneity to quasi-homogeneity, we arrive at some
more general production models, known as quasi-homogeneous (in short QH) models.
It is worth mentioning that this broader property for production models was first pro-
posed by Eichhorn and Oettli [22], and the importance of QH models has been further
highlighted in various works (see e.g. [23, Sect. 6.2], [24, Chap. 12], [25–27]). Recently, in
[28, 29], the authors studied such models with two inputs, deriving their analytical expres-
sion in case of unit elasticity of substitution. Moreover, such models with n inputs (n ≥ 2)
were investigated in [30]; the authors classified QH models with proportional marginal
rate of substitution property and also those that exhibit a constant elasticity of produc-
tion with respect to a settled factor of production. We recall that a production function
f : Rn

+ → R+ is called a weight-homogeneous (shortly WH) or a QH production function
having degree q and weight vector g = (g1, . . . , gn) ∈R

n, where g2
1 + · · · + g2

n �= 0, if it satisfies

f
(
λg1 x1, . . . ,λgn xn

)
= λqf (x1, . . . , xn) (3)

for all points (x1, . . . , xn) ∈ R
n
+ and all λ > 0. It is obvious that in the particular case when

the weight vector is (1, . . . , 1), a QH function having degree q reduces to a q-homogeneous
function. More generally, a QH function having degree q and equal weights (g, . . . , g) is
again a homogeneous function, but now the degree of homogeneity is q

g . Obviously, the
class of QH functions is considerably larger than that of homogeneous functions. For in-
stance, the function f defined by

f (x1, x2, . . . , xn) =
n–1∑

i=1

αix
1
i

i x
1

i+1
i+1 ,

where α1, . . . ,αn–1 are arbitrary positive constants, provides us a very simple example of
QH production model with q = 2 and g = (1, 2, . . . , n), which clearly is not homogeneous.

We note that property (3) mathematically models a precise economic situation encoun-
tered in a production process when a multiplication of the inputs with different powers of
an identical factor leads to a multiplication of the output by a power of the same factor.
This situation can occur when it is not possible to identically multiply all the factors of
production due to the lack of one or more physical inputs.

It is also worth mentioning that a differentiable function f depending on the variables
x1, x2, . . . , xn, n ≥ 2, is quasi-homogeneous having degree q and weights (g1, . . . , gn) if and



Alodan et al. Advances in Difference Equations        (2021) 2021:257 Page 4 of 13

only if the following identity is satisfied [31, 32]:

n∑

i=1

gixifxi = qf . (4)

Notice that (4) is known as the generalized Euler identity and its general solution is [30]

f (x1, . . . , xn) = x
q
gi
i h

((
xgi

1

xg1
i

)
, . . . ,

(
xgi

i–1

xgi–1
i

)
,
(

xgi
i+1

xgi+1
i

)
, . . . ,

(
xgi

n

xgn
i

))
, (5)

where i is any index from the set {1, . . . , n} such that gi �= 0, and h is any differentiable
function that depends on (n – 1) variables.

The aim of this work is to establish the next result that generalizes the well-known clas-
sification of homogeneous production models exhibiting the CES property to the much
wider class of weight-homogeneous production functions.

Theorem 1.2 Suppose that f is a twice differentiable QH production function having de-
gree q �= 0 and weights (g1, . . . , gn). Then:

(i) f exhibits unitary elasticity of substitution, that is, f meets condition (2) for σ = 1, if
and only if the function f reduces to a CD production model expressed as

f (x1, . . . , xn) = Axα1
1 xα2

2 · . . . · xαn
n , (6)

where A and αi �= 0 are real constants such that A > 0, αi �= 0, i = 1, . . . , n, and∑n
i=1 αigi = q.

(ii) If n = 2, then f satisfies the constant elasticity of substitution property for a nonzero
real constant σ �= 1 if and only if one of the next situations occurs:
a. f reduces to a production model expressed by

f (x1, x2) =
(

a
σ–1
σ

1 x
σ–1
σ

1

a
σ–1
σ

2 x
σ–1
σ

2 + 1

) σq
(σ–1)g1

, (7)

where a1, a2 are positive constants, provided that g2 = 0.
b. f reduces to a production model given by

f (x1, x2) =
(

a
σ–1
σ

2 x
σ–1
σ

2

a
σ–1
σ

1 x
σ–1
σ

1 + 1

) σq
(σ–1)g2

, (8)

where a1, a2 are positive constants, provided that g1 = 0.
c. f reduces to a two-input ACMS production model expressed by

f (x1, x2) =
(
a

σ–1
σ

1 x
σ–1
σ

1 + a
σ–1
σ

2 x
σ–1
σ

2
) σq

(σ–1)g1 , (9)

where a1, a2 are positive constants, provided that g1 = g2.
d. f reduces to a production model expressed by

f (x1, x2) = Ax
q

g2
2 e

V (
xg2

1
xg1

2
)
, (10)



Alodan et al. Advances in Difference Equations        (2021) 2021:257 Page 5 of 13

where A is a positive constant and V is an antiderivative of the function v of
variable u = xg2

1
xg1

2
defined implicitly by the identity

[
1 –

q
g2(g1 – g2)

· 1
uv(u)

]g1–g2

= Bu
σ–1
σ

[
1 –

q
g1g2

· 1
uv(u)

]g1

, (11)

for some positive constant B, provided that g1g2 �= 0 and g1 �= g2.

2 Proof of Theorem 1.2
Suppose that f is a QH production function having degree q and weights (g1, . . . , gn). Then
the generalized Euler identity (4) holds. Differentiating now this identity with respect to
each variable xi, i = 1, . . . , n, due to the fact that f is twice differentiable, we derive

gixifxixi +
∑

j �=i

gjxjfxixj = (q – gi)fxi , i = 1, . . . , n. (12)

(i) We assume first that f satisfies the CES property for σ = 1. Then we obtain from (1)
and (2) that

xjfxixj =
1
2

(
fxi +

xj

xi
fxj

)
+

xj

2

(
fxj

fxixi

fxi

+ fxi

fxjxj

fxj

)
(13)

for 1 ≤ i < j ≤ n.
Then, substituting (13) in (12) and using (4), we find

fxixi

fxi

· qf
2fxi

+
1
2

n∑

j=1

gjxj
fxjxj

fxj

= q –
1
2

n∑

j=1

gj –
qf

2xifxi

(14)

for i = 1, . . . , n.
Considering now (14) as a system of n equations with n unknowns fx1x1

fx1
, . . . , fxnxn

fxn
, we

obtain

fxixi

fxi

=
fxi

f
–

1
xi

, i = 1, . . . , n (15)

and replacing (15) in (13), we get

fxixj =
fxi fxj

f
, 1 ≤ i < j ≤ n. (16)

Following the proof of [18, Theorem 1 (Case (a))], we derive that the solution of (15)
and (16) is

f (x1, . . . , xn) = Axα1
1 xα2

2 · . . . · xαn
n ,

where αi �= 0, i = 1, . . . , n, and A > 0. Now, taking into account that the function f given
above is a QH production function having the degree q and weights (g1, . . . , gn), it follows
immediately that the constants α1, . . . ,αn satisfy the relation

∑n
i=1 αigi = q. Hence we con-

clude that indeed f is the CD model expressed by (6).
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Conversely, if f is a CD production function expressed by (6), then it is well known that
f has unit elasticity of substitution.

(ii) If n = 2, then taking i = 1 and i = 2 in (12), we derive

g1x1fx1x1 + g2x2fx1x2 = (q – g1)fx1 (17)

and

g2x2fx2x2 + g1x1fx1x2 = (q – g2)fx2 . (18)

Suppose that f satisfies the CES property for σ �= 1. Then we obtain from (1) and (2) that

fx1x2 =
1

2σ

(
fx1

x2
+

fx2

x1

)
+

1
2

(
fx2

fx1x1

fx1
+ fx1

fx2x2

fx2

)
. (19)

Replacing now (19) in (17) and (18), and using also the generalized Euler identity, we
find

fxixi

fxi

· qf
2fxi

+
1
2

2∑

j=1

gjxj
fxjxj

fxj

= q – gi –
1

2σ

2∑

j=1

gj +
gi

σ
–

qf
2σxifxi

(20)

for i = 1, 2.
From (20), we obtain after some straightforward computation that fx1x1

fx1
and fx2x2

fx2
can be

expressed as

fxixi

fxi

= αixi

(
fxi

f

)2

+ βi

(
fxi

f

)
–

1
σxi

, i = 1, 2, (21)

where

α1 =
g1(g1 – g2)

q2 · σ – 1
σ

, α2 =
g2(g2 – g1)

q2 · σ – 1
σ

, (22)

β1 = 1 +
g2 – 2g1

q
· σ – 1

σ
, β2 = 1 +

g1 – 2g2

q
· σ – 1

σ
. (23)

Now, it is easy to see that (21) can be written as

fxixi

f
= αixi

(
fxi

f

)3

+ βi

(
fxi

f

)2

–
1

σxi

fxi

f
, i = 1, 2, (24)

and inserting (24) in (19) we derive

2f · fx1x2

fx1 fx2
= β1 + β2 + α1

x1fx1

f
+ α2

x2fx2

f
. (25)

We can split now the proof into two cases, as follows.
Case 1: g1 · g2 = 0. As the weights g1 and g2 cannot be simultaneously 0, it follows in this

case that either g1 �= 0 and g2 = 0, or g2 �= 0 and g1 = 0.
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Suppose first that g1 �= 0 and g2 = 0. Then it is clear from (22) and (23) that

α1 =
g2

1 (σ – 1)
σq2 , α2 = 0, β1 = 1 –

2g1

q
, β2 = 1 +

g1(σ – 1)
σq

, (26)

and, in view of (5), we derive that f can be written as

f (x1, x2) = x
q

g1
1 h

(
xg1

2
)

for a twice differentiable function h, or equivalently

f (x1, x2) = x
q

g1
1 H(x2), (27)

where H(x2) := h(xg1
2 ).

We first remark that, due to (26), the function f given by (27) automatically satisfies (24)
for i = 1, regardless of the function H . Taking now i = 2 in (24), in view of (26), we obtain

fx2x2

f
=

[
1 +

g1(σ – 1)
σq

](
fx2

f

)2

–
1

σx2

fx2

f
. (28)

Inserting (27) in (28), we derive

H ′′(x2)
H(x2)

=
[

1 +
g1(σ – 1)

σq

][
H ′(x2)
H(x2)

]2

–
1

σx2

H ′(x2)
H(x2)

, (29)

where the symbol “′” stands for the derivative with respect to x2.
Next, with the help of the substitution

Z(x2) =
H ′(x2)
H(x2)

, (30)

we get that (29) reduces to a first-order differential equation, namely

Z′(x2) =
g1(σ – 1)

σq
Z2(x2) –

1
σx2

Z(x2). (31)

As the above equation is generalized homogeneous, we can use the substitution

Z(x2) =
W (x2)

x2
(32)

in order to reduce (31) to a separable first-order differential equation:

x2W ′(x2) =
g1(σ – 1)

σq

[
W 2(x2) +

q
g1

W (x2)
]

. (33)

We can easily solve (33), obtaining the solution

W (x2) =
q
g1

Cx
σ–1
σ

2

1 – Cx
σ–1
σ

2

, (34)

where C is a positive constant.
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Now, from (30), (32), and (34), we derive the solution of (29):

H(x2) = D
(
1 – Cx

σ–1
σ

2
)– σq

(σ–1)g1 , (35)

where D is a positive constant.
Next, using (27) and (35), we obtain the solution of (28):

f (x1, x2) = Dx
q

g1
1

[
1 – Cx

σ–1
σ

2
]– σq

(σ–1)g1 .

If we denote

A = –C · D– (σ–1)g1
σq , B = D– (σ–1)g1

σq ,

then we can write f as

f (x1, x2) =
(
Bx– σ–1

σ
1 + Ax– σ–1

σ
1 x

σ–1
σ

2
)– σq

(σ–1)g1 ,

and it is easy to check that the production function f obtained above satisfies also (25).
Hence we conclude that in this case f can be expressed by (7). Conversely, if f is a produc-
tion model expressed by (7), then a direct computation shows that f has the elasticity of
substitution σ .

If we suppose now that g1 = 0 and g2 �= 0, in a similar way we conclude that f can be
expressed by (8). Conversely, if the production model f is given by (8), then we can check
by a straightforward computation that f has the elasticity of substitution σ .

Case 2: g1 · g2 �= 0. We can distinguish now two sub-subcases, according to whether α1

is 0 or not.
Subcase 2.1: α1 = 0. Then it follows that g1 = g2 �= 0, and from (22) and (23) we obtain

αi = 0, βi = 1 +
g1(1 – σ )

σq
, i = 1, 2.

By taking i = 1 in (24) and making the substitution

z(x1, x2) =
fx1 (x1, x2)
f (x1, x2)

, (36)

one arrives at the following first-order partial differential equation:

zx1 =
g1(1 – σ )

σq
z2 –

1
σx1

z.

The above equation is generalized homogeneous with respect to x1 and the substitution

z(x1, x2) =
w(x1, x2)

x1
(37)

leads to the next simpler form:

x1wx1 =
g1(1 – σ )

σq
w2 +

(
1 –

1
σ

)
w. (38)
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Using the method of characteristics, we find that the solution of (38) is

w(x1, x2) = –
q
g1

· C(x2)x
σ–1
σ

1

1 – C(x2)x
σ–1
σ

1

, (39)

where C is a function of variable x2.
Hence, using (36), (37), and (39), we find that the solution of (24) for i = 1 is

f (x1, x2) = D(x2)
[
1 – C(x2)x

σ–1
σ

1
] σq

(σ–1)g1 ,

where D is a function of variable x2. Next, using the notations

A(x2) = –C(x2)D(x2)
(σ–1)g1

σq , B(x2) = D(x2)
(σ–1)g1

σq ,

we can write f in the form

f (x1, x2) =
[
A(x2)x

σ–1
σ

1 + B(x2)
] σq

(σ–1)g1 . (40)

Taking now into account that in this subcase f has the property

f
(
λgx1,λgx2

)
= λqf (x1, x2),

for all (x1, x2) ∈R
2
+ and λ > 0, we derive from (40) that

A(x2) = A, B(x2) = Bx
σ–1
σ

2 ,

where A and B are nonzero real constants. Therefore we get

f (x1, x2) =
(
Ax

σ–1
σ

1 + Bx
σ–1
σ

2
) σq

(σ–1)g1 ,

and it is easy to check that the production function f obtained above also satisfies (24) for
i = 2, as well as (25).

Hence we conclude that in this subcase f is an ACMS production function expressed
by (9). Conversely, if f is an ACMS production function expressed by (9), then it is well
known that f has the elasticity of substitution σ .

Subcase 2.2: α1 �= 0. Then we have g1 �= g2, and since g2 �= 0, it follows from (5) that f can
be written as

f (x1, x2) = x
q

g2
2 h(u) (41)

for a function h of variable u = xg2
1

xg1
2

, which is twice differentiable. Next we denote by the
prime symbol “′” the derivative taken with respect to u. Then from (41) we obtain

fx1 = g2
x

q
g2
2

x1
uh′, (42)
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fx2 = x
q

g2
–1

2

(
q
g2

h – g1uh′
)

, (43)

fx1x2 = g2
x

q
g2

–1
2
x1

[(
q
g2

– g1

)
uh′ – g1u2h′′

]
, (44)

and

fx2x2 = x
q

g2
–2

2

[
q
g2

(
q
g2

– 1
)

h + g1

(
g1 –

2q
g2

+ 1
)

uh′ + g2
1 u2h′′

]
. (45)

By replacing now (41), (42), (43), (44), (45) in (24) and (25), and taking account of (22)
and (23), after some long and tedious computations we arrive in all cases at the same
second-order differential equation:

u
(

h′′

h

)
=

g1g2(g1 – g2)(σ – 1)
σq2 u2

(
h′

h

)3

+
σq – (σ – 1)(2g1 – g2)

σq
u
(

h′

h

)2

+
σ – 1 – σ g2

σ g2

(
h′

h

)
. (46)

Using the substitution

v(u) =
h′(u)
h(u)

, (47)

one obtains that (46) reduces to the next first-order differential equation:

v′ =
g1g2(g1 – g2)(σ – 1)u

σq2 v3 –
(σ – 1)(2g1 – g2)

σq
v2 +

σ – 1 – σ g2

σ g2u
v. (48)

We remark that (48) is a particular type of Abel equation of the first kind [33, 34] inves-
tigated in [35] by employing a transformation originally introduced by Kamke [36]. Next,
with the help of the substitution

w(u) = u · v(u), (49)

we derive that (48) reduces to a separable first-order differential equation:

uw′ =
g1g2(g1 – g2)(σ – 1)

σq2 w
(

w –
q

g2(g1 – g2)

)(
w –

q
g1g2

)
. (50)

Now we can easily obtain the solution of (50) in the implicit form

wg2

(
w –

q
g2(g1 – g2)

)g1–g2(
w –

q
g1g2

)–g1

= Bu
σ–1
σ , (51)

where B represents any positive constant.
Next, using (47), (49), and (51), we deduce that

h(u) = A · e
∫

v(u) du (52)
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for a positive constant A, where v satisfies the following functional identity:

(
1 –

q
g2(g1 – g2)

· 1
uv

)g1–g2(
1 –

q
g1g2

· 1
uv

)–g1

= Bu
σ–1
σ . (53)

Finally, from (41), (52), and (53), we get that the solution of (24) and (25) is

f (x1, x2) = Ax
q

g2
2 e

∫
v(u) du,

which is a production model expressed by (10), where v is a function of the variable u = xg2
1

xg1
2

satisfying (11). Conversely, if f is given by (10) such that the relation (11) is satisfied, then
a direct computation shows that f has the elasticity of substitution σ .

3 Closing remarks
There is a fundamental result in economic theory stating that there are only two homo-
geneous production models with the CES property, namely CD and ACMS production
functions. This work deals with weight-homogeneous production models, proving the
existence of three new production functions exhibiting the CES property and therefore
generalizing the main results of [12, 17, 18, 28, 29]. The new classification obtained in
the present work will certainly have implications in the further development and use of
production models in theoretical and applied economics.

We note that the proof of assertion (i) in Theorem 1.2 concerning the classification of
quasi-homogeneous production functions with n inputs (n ≥ 2) and unit elasticity of sub-
stitution follows the arguments from [18, Theorem 1], but the methods developed in [18]
cannot be applied if the elasticity of substitution is a nonzero constant different from 1,
even in the particular setting of two inputs. For this reason, in the proof of assertion (ii)
we used an interplay of standard and non-standard techniques in order to manipulate the
original system of second-order nonlinear partial differential equations with the help of
generalized Euler equation. After some very long and tedious calculations involving a se-
ries of substitutions, we finally arrived at some basic differential equations and discussed
the validity of obtained solutions in accordance with the quasi-homogeneity hypothesis
on the production model. Finally, it is important to point out that our method of proof in
Theorem 1.2(ii) does not work if the number of inputs is n ≥ 3. Consequently, an open
and very challenging problem is the generalization of Theorem 1.2(ii) to the case of more
than two production factors.
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