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Abstract
In this work, we study the oscillatory behavior of even-order neutral delay differential
equations υn(l) + b(l)u(η(l)) = 0, where l ≥ l0, n ≥ 4 is an even integer and
υ = u + a(u ◦ μ). By deducing a new iterative relationship between the solution and
the corresponding function, new oscillation criteria are established that improve
those reported in (T. Li, Yu.V. Rogovchenko in Appl. Math. Lett. 61:35–41, 2016).
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1 Introduction
In this paper, we consider the even-order neutral differential equations

υn(t) + b(t)u
(
η(t)

)
= 0, (1.1)

where t ≥ t0 > 0, n ≥ 4 is an even natural number and υ := u + a · (u ◦ μ). Moreover, we
suppose a, b,η,μ ∈ C([t0,∞),R), 0 < a(t) ≤ a0, b(t) ≥ 0, μ(t) ≤ t, b(t) is not identically
zero for large t, and limt→∞ μ(t) = limt→∞ η(t) = ∞.

By a solution of Eq. (1.1), we mean a function u ∈ C([t∗,∞),R), t∗ ≥ t0, which has the
property υ ∈ Cn([t0,∞),R), and u(t) satisfies Eq. (1.1) on [t∗,∞). We only focus on solu-
tions of Eq. (1.1), which exist on [t0,∞) and satisfy

sup
{∣∣u(t)

∣
∣ : tu ≤ t

}
> 0 for every t ≥ tu.

As is customary, a solution of Eq. (1.1) is said to be oscillatory if it is neither eventually
positive nor eventually negative on [t0,∞) and otherwise, it is termed nonoscillatory.

The importance of studying neutral delay differential equations comes from their emer-
gence when modeling many phenomena in different applied sciences, see [2, 3]. The qual-
itative theory of various classes of neutral differential equations has become an important
area of research due to the fact that such equations arise in a variety of real world prob-
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lems such as in the study of non-Newtonian fluid theory and porous medium problems;
see [4].

Very recently, a great development was found in the study of the oscillatory properties
of solutions of second order neutral-delay differential equations; see for examples [5–17].
It would be interesting to extend this development to higher-order differential equations.

In 2016, Li and Rogovchenko [1] studied the oscillatory behavior of solutions of neutral
delay equation (1.1). They used an approach similar to that used in [18], and established
the relationship between u and υ to have the form

u(t) ≥ 1
a(μ–1(t))

(
υ
(
μ–1(t)

)
–

υ(μ–1(μ–1(t)))
a(μ–1(μ–1(t)))

)
. (1.2)

By using the comparison with the first-order delay equations, they obtained improved
criteria over the previous ones in the literature.

In this paper, by improving the relationship (1.2), we establish a new criterion that im-
proves the results in [1]. An example is given to illustrate the importance of our results.

In order to discuss our main results, we need the following auxiliary lemmas.

Lemma 1.1 ([19]) Assume that ψ ∈ Cn([t0,∞), (0,∞)) and ψ (n)(t)ψ (n–1)(t) ≤ 0 for t ≥ t1.
If limt→∞ ψ(t) 	= 0, then there exists a tλ ∈ [t1,∞) such that

ψ(t) ≥ λ

(n – 1)!
tn–1∣∣ψ (n–1)(t)

∣∣, (1.3)

for all t ∈ [tλ,∞) and λ ∈ (0, 1).

Lemma 1.2 ([20]) Assume that the ψ ∈ C(k+1)([t0,∞)) with ψ (i)(t) > 0 for i = 0, 1, 2, . . . , k
and ψ (k+1)(t) ≤ 0 for all t ≥ t1. Then there exists a tλ ∈ [t1,∞) such that

h(t)
h′(t)

≥ λt
k

,

for all t ∈ [tλ,∞) and λ ∈ (0, 1).

Lemma 1.3 ([21]) If ψ ∈ Cn([t0,∞), (0,∞)), ψ (n)(t) is eventually of one sign for large t,
then there exist a tu ≥ t0 and an integer t ∈ [0, n] with (–1)n+tψ (n)(t) ≥ 0, such that t > 0
yields

ψ (k)(t) > 0, t ≥ tu, k = 0, 1, . . . , t – 1,

and

t ≤ n – 1 yields (–1)t+kψ (k)(t) > 0, t ≥ tu, k = t, t + 1, . . . , n – 1.

2 Main results
Through this section, we will be using the next notation: μ[–1] := μ–1, μ–[h+1] := μ–1 ◦μ–[h]

for h = 1, 2, . . . ,

ã(t) :=
n/2∑

k=1

1
∑2k–1

m=1 a(μ–[m](t))

(
1 –

1
a(μ–[2k](t))

(
μ–[2k](t)

μ–[2k–1](t)

)(n–1)/λ0)
,
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â(t) :=
n/2∑

k=1

1
∑2k–1

m=1 a(μ–[m](t))

(
1 –

1
a(μ–[2k](t))

(
μ–[2k](t)

μ–[2k–1](t)

)1/λ2)
,

and

B(t) = min
{

b
(
η–1(t)

)
, b

(
η–1(μ(t)

))}
,

where n is an even positive integer and λ1,λ2 ∈ (0, 1).

Lemma 2.1 Assume that u is an eventually positive solution. Then, we have two cases for
the derivatives of υ as

(1) υ(t) > 0, υ ′(t) > 0, υ ′′(t) > 0, υ(n–1)(t) > 0;

(2) υ(t) > 0, (–1)k+1υ(k)(t) > 0 for all k ∈ {1, 2, . . . , n – 3}.

Proof From the definition of υ , we get that υ(t) > 0 for large t. From Eq. (1.1), υ(n)(t) ≤ 0.
Based on the facts that n is even and υn(t) ≤ 0, cases (1) and (2) are deduced directly from
Lemma 1.3. �

Theorem 2.1 Assume that μ′(t) > 0 and there exists an even integer m such that

1
a(μ–[2k](t))

(
μ–[2k](t)

μ–[2k–1](t)

)(n–1)/λ0

≤ 1, (2.1)

for all k = 1, 2, . . . , n/2. Suppose that there exist functions χ ∈ C1([t0,∞),R) and κ ∈
C1([t0,∞),R) satisfying

κ(t) ≤ η(t), κ(t) < μ(t), lim
t→∞κ(t) = ∞ (2.2)

and

χ (t) ≤ η(t), χ (t) < μ(t), χ ′(t) ≥ 0, lim
t→∞χ (t) = ∞. (2.3)

If there exist λi ∈ (0, 1), i = 0, 1, 2, such that the first-order delay equations

G′(t) +
λ1

(n – 1)!
b(t)̃a

(
η(t)

)(
μ–1(

κ(t)
))n–1G

(
μ–1(

κ(t)
))

= 0 (2.4)

and

φ′(t) +
λ2

(n – 3)!
μ–1(χ (t)φ(μ–1(χ (t)

)∫ ∞

t
(s – 3)n–3b(s)̂a

(
η(s)

)
ds = 0 (2.5)

are oscillatory, every solution of Eq. (1.1) is oscillatory.

Proof Assume that Eq. (1.1) has an eventually positive solution u. It follows from (1.1) that
υn(t) = –b(t)u(η(t)) ≤ 0. Thus, using Lemma 2.1, we see that there are two cases for the
derivatives of υ for large t, either (1) or (2).
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Assume that (1) holds. Since υ is an increasing positive function, we obtain
limt→∞ υ(t) 	= 0. Therefore, by virtue of Lemma 1.1, we get

υ(t) ≥ λ

(n – 1)!
t(n–1)υ(n–1)(t), (2.6)

for every λ ∈ (0, 1) and for all large t. It follows from the definition of υ(t) that

u(t) =
1

a(μ–1(t))
(
υ
(
μ–1(t)

)
– u

(
μ–1(t)

))

and

u(t) =
υ(μ–1(t)
a(μ–1(t))

–
1

a(μ–1(t))

(
υ(μ–1(μ–1(t)))
a(μ–1(μ–1(t)))

–
u(μ–1(μ–1(t)))
a(μ–1(μ–1(t)))

)
.

If we repeat the previous procedure, then there exists an even positive integer n such that

u(t) =
n∑

k=1

(–1)k+1

∑k
m=1 a(μ–[m](t))

υ
(
μ–[k](t)

)
+

1
∑n

m=1 a(τ–[m](t))
u
(
μ–[n](t)

)

≥
n∑

k=1

(–1)k+1

∑k
m=1 a(μ–[m](t))

υ
(
μ–[k](t)

)

≥
n/2∑

k=1

1
∑2k–1

m=1 a(μ–[m](t))

(
υ
(
μ–[2k–1](t)

)
–

1
a(μ–[2k](t))

υ
(
μ–[2k](t)

))
. (2.7)

Now, using Lemma 1.2, we obtain

υ(t)
υ ′(t)

≥ λ0t
n – 1

,

for all λ0 ∈ (0, 1) and t ≥ t1, and so

(
υ(t)

t(n–1)/λ0

)′
=

υ ′(t)
t(n–1)/λ0

–
n – 1
λ0

υ(t)
t(n–1)/λ0+1

=
tυ ′(t) – n–1

λ0
υ(t)

t(n–1)/λ0+1 ≤ 0. (2.8)

Taking into account that μ(t) ≤ t, we get μ–[2k–1](t) ≤ μ–[2k](t). Thus, from (2.8), we find

υ
(
μ–[2k](t)

) ≤ υ
(
μ–[2k–1](t)

)
(

μ–[2k](t)
μ–[2k–1](t)

)(n–1)/λ0

,

which with (2.7) gives

u(t) ≥
n/2∑

k=1

1
∑2k–1

m=1 a(μ–[m](t))

×
(

1 –
1

a(μ–[2k](t))

(
μ–[2k](t)

μ–[2k–1](t)

)(n–1)/λ0)
υ
(
μ–[2k–1](t)

)
. (2.9)
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Since υ ′(t) > 0 and μ–[2k–1](t) > μ–1(t), we have that υ(μ–[2k–1](t)) > υ(μ–1(t)) for all k =
1, 2, . . . , n/2. Therefore, (2.9) becomes

u(t) ≥ υ
(
μ–1(t)

) n/2∑

k=1

1
∑2k–1

m=1 a(μ–[m](t))

(
1 –

1
a(μ–[2k](t))

(
μ–[2k](t)

μ–[2k–1](t)

)(n–1)/λ0)

= ã(t)υ
(
μ–1(t)

)
,

which, with the facts that κ(t) ≤ η(t) and μ′(t) > 0, gives

u
(
η(t)

) ≥ ã
(
η(t)

)
υ
(
μ–1(η(t)

)) ≥ ã
(
η(t)

)
υ
(
μ–1(

κ(t)
))

.

Then, Eq. (1.1) will become

υn(t) + b(t)̃a
(
η(t)

)
υ
(
μ–1(

κ(t)
)) ≤ 0. (2.10)

Now, using Lemma 1.1, we arrive at

υ(t) ≥ λ1

(n – 1)!
tn–1υ(n–1)(t), (2.11)

for all λ1 ∈ (0, 1). It follows from Eqs. (2.10) and (2.11) that

υn(t) +
λ1

(n – 1)!
b(t)̃a

(
η(t)

)(
μ–1(

κ(t)
))n–1

υ(n–1)(μ–1(
κ(t)

)) ≤ 0.

Clearly, G(t) := υn–1(t) is a positive solution of the first-order delay differential inequality

G′(t) +
λ1

(n – 1)!
b(t)̃a

(
η(t)

)(
μ–1(

κ(t)
))n–1G

(
μ–1(

κ(t)
)) ≤ 0. (2.12)

It follows from [22] that Eq. (2.6) also has a positive solution for all λ0,λ1 ∈ (0, 1), but this
contradicts our assumption.

Assume that (2) holds. It follows from Lemma 1.2 that

υ(t) ≥ λ2tυ ′(t), (2.13)

for all λ3 ∈ (0, 1) and t ≥ t1 ≥ t0, and so

(
υ(t)
t1/λ2

)′
=

υ ′(t)
t1/λ2

–
1
λ2

υ(t)
t(1+λ2)/λ2

=
1
λ2

λ2tυ ′(t) – υ(t)
t(1+λ2)/λ2

≤ 0.

Thus, from the fact that μ–[2k](t) ≤ μ–[2k–1](t), we conclude that

υ
(
μ–[2k](t)

) ≤
(

μ–[2k](t)
μ–[2k–1](t)

)1/λ2

υ
(
μ–[2k–1](t)

)
. (2.14)
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Combining (2.7) and (2.14), we obtain

u(t) ≥
n/2∑

k=1

1
∑2k–1

m=1 a(μ–[m](t))

×
(

1 –
1

a(μ–[2k](t))

(
μ–[2k](t)

μ–[2k–1](t)

)1/λ2)
υ
(
μ–[2k–1](t)

)
. (2.15)

Since μ–[2κ–1](t) ≥ μ–1(t) for all k = 1, 2, . . . , n/2, (2.15) becomes

u(t) ≥ â(t)υ
(
μ–1(t)

)
. (2.16)

Therefore, (1.1) will be

υn(t) + b(t)̂a
(
η(t)

)
υ
(
μ–1(η(t)

)) ≤ 0,

which, with χ (t) ≤ η(t) and υ ′(t) > 0, give

υn(t) + b(t)̂a
(
η(t)

)
υ
(
μ–1(χ (t)

)) ≤ 0. (2.17)

Integrating (2.17) from t to ∞ consecutively n–2 times and using the properties of deriva-
tives in case (2), we get

υ ′′(t) +
1

(n – 3)!
υ(μ–1(χ (t)

)∫ ∞

t
(s – 3)n–3b(s)̂a

(
η(s)

)
ds ≤ 0. (2.18)

By setting φ(t) = υ ′(t) and using (2.13), we conclude that φ(t) is a positive solution of the
first-order delay differential inequality,

φ′(t) +
λ2

(n – 3)!
μ–1(χ (t)φ(μ–1(χ (t)

)∫ ∞

t
(s – 3)n–3b(s)̂a

(
η(s)

)
ds ≤ 0. (2.19)

It follows from [22] that the Eq. (2.5) also has a positive solution, which contradicts our
assumption. Therefore, the proof of this theorem is complete. �

Corollary 2.1 Assume that there exist an even integer m and functions κ ∈ C1([t0,∞),R),
χ ∈ C1([t0,∞),R) such that (2.1)–(2.3) hold. If

lim inf
t→∞

∫ t

μ–1(κ(t))
b(s)̃a

(
η(s)

)(
μ–1(

κ(s)
))n–1 ds >

(n – 1)!
λ1e

(2.20)

and

lim inf
t→∞

∫ t

μ–1(χ (t)
μ–1(χ (
)

)(∫ ∞




(s – 3)n–3b(s)̂a
(
η(s)

)
ds

)
d
 >

(n – 3)!
λ2e

, (2.21)

for some λi ∈ (0, 1), i = 0, 1, 2, every solution of Eq. (1.1) is oscillatory.

Proof Applying a well-known criterion [23, Theorem 2] for first-order delay differential
equations (2.4) and (2.5) to be oscillatory, we obtain immediately the criteria (2.20) and
(2.21), respectively. �
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Remark 2.2 Combining Theorem 2.1 and the results reported in [24–26] for the oscilla-
tion of Eqs. (2.4) and (2.5), one can derive various oscillation criteria for Eq. (1.1).

By using a Riccati transformation, we obtain the following criterion.

Theorem 2.3 Assume that

(
η–1(t)

)′ ≥ η0 > 0, η–1(μ(t)
) ≥ t, μ′(t) ≥ μ0 > 0, (2.22)

and there exist an even integer m and a function χ ∈ C1([t0,∞),R) such that (2.1), (2.3)
and (2.21) hold. If there exist λ0 ∈ (0, 1) and a function ρ ∈ C1([t0,∞), (0,∞)) such that

lim sup
t→∞

∫ t

t1

(
η0ρ(s)B(s) –

(n – 2)!
4λ0

(
1 +

a0

μ0

)
(ρ ′(s))2

s(n–2)ρ(s)

)
ds = ∞, (2.23)

then every solution of Eq. (1.1) is oscillatory.

Proof Assume that Eq. (1.1) has an eventually positive solution u. It follows from (1.1) that
υn(t) = –b(t)u(η(t)) ≤ 0. Thus, using Lemma 2.1, we have that there are two cases for the
derivatives of υ for large t, either (1) or (2).

Assume that (1) holds. From Eq. (1.1), we obtain

1
(η–1(t))′

(
υ(n–1)(η–1(t)

))′ + b
(
η–1(t)

)
u(t) = 0 (2.24)

and

1
(η–1(μ(t)))′

(
υ(n–1)(η–1(μ(t)

)))′ + b
(
η–1(μ(t)

))
u
(
μ(t)

)
= 0. (2.25)

Combining (2.24) and (2.25), and using (2.22), we find

1
η0

(
υ(n–1)(η–1(t)

))′ +
a0

η0μ0

(
υ(n–1)(η–1(μ(t)

)))′

+ b
(
η–1(t)

)
u(t) + a0b

(
η–1(μ(t)

))
u
(
μ(t)

) ≤ 0,

and so

1
η0

(
υ(n–1)(η–1(t)

))′ +
a0

η0μ0

(
υ(n–1)(η–1(μ(t)

)))′ + B(t)
(
u(t) + a0u

(
μ(t)

)) ≤ 0.

Then,

1
η0

(
υ(n–1)(η–1(t)

)
+

a0

μ0
υ(n–1)(η–1(μ(t)

))
)′

+ B(t)υ(t) ≤ 0. (2.26)

Now, we define the Riccati transformation as

� (t) := ρ(t)
υ(n–1)(η–1(t))

υ(t)
.
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Thus, � (t) > 0 for t ≥ t1 ≥ t0, and

� ′(t) =
ρ ′(t)
ρ(t)

� (t) – ρ(t)
(

(υ(n–1)(η–1(t)))υ ′(t)
υ2(t)

–
(υ(n–1)(η–1(t)))′

υ(t)

)
. (2.27)

Using Lemma 1.1 and the fact that υ(n) ≤ 0, we arrive at

υ ′(t) ≥ λ0

(n – 2)!
tn–2υ(n–1)(t) ≥ λ0

(n – 2)!
tn–2υ(n–1)(η–1(μ(t)

))

≥ λ0

(n – 2)!
tn–2υ(n–1)(η–1(t)

)
. (2.28)

Hence, (2.27) yields

� ′(t) ≤ ρ ′(t)
ρ(t)

� (t) –
λ0

(n – 2)!
t(n–2)

ρ(t)
� 2(t) + ρ(t)

(υ(n–1)(η–1(t)))′

υ(t)
. (2.29)

Next, we define function

ω(t) := ρ(t)
υ(n–1)(η–1(μ(t)))

υ(t)
.

Then ω(t) > 0 for t ≥ t1 ≥ t0 and

ω′(t) =
ρ ′(t)
ρ(t)

ω(t) – ρ(t)
(

(υ(n–1)(η–1(μ(t))))υ ′(t)
υ2(t)

–
(υ(n–1)(η–1(μ(t))))′

υ(t)

)

≤ ρ ′(t)
ρ(t)

ω(t) –
λ0

(n – 2)!
t(n–2)

ρ(t)
ω2(t) + ρ(t)

(υ(n–1)(η–1(μ(t))))′

υ(t)
. (2.30)

Combining (2.29) and (2.30), we get

� ′(t) +
a0

μ0
ω′(t) ≤ ρ ′(t)

ρ(t)
� (t) –

λ0

(n – 2)!
t(n–2)

ρ(t)
� 2(t) +

a0

μ0

[
ρ ′(t)
ρ(t)

ω(t)

–
λ0

(n – 2)!
t(n–2)

ρ(t)
ω2(t)

]
– η0ρ(t)B(t).

Using the fact that

Hy – Ky2 ≤ 1
4

H2

K
, K > 0,

we obtain

� ′(t) +
a0

μ0
ω′(t) ≤ (n – 2)!

4λ0

(
1 +

a0

μ0

)
(ρ ′(t))2

t(n–2)ρ(t)
– η0ρ(t)B(t).

Integrating the above inequality from t1 to t, we have

∫ t

t1

(
η0ρ(s)B(s) –

(n – 2)!
4λ0

(
1 +

a0

μ0

)
(ρ ′(s))2

s(n–2)ρ(s)

)
ds ≤ � (t1) +

a0

μ0
ω(t1),

which contradicts (2.23).
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Assume that case (2) holds. If we are back to the proof of Corollary 2.1, then we get a
contradiction with (2.21). Hence, the proof is complete. �

Next, we give an example to illustrate our main results.

Example 2.1 Consider a fourth-order neutral delay differential equation

(
u(t) + a0u(βt)

)(4) +
b0

t4 u(δt) = 0, t ≥ 1, (2.31)

where a0, b0 > 0 and 0 < δ ≤ β < 1. It is easy to see that B(t) = (b0δ
4)/t4,

ã(t) =
(

1 –
1

β3/λ0 a0

) n/2∑

k=1

1
a2k–1

0
:= A0

and

â(t) :=
(

1 –
1

β1/λ2 a0

) n/2∑

k=1

1
a2k–1

0
:= A1.

By choosing κ(t) = χ (t) = δt, we see that (2.2) and (2.3) hold, and conditions (2.20) and
(2.21) reduce to

b0 ln
β

δ
>

6β3

δ3A0e

and

b0 ln
β

δ
>

12β

δA1e
,

respectively. Thus, from Corollary 2.1, we see that every solution of Eq. (2.31) is oscillatory
if

b0 > max

{
6β3

δ3A0e lnβ/δ
,

12β

δA1e lnβ/δ

}
. (2.32)

Moreover, the condition (2.23) reduces to

lim sup
t→∞

∫ t

t1

(
δ4η0b0 –

9
2λ0

(
1 +

a0

μ0

))
1
s

ds = ∞,

when

b0 >
9
2

(
1 +

a0

μ0

)
1

δ4η0
.

Thus, from Theorem 2.3, we see that every solution of Eq. (2.31) is oscillatory if

b0 > max

{
9
2

(
1 +

a0

μ0

)
1

δ4η0
,

6β3

δ3A0e lnβ/δ

}
.
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Remark 2.4 Although the results of Li and Rogovchenko in [1] improved their previous
results, they used Lemma 1.2 with λ = 1 (and this is inaccurate); see Remark 12 in [20].
Theorem 2.1, with n = 2, is a correction of Theorem 2.1 in [1]. Moreover, our results im-
prove the results in [1], since the iterative nature of the two functions ã(t) and â(t) enables
us to test for oscillations, even when the previously known results fail to apply. Let us
consider a special case of (2.31), namely,

(
u(t) + 10u(0.9t)

)(4) +
110
t4 u(0.5t) = 0. (2.33)

We note that the condition (2.32) fail to apply on (2.33) when n = 2, 4 (consequently, the
results in [1] also fail). But, at n = 6, the condition (2.32) is satisfied. Therefore, our results
improve the previous results in the literature.

Remark 2.5 It would be of interest to further investigate Eq. (1.1) with different neutral
coefficients; see [27] and [28] for more details. It would also be interesting to extend this
development to higher-order nonlinear neutral differential equations.
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