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Abstract
In this paper, we study boundary value problems for sequential fractional differential
equations and inclusions involving Hilfer fractional derivatives, supplemented with
Riemann–Stieltjes integral multi-strip boundary conditions. Existence and uniqueness
results are obtained in the single-valued case by using the classical Banach and
Krasnosel’skĭi fixed point theorems and the Leray–Schauder nonlinear alternative. In
the multi-valued case an existence result is proved by using nonlinear alternative for
contractive maps. Examples illustrating our results are also presented.
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1 Introduction and preliminaries
Differential equations of fractional order describe many real world processes more ac-
curately as compared to classical order differential equations. For this reason differential
equations of fractional order with initial/boundary conditions have been studied by many
researchers. Fractional differential equations arise in lots of engineering and clinical disci-
plines which include biology, physics, chemistry, economics, signal and image processing,
control theory, and so on; see the monographs [1–8].

Several different definitions of fractional integrals and derivatives exist in the literature.
The most popular ones are the Riemann–Liouville fractional derivative of order α > 0
defined for a continuous function by

RLDαu(t) := DnIn–αu(t) =
1

�(n – α)

(
d
dt

)n ∫ t

a
(t – s)n–α–1u(s) ds, n – 1 < α < n,
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and the Caputo fractional derivative of order α > 0 defined by

CDαu(t) := In–αDnu(t) =
1

�(n – α)

∫ t

a
(t – s)n–α–1

(
d
ds

)n

u(s) ds, n – 1 < α < n.

In the above definitions I(·) is the Riemann–Liouville fractional integral of order α > 0
which is defined by

Iαu(t) =
1

�(α)

∫ t

a
(t – s)α–1u(s) ds, n – 1 < α < n,

provided the right-hand side is point-wise defined on (a,∞). Other less-known defini-
tions of fractional integrals and derivatives are the Hadamard fractional derivative, the
Erdélyi–Kober fractional derivative, and so on. Hilfer in [9] generalized both Riemann–
Liouville and Caputo fractional derivatives. This derivative, known as the Hilfer fractional
derivative, is defined by

HDα,βu(t) = Iβ(n–α)DnI(1–β)(n–α)u(t),

where n – 1 < α < n, 0 ≤ β ≤ 1, t > a, D = d
dt . Fractional differential equations involving

Hilfer derivative have many applications, we refer to [10] and the references cited therein.
There are actual world occurrences with uncharacteristic dynamics such as atmospheric
diffusion of pollution, signals transmissions through strong magnetic fields, the effect of
the theory of the profitability of stocks in economic markets, the theoretical simulation
of dielectric relaxation in glass forming materials, network traffic, and so on. See [11, 12]
and the references cited therein. We refer to [13, 14] and the references cited therein for
some properties of the Hilfer derivative, and to [15–17] for initial value problems involving
Hilfer fractional derivatives.

In contrast to classical boundary conditions, nonlocal conditions help to formulate the
changes happening on certain positions and segments of the given domain [18]. On the
other hand, boundary conditions involving derivatives and integrals provide a decent ap-
proach to describe non-uniformities on segments of curved boundary structures. Exam-
ples include fluid problems [19], biomedical applications [20], engineering applications
[21, 22], etc.

In [23] the authors initiated the study of nonlocal boundary value problems for Hilfer
fractional derivative by studying the boundary value problem of Hilfer-type fractional dif-
ferential equations with nonlocal integral boundary conditions

H
D

α,βx(t) = f
(
t, x(t)

)
, t ∈ [a, b], 1 < α < 2, 0 ≤ β ≤ 1, (1.1)

x(a) = 0, x(b) =
m∑

i=1

δiIϕi x(ξi), ϕi > 0, δi ∈R, ξi ∈ [a, b], (1.2)

where HDα,β is the Hilfer fractional derivative of order α, 1 < α < 2, and parameter β ,
0 ≤ β ≤ 1, Iϕi is the Riemann–Liouville fractional integral of order ϕi > 0, ξi ∈ [a, b], a ≥ 0,
and δi ∈ R. Several existence and uniqueness results were proved by using a variety of fixed
point theorems.
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In a series of papers [7–27] nonlocal boundary value problems involving Hilfer frac-
tional derivatives were studied with a variety of boundary conditions. Thus, in [7] the
authors studied Hilfer–Langevin three-point fractional boundary value problems, in [24]
pantograph Hilfer fractional boundary value problems with nonlocal integral boundary
conditions were studied, in [25] Hilfer fractional boundary value problems with nonlo-
cal integral integro-multipoint boundary conditions were studied, in [26] Hilfer fractional
boundary value problems with nonlocal multipoint, fractional derivative multi-order, and
fractional integral multi-order boundary conditions were studied, and in [27] sequential
Hilfer fractional boundary value problems with nonlocal integro-multipoint boundary
conditions were studied.

In the present paper, motivated by the recent interest in studying boundary value prob-
lems involving Hilfer fractional derivative operators, we discuss a new class of sequen-
tial Hilfer-type boundary value problems for fractional differential equations involving
Riemann–Stieltjes integral multi-strip boundary conditions of the form

⎧⎨
⎩

(HDα,β + kHDα–1,β)x(t) = f (t, x(t)), t ∈ [a, b],

x(a) = 0, x(b) = λ
∫ b

a x(s) dH(s) +
∑n

i=1 μi
∫ ξi
ηi

x(s) ds,
(1.3)

where HDα,β denotes the Hilfer fractional derivative operator of order α, 1 < α < 2, and
parameter β , 0 ≤ β ≤ 1, f : [a, b] × R → R is a continuous function,

∫ b
a x(s) dH(s) is the

Riemann–Stieltjes integral with respect to the function H : [a, b] → R, a ≥ 0, k,μi ∈ R,
a < ηi < ξi ≤ b, i = 1, 2, . . . , n.

We establish existence and uniqueness results by using the basic tools from fixed point
theory. The existence of a unique solution is proved by using the Banach contraction map-
ping principle, while in the two existence results we make use of the Krasnosel’skĭi fixed
point theorem and the nonlinear alternative of Leray–Schauder type. The main results are
presented in Sect. 2. The obtained results are well illustrated by numerical examples. The
results obtained in the present paper are new and significantly contribute to the existing
literature on the topic.

We also cover the multi-valued case of problem (1.3) by considering the following se-
quential inclusion boundary value problem:

⎧⎨
⎩

(HDα,β + kHDα–1,β)x(t) ∈ F(t, x(t)), t ∈ [a, b],

x(a) = 0, x(b) = λ
∫ b

a x(s) dH(s) +
∑n

i=1 μi
∫ ξi
ηi

x(s) ds,
(1.4)

where F : [a, b]×R→P(R) is a multi-valued function, (P(R) is the family of all nonempty
subsets of R).

An existence result is proved in Sect. 3 for the sequential Hilfer inclusion boundary value
problem (1.4) via nonlinear alternative for contractive maps.

2 Existence and uniqueness results for problem (1.3)
The following auxiliary lemma, concerning a linear variant of the boundary value problem
(1.3), plays a fundamental role in establishing the existence and uniqueness results for the
given nonlinear problem.
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Lemma 2.1 ([14]) Let f ∈ L(a, b), n – 1 < α ≤ n, n ∈ N, 0 ≤ β ≤ 1, I(n–α)(1–β)f ∈ ACk[a, b].
Then

(
IαH Dα,β f

)
(t) = f (t) –

n–1∑
k=0

(t – a)k–(n–α)(1–β)

�(k – (n – α)(1 – β) + 1)
lim

t→a+

(
I(1–β)(n–α)f

)
(t).

Lemma 2.2 Let a ≥ 0, 1 < α < 2, γ = α + 2β – αβ , h ∈ C([a, b],R), and

� := (b – a)γ –1 – λ

∫ b

a
(s – a)γ –1 dH(s) –

1
γ

n∑
i=1

μi
[
(ξi – a)γ – (ηi – a)γ

] �= 0. (2.1)

Then the function x is a solution of the sequential boundary value problem

⎧⎨
⎩

(HDα,β + kHDα–1,β)x(t) = h(t), t ∈ [a, b], 1 < α < 2, 0 ≤ β ≤ 1,

x(a) = 0, x(b) = λ
∫ b

a x(s) dH(s) +
∑n

i=1 μi
∫ ξi
ηi

x(s) ds,
(2.2)

if and only if

x(t) = Iαh(t) – k
∫ t

a
x(s) ds +

(t – a)γ –1

�

[
–λ

∫ b

a

[
k
∫ s

a
x(u) du – Iαh(s)

]
dH(s)

– k
n∑

i=1

μi

∫ ξi

ηi

∫ s

a
x(u) du ds +

n∑
i=1

μi

∫ ξi

ηi

Iαh(s) ds

+ k
∫ b

a
x(s) ds – Iαh(b)

]
. (2.3)

Proof Let x be a solution of the nonlocal sequential boundary value problem (2.2). By
Lemma 2.1, applying on both sides of equation (2.2) the fractional integral Iα , we have

x(t) = c0
(t – a)–(2–α)(1–β)

�(1 – (2 – α)(1 – β))
+ c1

(t – a)1–(2–α)(1–β)

�(2 – (2 – α)(1 – β))
– kI1x(t) + Iαh(t)

= c0
(t – a)γ –2

�(γ – 1)
+ c1

(t – a)γ –1

�(γ )
– kI1x(t) + Iαh(t),

since (1 – β)(2 – α) = 2 – γ , where c0 and c1 are arbitrary real constants.
From x(a) = 0 we have c0 = 0. Then we get

x(t) = c1
(t – a)γ –1

�(γ )
– kI1x(t) + Iαh(t). (2.4)

From the boundary condition x(b) = λ
∫ b

a x(s) dH(s) +
∑n

i=1 μi
∫ ξi
ηi

x(s) ds, we found

c1 =
�(γ )
�

[
–λ

∫ b

a

[
k
∫ s

a
x(u) du – Iαh(s)

]
dH(s)

– k
n∑

i=1

μi

∫ ξi

ηi

∫ s

a
x(u) du ds +

n∑
i=1

μi

∫ ξi

ηi

Iαh(s) ds + k
∫ b

a
x(s) ds – Iαh(b)

]
.
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Substituting the value of c1 in (2.4), we obtain solution (2.3). The converse can be proven
by direct computation. The proof is finished. �

We denote by C([a, b],R) the Banach space of all continuous functions from [a, b] to
R with the norm ‖x‖ = supt∈[a,b] |x(t)|. In view of Lemma 2.2, we define an operator A :
C([a, b],R) → C([a, b],R) by

(Ax)(t) = Iαf
(
t, x(t)

)
– k

∫ t

a
x(s) ds

+
(t – a)γ –1

�

[
–λ

∫ b

a

[
k
∫ s

a
x(u) du – Iαf

(
s, x(s)

)]
dH(s)

– k
n∑

i=1

μi

∫ ξi

ηi

∫ s

a
x(u) du ds +

n∑
i=1

μi

∫ ξi

ηi

Iαf
(
s, x(s)

)
ds

+ k
∫ b

a
x(s) ds – Iαf

(
b, x(b)

)]
. (2.5)

It is obvious that the sequential boundary value problem (1.3) has solutions if and only
if the operator A has fixed points.

For computational convenience we use the notations:

� =
(b – a)α

�(α + 1)
+

(b – a)γ –1

|�|

[
|λ|

∫ b

a

(s – a)α

�(α + 1)
dH(s)

+
n∑

i=1

|μi| (ξi – a)α+1 – (ηi – a)α+1

�(α + 2)
+

(b – a)α

�(α + 1)

]
, (2.6)

and

�1 = |k|(b – a) +
(b – a)γ –1

|�|

[
|λ||k|

∫ b

a
(s – a) dH(s)

+
1
2
|k|

n∑
i=1

|μi|
(
(ξi – a)2 – (ηi – a)2) + |k|(b – a)

]
. (2.7)

By using well-known fixed point theorems, we prove existence, as well as existence and
uniqueness results, for the sequential Hilfer-type boundary value problem (1.3) in the fol-
lowing sections.

2.1 Existence and uniqueness result
In our first result we prove the existence of a unique solution for the sequential Hilfer
boundary value problem (1.3) via Banach’s contraction mapping principle.

Theorem 2.1 Assume that:
(H1) |f (t, x) – f (t, y)| ≤ L|x – y|, L > 0, t ∈ [a, b], and x, y ∈R.

If

L� + �1 < 1, (2.8)
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where � and �1 are defined by (2.6) and (2.7) respectively, then the sequential Hilfer bound-
ary value problem (1.3) has a unique solution on [a, b].

Proof With the help of the operator A defined as in (2.5), we transform the sequential
Hilfer boundary value problem (1.3) into a fixed point problem, x = Ax. We shall show
that the operator A has a unique fixed point by applying the Banach contraction mapping
principle.

Set supt∈[a,b] |f (t, 0)| = M < ∞, and choose r > 0 such that

r ≥ M�

1 – L� – �1
. (2.9)

Let Br = {x ∈ C([a, b],R) : ‖x‖ ≤ r}. We show that ABr ⊂ Br .
For any x ∈ Br , we have

∣∣(Ax)(t)
∣∣ ≤ Iα

∣∣f (t, x(t)
)∣∣ + |k|

∫ t

a

∣∣x(s)
∣∣ds

+
(b – a)γ –1

|�|

[
|λ|

∫ b

a

[
|k|

∫ s

a

∣∣x(u)
∣∣du + Iα

∣∣f (s, x(s)
)∣∣]dH(s)

+ |k|
n∑

i=1

|μi|
∫ ξi

ηi

∫ s

a

∣∣x(u)
∣∣du ds +

n∑
i=1

|μi|
∫ ξi

ηi

Iα
∣∣f (s, x(s)

)∣∣ds

+ |k|
∫ b

a

∣∣x(s)
∣∣ds + Iα

∣∣f (b, x(b)
)∣∣

]

≤ Iα
(∣∣f (t, x(t)

)
– f (t, 0)

∣∣ +
∣∣f (t, 0)

∣∣) + |k|
∫ t

a

∣∣x(s)
∣∣ds

+
(b – a)γ –1

|�|

[
|λ|

∫ b

a

[
|k|

∫ s

a

∣∣x(u)
∣∣du + Iα

(∣∣f (s, x(s)
)

– f (s, 0)
∣∣

+
∣∣f (s, 0)

∣∣)]dH(s) + |k|
n∑

i=1

|μi|
∫ ξi

ηi

∫ s

a

∣∣x(u)
∣∣du ds

+
n∑

i=1

|μi|
∫ ξi

ηi

Iα
(∣∣f (s, x(s)

)
– f (s, 0)

∣∣ +
∣∣f (s, 0)

∣∣)ds

+ |k|
∫ b

a

∣∣x(s)
∣∣ds + Iα

(∣∣f (b, x(b)
)

– f (b, 0)
∣∣ +

∣∣f (b, 0)
∣∣)

]

≤
{

(b – a)α

�(α + 1)
+

(b – a)γ –1

|�|

[
|λ|

∫ b

a

(s – a)α

�(α + 1)
dH(s)

+
n∑

i=1

|μi| (ξi – a)α+1 – (ηi – a)α+1

�(α + 2)
+

(b – a)α

�(α + 1)

]}(
L‖x‖ + M

)

+

{
|k|(b – a) +

(b – a)γ –1

|�|

[
|λ||k|

∫ b

a
(s – a) dH(s)
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+
1
2
|k|

n∑
i=1

|μi|
(
(ξi – a)2 – (ηi – a)2) + |k|(b – a)

]}
‖x‖

≤ (Lr + M)� + �1r ≤ r,

and consequently ‖Ax‖ ≤ r, which implies that ABr ⊂ Br .
Next, we show that A is a contraction. Let x, y ∈ C([a, b],R). We have, for t ∈ [a, b],

∣∣(Ax)(t) – (Ay)(t)
∣∣

≤ Iα
∣∣f (t, x(t)

)
– f

(
t, y(t)

)∣∣ + |k|
∫ t

a

∣∣x(s) – y(s)
∣∣ds

+
(b – a)γ –1

|�|

[
|λ|

∫ b

a

[
|k|

∫ s

a

∣∣x(u) – y(u)
∣∣du + Iα

∣∣f (s, x(s)
)

– f
(
s, y(s)

)∣∣]dH(s)

+ |k|
n∑

i=1

|μi|
∫ ξi

ηi

∫ s

a

∣∣x(u) – y(u)
∣∣du ds +

n∑
i=1

|μi|
∫ ξi

ηi

Iα
∣∣f (s, x(s)

)
– f

(
s, y(s)

)∣∣ds

+ |k|
∫ b

a

∣∣x(s) – y(s)
∣∣ds + Iα

∣∣f (b, x(b)
)

– f
(
b, y(b)

)∣∣
]

≤
{

(b – a)α

�(α + 1)
+

(b – a)γ –1

|�|

[
|λ|

∫ b

a

(s – a)α

�(α + 1)
dH(s)

+
n∑

i=1

|μi| (ξi – a)α+1 – (ηi – a)α+1

�(α + 2)
+

(b – a)α

�(α + 1)

]}
L‖x – y‖

+

{
|k|(b – a) +

(b – a)γ –1

|�|

[
|λ||k|

∫ b

a
(s – a) dH(s)

+
1
2
|k|

n∑
i=1

|μi|
(
(ξi – a)2 – (ηi – a)2) + |k|(b – a)

]}
‖x – y‖

= (L� + �1)‖x – y‖.

Hence ‖Ax –Ay‖ ≤ (L�+�1)‖x – y‖. Consequently, A is a contraction as, by assumption,
L� + �1 < 1. We deduce, by the Banach contraction mapping principle, that A has a fixed
point, which means that the sequential Hilfer boundary value problem (1.3) has a unique
solution. This completes the proof. �

Example 2.1 Consider the sequential boundary value problems for Hilfer-type sequential
fractional differential equation involving Riemann–Stieltjes integral multi-strip boundary
conditions

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(HD 3
2 , 2

3 + 1
9

HD 1
2 , 2

3 )x(t) = 8e–( 1
8 –t)2

8t+175 ( x2(t)+2|x(t)|
1+|x(t)| ) + 1

2 , t ∈ [ 1
8 , 15

8 ],

x( 1
8 ) = 0,

x( 15
8 ) = 1

16
∫ 15

8
1
8

x(s) d(e–ss 1
2 )

+ 3
13

∫ 5
8

1
4

x(s) ds + 5
14

∫ 5
4

3
4

x(s) ds + 7
15

∫ 7
4

11
8

x(s) ds.

(2.10)
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The above problem is a special case of problem (1.3), by taking a = 1/8, b = 15/8,
α = 3/2, β = 2/3, k = 1/9, λ = 1/16, H(s) = e–ss 1

2 , n = 3, μ1 = 3/13, μ2 = 5/14, μ3 = 7/15,
η1 = 1/4, η2 = 3/4, η3 = 11/8, ξ1 = 5/8, ξ2 = 5/4, ξ3 = 7/4, γ = 3/2 + (2 – (3/2))(2/3) = 11/6.
From these constants, we can compute that � ≈ 1.179406838, � ≈ 4.551972757, and
�1 ≈ 0.5203741066.

Since

f (t, x) =
8e–( 1

8 –t)2

8t + 175

(
x2 + 2|x|
1 + |x|

)
+

1
2

,

we get the inequality |f (t, x) – f (t, y)| ≤ (1/11)|x – y| satisfying condition (H1) of Theo-
rem 2.1 with L = 1/11. On the other hand, obviously we have

L� + �1 ≈ 0.9341898118 < 1.

Hence all the conditions of Theorem 2.1 are satisfied. In consequence, by Theorem 2.1,
problem (2.10) has a unique solution on [1/8, 15/8].

2.2 Existence results
Two existence results are presented in this subsection. The first one is based on the well-
known Krasnosel’skĭi fixed point theorem [28].

Theorem 2.2 Let f : [a, b] ×R →R be a continuous function such that:
(H2) |f (t, w)| ≤ ϕ(t), ∀(t, w) ∈ [a, b] ×R, and ϕ ∈ C([a, b],R+).

Then, if �1 < 1, where �1 is defined in (2.7), the sequential Hilfer boundary value problem
(1.3) has on [a, b] at least one solution.

Proof We set supt∈[a,b] ϕ(t) = ‖ϕ‖, choose

ρ ≥ ‖ϕ‖�
1 – �1

,

and consider Bρ = {x ∈ C([a, b],R) : ‖x‖ ≤ ρ}. We define the operators A1, A2 on Bρ by

A1x(t) = Iαf
(
t, x(t)

)
+

(t – a)γ –1

�

[
λ

∫ b

a
Iαf

(
s, x(s)

)
dH(s)

+
n∑

i=1

μi

∫ ξi

ηi

Iαf
(
s, x(s)

)
ds – Iαf

(
b, x(b)

)]
, t ∈ [a, b],

and

A2x(t) = –k
∫ t

a
x(s) ds +

(t – a)γ –1

�

[
–λk

∫ b

a

∫ s

a
x(u) du dH(s)

– k
n∑

i=1

μi

∫ ξi

ηi

∫ s

a
x(u) du ds + k

∫ b

a
x(s) ds

]
, t ∈ [a, b].
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For x, y ∈ Bρ , we have

∣∣(A1x)(t) + (A2y)(t)
∣∣

≤ Iα
∣∣f (t, x(t)

)∣∣ + |k|
∫ t

a

∣∣y(s)
∣∣ds

+
(b – a)γ –1

|�|

[
|λ|

∫ b

a

[
|k|

∫ s

a

∣∣y(u)
∣∣du + Iα

∣∣f (s, x(s)
)∣∣]dH(s)

+ |k|
n∑

i=1

|μi|
∫ ξi

ηi

∫ s

a

∣∣y(u)
∣∣du ds +

n∑
i=1

|μi|
∫ ξi

ηi

Iα
∣∣f (s, x(s)

)∣∣ds

+ |k|
∫ b

a

∣∣y(s)
∣∣ds + Iα

∣∣f (b, x(b)
)∣∣

]

≤
{

(b – a)α

�(α + 1)
+

(b – a)γ –1

|�|

[
|λ|

∫ b

a

(s – a)α

�(α + 1)
dH(s)

+
n∑

i=1

|μi| (ξi – a)α+1 – (ηi – a)α+1

�(α + 2)
+

(b – a)α

�(α + 1)

]}
‖ϕ‖

+

{
|k|(b – a) +

(b – a)γ –1

|�|

[
|λ||k|

∫ b

a
(s – a) dH(s)

+
1
2
|k|

n∑
i=1

|μi|
(
(ξi – a)2 – (ηi – a)2) + |k|(b – a)

]}
‖x‖

≤ ‖ϕ‖� + �1ρ ≤ ρ.

Therefore ‖A1x + A2y‖ ≤ ρ , which shows that A1x + A2y ∈ Bρ . It is easy to see, using the
condition �1 < 1, that A2 is a contraction mapping.

The operator A1 is continuous since f is continuous. Moreover, the uniform bounded-
ness on Bρ of the operator A1 follows from the relation

‖A1x‖ ≤
{

(b – a)α

�(α + 1)
+

(b – a)γ –1

|�|

[
|λ|

∫ b

a

(s – a)α

�(α + 1)
dH(s)

+
n∑

i=1

|μi| (ξi – a)α+1 – (ηi – a)α+1

�(α + 2)
+

(b – a)α

�(α + 1)

]}
‖ϕ‖.

Now we prove the equicontinuity of the operator A1. Let t1, t2 ∈ [a, b] with t1 < t2. Then
we have

∣∣(A1x)(t2) – (A1x)(t1)
∣∣

≤ 1
�(α)

∣∣∣∣
∫ t1

a

[
(t2 – s)α–1 – (t1 – s)α–1]f

(
s, x(s)

)
ds +

∫ t2

t1

(t2 – s)α–1f
(
s, x(s)

)
ds

∣∣∣∣

+
(t2 – a)γ –1 – (t1 – a)γ –1

|�|

[
|λ|

∫ b

a
Iα

∣∣f (s, x(s)
)∣∣dH(s)
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+
n∑

i=1

|μi|
∫ ξi

ηi

Iα
∣∣f (s, x(s)

)∣∣ds + Iα
∣∣f (b, x(b)

∣∣
]

≤ ‖φ‖
�(α + 1)

[
2(t2 – t1)α +

∣∣(t2 – a)α – (t1 – a)α
∣∣]

+
(t2 – a)γ –1 – (t1 – a)γ –1

|�| ‖φ‖
[
|λ|

∫ b

a

(s – a)α

�(α + 1)
dH(s)

+
n∑

i=1

|μi| (ξi – a)α+1 – (ηi – a)α+1

�(α + 2)
+

(b – a)α

�(α + 1)

]

→ 0,

as t2 –t1 → 0 and is independent of x. Therefore, the operatorA1 is equicontinuous. By the
Arzelá–Ascoli theorem, A1 is compact on Bρ . Consequently all the assumptions of Kras-
nosel’skiĭi’s fixed point theorem [28] are satisfied. Hence the sequential Hilfer boundary
value problem (1.3) has at least one solution on [a, b]. The proof is completed. �

In our second existence result we apply the Leray–Schauder nonlinear alternative [29].

Theorem 2.3 Let �1 < 1. In addition, we assume that:
(H3) |f (t, w)| ≤ p(t)ψ(|w|) for each (t, w) ∈ [a, b] × R, where ψ : [0,∞) → (0,∞) is a

nondecreasing and continuous function and p ∈ C([a, b],R+);
(H4) (1–�1)K

ψ(K )‖p‖� > 1 for a constant K > 0.
Then the sequential Hilfer boundary value problem (1.3) has at least one solution on [a, b].

Proof Consider the operator A defined by (2.5). We shall show that bounded sets are
mapped by A into a bounded set in C([a, b],R). For r > 0, let Br = {x ∈ C([a, b],R) : ‖x‖ ≤
r}. For any t ∈ [a, b], we have

∣∣(Ax)(t)
∣∣

≤ Iα
∣∣f (t, x(t)

)∣∣ + |k|
∫ t

a

∣∣x(s)
∣∣ds

+
(b – a)γ –1

|�|

[
|λ|

∫ b

a

[
|k|

∫ s

a

∣∣x(u)
∣∣du + Iα

∣∣f (s, x(s)
)∣∣]dH(s)

+ |k|
n∑

i=1

|μi|
∫ ξi

ηi

∫ s

a

∣∣x(u)
∣∣du ds +

n∑
i=1

|μi|
∫ ξi

ηi

Iα
∣∣f (s, x(s)

)∣∣ds

+ |k|
∫ b

a

∣∣x(s)
∣∣ds + Iα

∣∣f (b, x(b)
)∣∣

]

≤
{

(b – a)α

�(α + 1)
+

(b – a)γ –1

|�|

[
|λ|

∫ b

a

(s – a)α

�(α + 1)
dH(s)

+
n∑

i=1

|μi| (ξi – a)α+1 – (ηi – a)α+1

�(α + 2)
+

(b – a)α

�(α + 1)

]}
‖p‖ψ(‖x‖)

+

{
|k|(b – a) +

(b – a)γ –1

|�|

[
|λ||k|

∫ b

a
(s – a) dH(s)
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+
1
2
|k|

n∑
i=1

|μi|
(
(ξi – a)2 – (ηi – a)2) + |k|(b – a)

]}
‖x‖

≤ ‖p‖ψ(‖x‖)� + �1‖x‖ ≤ r,

and consequently,

‖Ax‖ ≤ ‖p‖ψ(r)‖p‖� + �1r.

In the next step we will show that bounded sets are mapped by the operator A into
equicontinuous sets of C([a, b],R). Let t1, t2 ∈ [a, b] with t1 < t2 and x ∈ Br . Then we have

∣∣(Ax)(t2) – (Ax)(t1)
∣∣

≤ 1
�(α)

∣∣∣∣
∫ t1

a

[
(t2 – s)α–1 – (t1 – s)α–1]f

(
s, x(s)

)
ds

+
∫ t2

t1

(t2 – s)α–1f
(
s, x(s)

)
ds

∣∣∣∣ + |k|r(t2 – t1)

+
(t2 – a)γ –1 – (t1 – a)γ –1

|�| ‖p‖ψ(r)

[
|λ|

∫ b

a

(s – a)α

�(α + 1)
dH(s)

+
n∑

i=1

|μi| (ξi – a)α+1 – (ηi – a)α+1

�(α + 2)
+

(b – a)α

�(α + 1)

]

+
(t2 – a)γ –1 – (t1 – a)γ –1

|�| r

[
|λ||k|

∫ b

a
(s – a) dH(s)

+
1
2
|k|

n∑
i=1

|μi|
(
(ξi – a)2 – (ηi – a)2) + |k|(b – a)

]

≤ ‖p‖ψ(r)
�(α + 1)

[
2(t2 – t1)α +

∣∣(t2 – a)α – (t1 – a)α
∣∣] + |k|r(t2 – t1)

+
(t2 – a)γ –1 – (t1 – a)γ –1

|�| ‖p‖ψ(r)

[
|λ|

∫ b

a

(s – a)α

�(α + 1)
dH(s)

+
n∑

i=1

|μi| (ξi – a)α+1 – (ηi – a)α+1

�(α + 2)
+

(b – a)α

�(α + 1)

]

+
(t2 – a)γ –1 – (t1 – a)γ –1

|�| r

[
|λ||k|

∫ b

a
(s – a) dH(s)

+
1
2
|k|

n∑
i=1

|μi|
(
(ξi – a)2 – (ηi – a)2) + |k|(b – a)

]

→ 0,

as t2 – t1 → 0 and is independent of x ∈ Br . By the Arzelá–Ascoli theorem, the operator
A : C([a, b],R) → C([a, b],R) is completely continuous.

Finally we will prove that the set of all solutions to equation x = θAx for θ ∈ (0, 1) is
bounded.



Nuchpong et al. Advances in Difference Equations        (2021) 2021:268 Page 12 of 19

Let x be a solution of the sequential Hilfer boundary value problem (1.3). Then, as in the
first step, for t ∈ [a, b], we have

∣∣x(t)
∣∣ ≤ ψ

(‖x‖)‖p‖� + �1‖x‖

or

(1 – �1)‖x‖
ψ(‖x‖)‖p‖� ≤ 1.

By (H4), ‖x‖ �= K for some K . We set

U =
{

x ∈ C
(
[a, b],R

)
: ‖x‖ < K

}
.

The operator A : Ū → C([a, b],R) is continuous and completely continuous. There is no
x ∈ ∂U such that x = θAx for some θ ∈ (0, 1), from the choice of U . By the nonlinear
alternative of Leray–Schauder type [29], we conclude that the operator A has a fixed point
x ∈ Ū . Obviously this fixed point is a solution of the sequential Hilfer boundary value
problem (1.3). This finishes the proof. �

Example 2.2 Consider the sequential boundary value problems for Hilfer-type sequential
fractional differential equation involving Riemann–Stieltjes integral multi-strip boundary
conditions

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(HD 7
4 , 1

2 + 1
17

HD 3
4 , 1

2 )x(t) = f (t, x(t)), t ∈ [ 1
9 , 14

9 ],

x( 1
9 ) = 0,

x( 14
9 ) = 2

11
∫ 14

9
1
9

x(s) d(s– 1
3 sin s) + 4

21
∫ 4

9
2
9

x(s) ds

+ 6
31

∫ 7
9

5
9

x(s) ds + 8
41

∫ 10
9

8
9

x(s) ds + 10
51

∫ 13
9

11
9

x(s) ds.

(2.11)

By putting, a = 1/9, b = 14/9, α = 7/4, β = 1/2, k = 1/17, λ = 2/11, H(s) = s– 1
3 sin s, n = 4,

μ1 = 4/21, μ2 = 6/31, μ3 = 8/41, μ4 = 10/51, η1 = 2/9, η2 = 5/9, η3 = 8/9, η4 = 11/9, ξ1 = 4/9,
ξ2 = 7/9, ξ3 = 10/9, ξ4 = 13/9, γ = 7/4 + (2 – (7/4))(1/2) = 15/8, we verify the conditions that
� ≈ 1.206968182, � ≈ 2.635069870, and �1 ≈ 0.1932006417.

(i) If the nonlinear function f (t, x) in (2.11) is given by

f (t, x) = t2e–x2
+ 2t

x8

1 + x8 cos2 x4 +
1
3

, (2.12)

then f is continuous on [1/9, 14/9] × R and |f (t, x)| ≤ t2 + 2t + (1/3) satisfying condition
(H2) in Theorem 2.2. Since �1 < 1, we conclude by Theorem 2.2 that problem (2.11) with
(2.12) has at least one solution on [1/9, 14/9].

(ii) Let the nonlinear function f (t, x) in (2.11) be defined by

f (t, x) =
9

9t + 89

(
x12

1 + x10 +
x16

4(1 + x16)
e–x2

+
3
4

)
. (2.13)

Thus f fulfills condition (H3) in Theorem 2.3 that |f (t, x)| ≤ (9/(9t + 89))(x2 + 1) with
p(t) = 9/(9t + 89) and ψ(x) = x2 + 1. Since ‖p‖ = 1/10, there exists a constant K ∈
(0.371742602, 2.690033358) satisfying inequality in (H4). In consequence of Theorem 2.3,
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the sequential boundary value problem (2.11) with (2.13) has at least one solution on
[1/9, 14/9].

3 Existence results for problem (1.4)
In the following we use the notation Pcp,c(X) = {Y ∈ P(X) : Y is compact and convex} for
a normed space (X,‖ · ‖). For details on multi-valued analysis, we refer to the monographs
[7, 30–32].

Definition 3.1 A function x ∈ C2([a, b],R) is a solution of the sequential Hilfer boundary
value problem (1.4) if x(a) = 0, x(b) = λ

∫ b
a x(s) dH(s) +

∑n
i=1 μi

∫ ξi
ηi

x(s) ds, and there exists
a function v ∈ L1([a, b],R) such that v(t) ∈ F(t, x(t)) a.e. on [a, b] and

x(t)

= Iαv(t) – k
∫ t

a
x(s) ds +

(t – a)γ –1

�

[
–λ

∫ b

a

[
k
∫ s

a
x(u) du – Iαv(s)

]
dH(s)

– k
n∑

i=1

μi

∫ ξi

ηi

∫ s

a
x(u) du ds +

n∑
i=1

μi

∫ ξi

ηi

Iαv(s) ds + k
∫ b

a
x(s) ds – Iαv(b)

]
. (3.1)

Theorem 3.1 Assume that �1 < 1. In addition, we suppose that:
(A1) F : [a, b] × R → Pcp,c(R) is an L1-Carathéodory multi-valued map, i.e., (i) t �−→

F(t, x) is measurable for each x ∈ R; (ii) x �−→ F(t, x) is upper semicontinuous for
almost all t ∈ [a, b]; (iii) for each α > 0, there exists ϕα ∈ L1([a, b],R+) such that

∥∥F(t, x)
∥∥ = sup

{|v| : v ∈ F(t, x)
} ≤ ϕα(t)

for all x ∈R with ‖x‖ ≤ α and for a.e. t ∈ [a, b];
(A2) ‖F(t, z)‖P := sup{|y| : y ∈ F(t, z)} ≤ p(t)ψ(‖z‖) for each (t, z) ∈ [a, b] ×R, where ψ :

[0,∞) → (0,∞) is a nondecreasing continuous function and p ∈ C([a, b],R+);
(A3) There exists a constant M > 0 such that

M
‖p‖ψ(M)�

>
1

1 – �1
, (3.2)

where � and �1 are given in (2.6) and (2.7) respectively.
Then the sequential Hilfer boundary value problem (1.4) has at least one solution on [a, b].

Proof We transform the sequential Hilfer boundary value problem (1.4) into a fixed point
problem. To do this, we define an operator N : C([a, b],R) −→P(C([a, b],R)) by

N (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

h ∈ C([a, b],R) :

h(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Iαv(t) – k
∫ t

a x(s) ds

+ (t–a)γ –1

�
[–λ

∫ b
a [k

∫ s
a x(u) du – Iαv(s)] dH(s)

– k
∑n

i=1 μi
∫ ξi
ηi

∫ s
a x(u) du ds +

∑n
i=1 μi

∫ ξi
ηi

Iαv(s) ds

+ k
∫ b

a x(s) ds – Iαv(b)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

for v ∈ SF ,x.
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Next we introduce the single-valued operator A : C([a, b],R) −→ C([a, b],R) and the
multi-valued operator B : C([a, b],R) −→P(C([a, b],R)) by

Ax(t) = –k
∫ t

a
x(s) ds +

(t – a)γ –1

�

[
–λk

∫ b

a

∫ s

a
x(u) du dH(s)

– k
n∑

i=1

μi

∫ ξi

ηi

∫ s

a
x(u) du ds + k

∫ b

a
x(s) ds

]
,

(3.3)

and

B(x) =

{
h ∈ C([a, b],R) : h(t) = Iαv(t) + (t–a)γ –1

�
[λ

∫ b
a Iαv(s) dH(s)

+
∑n

i=1 μi
∫ ξi
ηi

Iαv(s) ds – Iαv(b)]

}
. (3.4)

Observe that N = A + B. To prove our existence result, we make use of the nonlinear
alternative for contractive maps [33, Corollary 3.8].

Step 1: First we show that A is a contraction on C([a, b],R). We have, for x, y ∈
C([a, b],R),

∣∣Ax(t) – Ay(t)
∣∣ ≤

{
|k|(b – a) +

(b – a)γ –1

|�|

[
|λ||k|

∫ b

a
(s – a) dH(s)

+
1
2
|k|

n∑
i=1

|μi|
(
(ξi – a)2 – (ηi – a)2) + |k|(b – a)

]}
‖x – y‖

≤ �1‖x – y‖,

which yields

‖Ax – Ay‖ ≤ �1‖x – y‖.

Hence, since �1 < 1, the operator A is a contraction.
Step 2: For all x ∈ C([a, b],R), B(x) is convex. Let z1, z2 ∈ B(x). Then there exist v1, v2 ∈

SF ,x such that

zi(t) = Iαvi(t) +
(t – a)γ –1

�

[
λ

∫ b

a
Iαvi(s) dH(s) +

n∑
i=1

μi

∫ ξi

ηi

Iαvi(s) ds – Iαvi(b)

]
,

i = 1, 2,

for almost all t ∈ [a, b]. Let 0 ≤ θ ≤ 1. Then we have

[
θz1 + (1 – θ )z2

]
(t) = Iα

[
θv1 + (1 – θ )v2

]
(t)

+
(t – a)γ –1

�

[
λ

∫ b

a
Iα

[
θv1 + (1 – θ )v2

]
(s) dH(s)

+
n∑

i=1

μi

∫ ξi

ηi

Iα
[
θv1 + (1 – θ )v2

]
(s) ds – Iα

[
θv1 + (1 – θ )v2

]
(b)

]
.
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The fact that F has convex values implies that SF ,x is convex, and thus θv1(s) + (1 –
θ )v2(s) ∈ SF ,x. Hence θz1 + (1 – θ )z2 ∈ B(x), which proves that the operator B is convex-
valued.

Step 3: Now we will prove that the operator B is compact and upper semicontinuous.
First, we prove that bounded sets are mapped by B into bounded sets in C([a, b],R). Let

Br = {x ∈ C([a, b],R) : ‖x‖ ≤ r}. For each h ∈ B(x), x ∈ Br , there exists v ∈ SF ,x such that

h(t) = Iαv(t) +
(t – a)γ –1

�

[
λ

∫ b

a
Iαv(s) dH(s) +

n∑
i=1

μi

∫ ξi

ηi

Iαv(s) ds – Iαv(b)

]
,

t ∈ [a, b].

We have, for t ∈ [a, b],

∣∣h(t)
∣∣ ≤ Iα

∣∣v(t)
∣∣ +

(b – a)γ –1

|�|

[
|λ|

∫ b

a
Iα

∣∣v(s)
∣∣dH(s)

+
n∑

i=1

|μi|
∫ ξi

ηi

Iα
∣∣v(s)

∣∣ds + Iα
∣∣v(b)

∣∣
]

≤ ‖p‖ψ(‖x‖)
{

(b – a)α

�(α + 1)
+

(b – a)γ –1

|�|

[
|λ|

∫ b

a

(s – a)α

�(α + 1)
dH(s)

+
n∑

i=1

|μi| (ξi – a)α+1 – (ηi – a)α+1

�(α + 2)
+

(b – a)α

�(α + 1)

]}
.

Thus,

‖h‖ ≤ ‖p‖ψ(r)

{
(b – a)α

�(α + 1)
+

(b – a)γ –1

|�|

[
|λ|

∫ b

a

(s – a)α

�(α + 1)
dH(s)

+
n∑

i=1

|μi| (ξi – a)α+1 – (ηi – a)α+1

�(α + 2)
+

(b – a)α

�(α + 1)

]}
.

Secondly we prove that bounded sets are mapped by the operator B into equicontinuous
sets. Let t1, t2 ∈ [a, b] with t1 < t2 and x ∈ Br . Then, for each h ∈ B(x), we obtain

∣∣h(t2) – h(t1)
∣∣ =

1
�(α)

∣∣∣∣
∫ t1

a

[
(t2 – s)α–1 – (t1 – s)α–1]v(s) ds

+
∫ t2

t1

(t2 – s)α–1v(s) ds
∣∣∣∣ + |k|r(t2 – t1)

+
(t2 – a)γ –1 – (t1 – a)γ –1

|�| ‖p‖ψ(r)

[
|λ|

∫ b

a

(s – a)α

�(α + 1)
dH(s)

+
n∑

i=1

|μi| (ξi – a)α+1 – (ηi – a)α+1

�(α + 2)
+

(b – a)α

�(α + 1)

]

≤ ‖p‖ψ(r)
�(α + 1)

[
2(t2 – t1)α +

∣∣(t2 – a)α – (t1 – a)α
∣∣]



Nuchpong et al. Advances in Difference Equations        (2021) 2021:268 Page 16 of 19

+
(t2 – a)γ –1 – (t1 – a)γ –1

|�| ‖p‖ψ(r)

[
|λ|

∫ b

a

(s – a)α

�(α + 1)
dH(s)

+
n∑

i=1

|μi| (ξi – a)α+1 – (ηi – a)α+1

�(α + 2)
+

(b – a)α

�(α + 1)

]

→ 0,

as t2 – t1 → 0 and is independent of x ∈ Br . By the Arzelá–Ascoli theorem the operator
B : C([a, b],R) →P(C([a, b],R)) is completely continuous.

By [30, Proposition 1.2] we know that a completely continuous operator is upper semi-
continuous if it has a closed graph. Thus in the following we will prove that the operator
B has a closed graph.

Let xn → x∗, hn ∈ B(xn) and hn → h∗. We shall show that h∗ ∈ B(x∗). Since hn ∈ B(xn),
there exists vn ∈ SF ,xn such that, for each t ∈ [a, b],

h(t) = Iαvn(t) +
(t – a)γ –1

�

[
λ

∫ b

a
Iαvn(s) dH(s) +

n∑
i=1

μi

∫ ξi

ηi

Iαvn(s) ds – Iαvn(b)

]
.

It is suffices to show that there exists v∗ ∈ SF ,x∗ such that, for each t ∈ [a, b],

h∗(t) = Iαv∗(t) +
(t – a)γ –1

�

[
λ

∫ b

a
Iαv∗(s) dH(s) +

n∑
i=1

μi

∫ ξi

ηi

Iαv∗(s) ds – Iαv∗(b)

]
.

Let us consider the linear operator � : L1([a, b],R) → C([a, b],R) given by

v �→ �(v)(t) = Iαv(t) +
(t – a)γ –1

�

[
λ

∫ b

a
Iαv(s) dH(s) +

n∑
i=1

μi

∫ ξi

ηi

Iαv(s) ds – Iαv(b)

]
.

Observe that

∥∥hn(t) – h∗(t)
∥∥ =

∥∥∥∥∥Iα
[
vn(t) – v∗(t)

]
+

(t – a)γ –1

�

[
|λ|

∫ b

a
Iα

[
vn(t) – v∗(t)

]
dH(s)

+
n∑

i=1

μi

∫ ξi

ηi

Iα
[
vn(t) – v∗(t)

]
ds – Iα

[
vn(b) – v∗(b)

]]∥∥∥∥∥
→ 0,

as n → ∞.
Thus, it follows by a closed graph lemma [34] that � ◦ SF is a closed graph operator.

Moreover, hn(t) ∈ �(SF ,xn ). Since xn → x∗, we have that

h∗(t) = Iαv∗(t) +
(t – a)γ –1

�

[
λ

∫ b

a
Iαv∗(s) dH(s) +

n∑
i=1

μi

∫ ξi

ηi

Iαv∗(s) ds – Iαv∗(b)

]

for some v∗ ∈ SF ,x∗ . Thus the operator B has a closed graph.
Thus the operators A and B satisfy all the conditions of the nonlinear alternative for

contractive maps [33, Corollary 3.8]. It implies that either (i) N has a fixed point in [a, b]
or (ii) there is a point x ∈ ∂BM = {x ∈ C([a, b],R) : ‖x‖ ≤ M} and θ ∈ (0, 1) with x = θN (x).
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In the next we will show that conclusion (ii) is not possible. If x ∈ θA(x) + θB(x) for
θ ∈ (0, 1), then there exists v ∈ SF ,x such that

x(t)

= Iαv(t) – k
∫ t

a
x(s) ds +

(t – a)γ –1

�

[
–λ

∫ b

a

[
k
∫ s

a
x(u) du – Iαv(s)

]
dH(s)

– k
n∑

i=1

μi

∫ ξi

ηi

∫ s

a
x(u) du ds +

n∑
i=1

μi

∫ ξi

ηi

Iαv(s) ds + k
∫ b

a
x(s) ds – Iαv(b)

]
,

and

∣∣x(t)
∣∣ ≤

{
(b – a)α

�(α + 1)
+

(b – a)γ –1

|�|

[
|λ|

∫ b

a

(s – a)α

�(α + 1)
dH(s)

+
n∑

i=1

|μi| (ξi – a)α+1 – (ηi – a)α+1

�(α + 2)
+

(b – a)α

�(α + 1)

]}
‖p‖ψ(‖x‖)

+

{
|k|(b – a) +

(b – a)γ –1

|�|

[
|λ||k|

∫ b

a
(s – a) dH(s)

+
1
2
|k|

n∑
i=1

|μi|
(
(ξi – a)2 – (ηi – a)2) + |k|(b – a)

]}
‖x‖

≤ ‖p‖ψ(‖x‖)� + �1‖x‖.

Thus

(1 – �1)‖x‖ ≤ ‖p‖ψ(‖x‖)�. (3.5)

If condition (ii) holds, then there exist θ ∈ (0, 1) and x ∈ ∂BM with x = θN (x), which means
that x is a solution of (1.4) with ‖x‖ = M. By (3.5), we have

M
‖p‖ψ(M)�

≤ 1
1 – �1

,

which contradicts (3.2). Consequently, N has a fixed point in [a, b]. We deduce that the
sequential Hilfer boundary value problem (1.4) has a solution. The proof is completed. �

Example 3.1 Consider the boundary value problems for Hilfer-type sequential fractional
differential inclusion involving Riemann–Stieltjes integral multi-strip boundary condi-
tions

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(HD
4
3 , 2

5 + 1
12

HD
1
3 , 2

5 )x(t) ∈ F(t, x(t)), t ∈ [ 1
7 , 13

7 ],

x( 1
7 ) = 0,

x( 13
7 ) = 5

44
∫ 13

7
1
7

x(s) d(s 3
2 + 2s 1

2 + s– 1
2 )

+ 6
55

∫ 5
7

2
7

x(s) ds + 7
66

∫ 8
7

6
7

x(s) ds + 8
77

∫ 12
7

9
7

x(s) ds,

(3.6)
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where

F(t, x) =
[

7
7t + 279

(
x8

1 + x6 +
1
8

e–x4
+

1
16

)
,

7
7t + 209

(
x6

1 + x4 +
1
2

cos2 x +
1
2

)]
. (3.7)

Here, a = 1/7, b = 13/7, α = 4/3, β = 2/5, k = 1/12, λ = 5/44, H(s) = s 3
2 + 2s 1

2 + s– 1
2 , n = 3,

μ1 = 6/55, μ2 = 7/66, μ3 = 8/77, η1 = 2/7, η2 = 6/7, η3 = 9/7, ξ1 = 5/7, ξ2 = 8/7, ξ3 = 12/7,
γ = 4/3 + (2 – (4/3))(2/5) = 8/5. From the information, we find that � ≈ 0.7779234866,
� ≈ 5.215399915, and �1 ≈ 0.4643521842.

It is obvious that F is an L1-Carathéodory multi-valued map. In fact, we get ‖F(t, x)‖P ≤
(7/(7t + 209))(x2 + 1). By setting p(t) = 7/(7t + 209), ψ(x) = x2 + 1, we obtain ‖p‖ = 1/30, and
there exists a number M ∈ (0.368665581, 2.712485383) which satisfies inequality (3.2) in
Theorem 3.1. Therefore, all the assumptions of Theorem 3.1 are fulfilled. Thus the Hilfer
boundary value problem (3.6)–(3.7) has at least one solution on interval [1/7, 13/7].

4 Conclusion
This paper discussed a new class of boundary value problems for sequential fractional
differential equations and inclusions involving Hilfer fractional derivatives, supplemented
with Riemann–Stieltjes integral multi-strip boundary conditions. Existence and unique-
ness results are established in the single-valued case by using the classical Banach and
Krasnosel’skĭi fixed point theorems and the nonlinear alternative of Leray–Schauder type.
In the multi-valued case, an existence result is proved by using nonlinear alternative for
contractive maps. By suitable numerical examples we verified the derived analysis. The
results of the present paper are new and significantly contribute to the existing literature
on the topic.
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