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Abstract
In this paper we propose a stable finite difference method to solve the fractional
reaction–diffusion systems in a two-dimensional domain. The space discretization is
implemented by the weighted shifted Grünwald difference (WSGD) which results in a
stiff system of nonlinear ordinary differential equations (ODEs). This system of ordinary
differential equations is solved by an efficient compact implicit integration factor (cIIF)
method. The stability of the second order cIIF scheme is proved in the discrete
L2-norm. We also prove the second-order convergence of the proposed scheme.
Numerical examples are given to demonstrate the accuracy, efficiency, and
robustness of the method.
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1 Introduction
The space-fractional reaction–diffusion equations, in which the integer-order differential
operator is replaced by a corresponding fractional one, have gained great popularity due
to the wide application in physics [1], finance [2], and biology [3–6]. These new fractional-
order models provide a more adequate description of many processes than those of the
integer-order for many processes with anomalous diffusion. This is because factional-
order operators possess the nonlocal nature property such that the models can describe
the phenomena showing the effect of memory and hereditary properties [7].

In this paper, we consider the following two-dimensional space-fractional reaction–
diffusion equation

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t = Kx

∂αx u
∂|x|αx + Ky

∂αy u
∂|y|αy + F(u), (x, y) ∈ �, t ∈ (0, T],

u(x, y, t) = 0, (x, y) ∈ ∂�, t ∈ (0, T],

u(x, y, 0) = u0(x, y), (x, y) ∈ �,

(1)
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where 1 < αx,αy ≤ 2 are the space fractional orders, Kx, Ky > 0 are the diffusion constants.
The Riesz fractional derivatives ∂αx u

∂|x|αx and ∂αy u
∂|y|αy are defined as follows:

∂αx u
∂|x|αx

=

⎧
⎨

⎩

–1
2 cos παx

2
(aDαx

x u + xDαx
b u), 1 < αx < 2,

∂2u
∂x2 , αx = 2,

(2)

∂αy u
∂|y|αy

=

⎧
⎨

⎩

–1
2 cos

παy
2

(cDαy
y u + yDαy

d u), 1 < αy < 2,
∂2u
∂y2 , αy = 2,

(3)

where aDαx
x and xDαx

b are left and right Riemann–Liouville fractional derivatives defined
as

aDα
x u =

1
�(2 – α)

∂2

∂x2

∫ x

a

u(ξ , y)
(ξ – x)(α–1) dξ ,

xDα
b u =

1
�(2 – α)

∂2

∂x2

∫ b

x

u(ξ , y)
(x – ξ )(α–1) dξ .

(4)

Here �(·) denotes the standard Gamma function.
Owing to the applications of fractional differential equations in many fields, it is im-

portant to seek effective method for these fractional models. The fractional differential
equations are solved and analyzed by various analytical methods, such as monotone iter-
ative method [8], Green function method [9], Laplace transform method [10], homotopy
perturbation transform method [11], and other methods [12–16]. However, the analytic
solutions of special fractional differential equations are in the form of trigonometric se-
ries, and it is very difficult to calculate them. For this reason, the study for the numerical
methods has become an important research topic that offers great potential.

In recent years, various classical numerical methods have been extended to solve the
fractional reaction–diffusion equations, such as the finite difference method (FDM) [17–
20], finite element method (FEM) [21–24], and spectral method [25–27]. The finite differ-
ence methods are accepted as one of the most popular numerical methods for fractional
reaction–diffusion equations because they allow easy implementation. Meerschaert and
Tadjeran proposed the first-order shifted Grünwald formula in [18]. Based on the former
work, Tian et al. developed weighted shifted Grünwald–Letnikov (WSGD) formulas [20].
Ortigueira firstly proposed the so-called fractional central difference scheme in [19]. Then
Çelik and Duman analyzed this approximation and applied it to fractional diffusion equa-
tions [17].

The space discretization of fractional reaction–diffusion equation leads to a nonlinear
ordinary differential equations (ODEs). Accurate and efficient simulations of such systems
have lead many researcher to the design of various time discretization methods. The most
notable method among them is the alternating direction implicit (ADI) technique. How-
ever, the discretization matrix obtained is full. It means that the Thomas algorithm for
tridiagonal matrix is no longer applicable. It also should be noted that the ADI methods
are limited to second-order accuracy in time. In this paper, an efficient compact implicit
integration factor (cIIF) method [28, 29] is developed. By introducing the compact repre-
sentation for the matrix approximating the differential operator, the cIIF methods apply
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matrix exponential operations sequentially in every spatial direction. As a result, expo-
nential matrices which are calculated and stored have small sizes, compared to those in
the 1D problem. For two or three dimensions, the cIIF method is more efficient in both
storage and CPU cost.

The main contributions of this work are as follows:
• We provide an efficient approach to compute solutions of the two-dimensional

fractional reaction–diffusion equations even with millions of difference points.
• We prove that the second-order cIIF scheme is stable in the discrete L2-norm.
• We prove the second-order convergence of the proposed scheme, and the numerical

tests verify the theoretical analysis.
The rest of the paper is organized as follows: In Sect. 2 we present some notations

and discretize the two-dimensional fractional reaction–diffusion equations into nonlinear
ODEs in matrix formulation. In Sect. 3, we present the cIIF time discretization scheme.
In Sect. 4 we compute various fractional reaction–diffusion equations to demonstrate the
convergence rates and the efficiency of the proposed scheme. Finally, we summarize our
conclusion in Sect. 5.

2 Numerical method
2.1 Compact finite difference method
The computation domain � is discretized into grids described by the set (xj, yk) = (a +
jhx, c + khy) where hx = (b – a)/Nx, hy = (d – c)/Ny and 0 ≤ j ≤ Nx, 0 ≤ k ≤ Ny. We first
introduce the second-order WSGD method derived in [20] to approximate the Riemann–
Liouville space fractional derivatives. The essential idea of this approximation is using
the weighted average to eliminate the low-order leading terms in asymptotic expansions
for the truncation errors. The WSGD formulas for the left and right Riemann–Liouville
fractional derivatives in the x-direction are defined as

aDα
x u(xj, yk) =

1
hα

x

j+1∑

l=0

ω
(α)
l u(xj–l+1, yk) + o

(
h2

x
)
,

xDα
b u(xj, yk) =

1
hα

x

N–j+1∑

l=0

ω
(α)
l u(xj+l–1, yk) + o

(
h2

x
)
,

(5)

for j = 1, . . . , Nx – 1, k = 1, . . . , Ny – 1. The coefficients ω
(α)
k of the second order in (5) are

given as

ω
(α)
0 =

α

2
g(α)

0 , ω
(α)
l =

α

2
g(α)

l +
2 – α

2
g(α)

l–1, l = 1, 2, . . . , (6)

with

g(α)
0 = 1, g(α)

l =
(

1 –
1 + α

l

)

g(α)
l–1, l = 1, 2, . . . . (7)

We refer the reader to the paper [20] for the detailed proof of the truncation error expres-
sion.
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Based on the discretization of Riemann–Liouville fractional derivatives, the Riesz frac-
tional derivatives in the x-direction can be discretized as

∂αu(xj, yk)
∂|x|α =

–1
2 cos πα

2

(
aDα

x u(xj, yk) + xDα
b u(xj, yk)

)
= δα

x u(xj, yk) + o
(
h2

x
)
, (8)

where δα
x u(xj, yk) = –1

2 cos πα
2

1
hα

x
(
∑j+1

l=0 ω
(α)
l u(xj–l+1, yk) +

∑N–j+1
l=0 ω

(α)
l u(xj+l–1, yk)). Similarly,

Riesz fractional derivatives in the y-direction can be discretized as follows:

∂αu(xj, yk)
∂|y|α = δα

y u(xj, yk) + o
(
h2

y
)
, (9)

where δα
y u(xj, yk) = –1

2 cos πα
2

1
hα

y
(
∑k+1

l=0 ω
(α)
l u(xj, yk–l+1) +

∑N–k+1
l=0 ω

(α)
l u(xj+l–1, yk)).

Defining the grid function Uj,k(t) = u(xj, yk , t), the semidiscrete compact difference
scheme for problem (1) can be written as

∂Uj,k(t)
∂t

= Kxδ
α
x Uj,k(t) + Kyδ

α
y Uj,k(t) + F

(
Uj,k(t)

)
+ Rj,k(t),

where Rj,k(t) = O(h2), h = min{hx, hy}, denotes the truncation error in space. Omitting the
truncation term Rj,k(t) and replacing the grid function Uj,k(t) with its numerical approxi-
mation uj,k(t), we obtain the following difference scheme:

∂uj,k(t)
∂t

= Kxδ
α
x uj,k(t) + Kyδ

α
y uj,k(t) + F

(
uj,k(t)

)
. (10)

To apply the time discretization method for the ODEs (10), we now rewrite them in a
matrix form. Define the numerical solution in the following matrix forms:

U =

⎛

⎜
⎜
⎜
⎜
⎝

u1,1 u1,2 . . . u1,Ny–1

u2,1 u2,2 . . . u2,Ny–1
...

...
. . .

...
uNx–1,1 uNx–1,2 . . . uNx–1,Ny–1

⎞

⎟
⎟
⎟
⎟
⎠

. (11)

For a solution matrix U ∈ R
Nx–1×Ny–1, the discrete L2-norm of U is defined as

‖U‖2 = hxhy

Nx–1∑

j=1

Ny–1
∑

k=1

|uj,k|2.

Then we have

‖U‖2 = hxhy‖U‖2
F , (12)

where ‖U‖F is Frobenius norm. The 2-norm for matrix U is defined as ‖U‖2 = σmax(U)
where σmax(U) represents the largest singular value of matrix U. In the case of a normal
matrix U, ‖U‖2 = λmax(U), with λmax(U) being the absolute value of the largest eigenvalue
of U.
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Then introducing the M × M difference matrix Dα
M as follows:

Dα
M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2ω
(α)
1 ω

(α)
0 + ω

(α)
2 . . . ω

(α)
N–1 ω

(α)
N

ω
(α)
0 + ω

(α)
2 2ω

(α)
1 ω

(α)
0 + ω

(α)
2 . . . ω

(α)
N–1

... ω
(α)
0 + ω

(α)
2 2ω

(α)
1

. . .
...

ω
(α)
N–1 · · · . . . . . . ω

(α)
0 + ω

(α)
2

ω
(α)
N ω

(α)
N–1 . . . ω

(α)
0 + ω

(α)
2 2ω

(α)
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (13)

the difference scheme (8) and (9) can be written in the following matrix form:

(
∂αUj,k

∂|x|α
)

Nx–1,Ny–1
= Dα

Nx–1U + o
(
h2

x
)
,

(
∂αUj,k

∂|y|α
)

Nx–1,Ny–1
= UDα

Ny–1 + o
(
h2

y
)
.

(14)

Let KxDα
Nx–1 = A and KyDα

Ny–1 = B. Then the ODEs (10) can be written in the following
matrix form:

dU
dt

= AU + UB + F(U), (15)

where F(U) is an (Nx – 1) × (Ny – 1) matrix with each element defined as F(uj,k).

2.2 Compact implicit integration factor method
Now we will apply the cIIF method to solve (15). Assume the final time is t = T and let
time step �t = T/N , tn = n�t, 0 ≤ n < N . The numerical approximation matrix for uj,k(t)
at time tn is defined as Un. To construct the cIIF methods for (15), we multiply it by the
integration factor e–At from the left, and by e–Bt from the right, and then integrate over
one time step from tn to tn+1 to obtain

Un+1 = eA�tUneB�t

+ eA�t
(∫ �t

0
e–Aτ F

(
U(tn + τ )

)
eBτ dτ

)

eB�t .
(16)

Then we approximate the integrand in (16) by using the (r – 1)th order Lagrange interpo-
lation polynomial with interpolation points at tn+1, tn, . . . , tn–r+2, namely

Un+1 = eA�tUneB�t

+ �t

(

α1F(Un+1) +
r–2∑

j=0

α–je(j+1)A�tF(Un–j)e(j+1)B�t

)

,
(17)

where

α–j =
1

t

∫ t

0

r–2∏

k=–1
k �=i

τ + kt
(k – j)t

dτ , –1 ≤ j ≤ r – 2.



Zhang et al. Advances in Difference Equations        (2021) 2021:307 Page 6 of 12

The local truncation error is O(tr). In this paper we use the following second-order com-
pact implicit integration factor (cIIF2) scheme:

Un+1 = eA�t
(

Un +
�t
2

F(Un)
)

eB�t +
�t
2

F(Un+1). (18)

The local truncation error for (18) can be written in matrix form as E = (Ejk)Nx–1×Ny–1 with
each element being Ejk = O(t3 + th2).

3 Stability and convergence
We will study the linear stability of the numerical scheme for equation (18) with reac-
tion term F (u) satisfying the Lipschitz continuity condition. To obtain the linear stability
analysis, we need the following lemmas.

Lemma 3.1 (See [30]) When 1 < α ≤ 2, the WSGD operator matrix Dα
M in (13) is a sym-

metric and negative definite matrix.

Lemma 3.2 Let A and B be arbitrary N × N square matrices. We have the following in-
equalities:

‖AB‖F ≤ ‖A‖2‖B‖F , ‖AB‖F ≤ ‖A‖F‖B‖2.

Proof Write the matrix B as B = (b1, b2, . . . , bN ), where the bi, i = 1, 2, . . . , N , are the
columns of B. Then we have

‖AB‖2
F =

N∑

i=1

‖Abi‖2
2 ≤ ‖A‖2

2

N∑

i=1

‖bi‖2
2 = ‖A‖2

2‖B‖2
F .

Taking square roots completes the proof. �

Theorem 3.3 Assume that function f (u) in (1) is globally Lipschitz continuous, i.e., there
exists a real constant L such that |f (u) – f (v)| ≤ L|u – v|. The fourth-order cFDM coupled
with cIIF2 scheme (18) is unconditionally stable in the discrete L2-norm.

Proof Assume that U1
n+1 and U2

n+1 are two different solutions of (18) with different initial
data sets. Let �n+1 = U1

n+1 – U2
n+1, then it satisfies

�n+1 = eA�t(�n + F
(
U1

n
)

– F
(
U2

n
))

eB�t + F
(
U1

n+1
)

– F
(
U2

n+1
)
. (19)

By Lemma 3.2 and Lipschitz continuity, taking Frobenius norm for (19) results in

‖�n+1‖F ≤ ∥
∥eA�t∥∥

2

(

1 +
Lt

2

)

‖�n‖F
∥
∥eB�t∥∥

2 +
Lt

2
‖�n+1‖F . (20)

Since the matrices A and B are negative definite, the eigenvalues of matrix eA�t are smaller
than 1 such that ‖eA�t‖2 ≤ 1 and ‖eB�t‖2 ≤ 1. We get the following result from (20):

‖�n+1‖F ≤
(1 + L�t

2

1 – L�t
2

)

‖�n‖F . (21)
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With time iterations, we have

‖�n‖F ≤
(1 + L�t

2

1 – L�t
2

)n

‖�0‖F . (22)

From the above result (22), it can be concluded that

‖�n‖F ≤
(1 + L�t

2

1 – L�t
2

)n

‖�0‖F =
(1 + L�t

2

1 – L�t
2

) T
t ‖�0‖F . (23)

Then (23) yields the following result:

‖�n‖F ≤ 2eLT‖�0‖F . (24)

Now we complete the proof by (12). �

Theorem 3.4 Assume that function f (u) in (1) is globally Lipschitz continuous. The fourth-
order cFDM coupled with cIIF2 scheme (18) converges to the solution of fractional problem
(1) with order of O(t2 + h4) in the discrete L2-norm.

Proof We denote by ˜U and U the exact value and the approximation of solution matrix of
(1), respectively. Substituting ˜U into (18), we have

˜Un+1 = eA�t
(

˜Un +
�t
2

F(Ũn)
)

eB�t +
�t
2

F(˜Un+1) + E, (25)

where E = (Ejk)Nx–1×Ny–1 and Ejk = O(t3 + th4). Denote � = ˜U – U. Subtracting (25)
from (18) yields the following error equation:

�n+1 = eA�t
(

�n +
�t
2

(
F(Ũn) – F(Un)

)
)

eB�t +
�t
2

(
F(Ũn+1) – F(Un+1)

)
+ E. (26)

It is obvious that �0 = 0 for the initial condition. Taking Frobenius norm for (26) and
applying Theorem 3.3, we obtain

‖�n+1‖F ≤ ∥
∥eA�t∥∥

2

(

1 +
Lt

2

)

‖�n‖F
∥
∥eB�t∥∥

2

+
Lt

2
‖�n+1‖F + Ct(Nx – 1)(Ny – 1)

(
t2 + h4),

(27)

by Lipschitz continuity. Here C denotes a positive constant independent of discretization
parameters, which may take different values at different occurrences. As in the proof of
Theorem 3.3, we have

‖�n+1‖F ≤
(1 + L�t

2

1 – L�t
2

)

‖�n‖F +
Ct

1 – L�t
2

(Nx – 1)(Ny – 1)
(
t2 + h4). (28)

As time evolves, we have

‖�n‖F ≤
(1 + L�t

2

1 – L�t
2

)n

‖�0‖F +
n∑

k=1

(1 + L�t
2

1 – L�t
2

)k

Ct(Nx – 1)(Ny – 1)
(
t2 + h4)
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Table 1 Error, order of accuracy with different values of αx and αy for Example 1

αx = αy = 1.4 αx = 1.4, αy = 1.8 αx = αy = 1.8

Nx × Ny L2 error Order L2 error Order L2 error Order

16× 16 1.13× 10–5 – 1.18× 10–5 – 1.18× 10–5 –
32× 32 2.75× 10–6 2.02 2.86× 10–6 2.03 2.85× 10–6 2.03
64× 64 6.74× 10–7 2.02 7.07× 10–7 2.01 7.09× 10–7 2.00
128× 128 1.68× 10–7 2.00 1.75× 10–7 2.01 1.78× 10–7 2.00

≤
(1 + L�t

2

1 – L�t
2

)n

Cnt(Nx – 1)(Ny – 1)
(
t2 + h4)

≤ CT(Nx – 1)(Ny – 1)
(
t2 + h4).

Multiplying by hxhy on both sides of the above inequality, we get ‖�n‖ ≤ CT(b – a)(d –
c)(t2 + h4). This completes the proof. �

4 Numerical experiments
In this section, we will demonstrate the performance of the proposed scheme on some
test problems. Firstly, in order to verify our theoretical analysis, we test our scheme for
a nonlinear reaction–diffusion equation with exact solution. Then we apply the scheme
to the two-dimensional space Riesz fractional Fitzhugh–Nagumo model which represents
one of the simplest models for studying excitable media. In all the numerical experiments,
we used a uniform spatial step size along each direction, i.e., hx = hy = h. All the compu-
tations were performed in Matlab based on a ThinkPad desktop with i3-3110 CPU and 4
GB memory.

Example 1 We consider the following nonlinear reaction–diffusion equation on a square
� = [0, 1]2:

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t = K ∂αx u

∂|x|αx + K ∂αy u
∂|y|αy + F(u) + f (x, y, t), (x, y) ∈ �, t ∈ (0, T],

u(x, y, t) = 0, (x, y) ∈ ∂�, t ∈ (0, T],

u(x, y, 0) = x2(1 – x)2y2(1 – y)2, (x, y) ∈ �,

(29)

with F(u) = –u2. The exact solution of this equation is u = e–tx2(1 – x)2y2(1 – y)2. The final
computation time is T = 1. The function f (x, y, t) is determined by the exact solution. For
details of f (x, y, t), please refer to [31].

We use the second-order WSGD method coupled with cIIF scheme to demonstrate the
accuracy of space and time discretization. The orders of convergence in space and time
are computed as q = log2(e(h)/e(h/2)) and p = log2(e(τ )/e(τ /2)), respectively. Table 1 dis-
plays the L2 errors of the WSGD scheme with different values of αx and αy. The order of
convergence is computed using a very small time step t = 1E – 3. In Table 2, the tem-
poral errors and convergence order of the cIIF2 scheme are given for different time steps
and αx and αy, with h = 1/256. From Tables 1 and 2, we conclude that the convergence
rate in space and time is of second order. The numerical results are well in line with the
theoretical analysis.
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Table 2 The temporal errors and convergence order for CIIF2 scheme in Example 1

αx = αy = 1.4 α = 1.5 α = 1.8

τ error order error order error order

1d – 2 1.19E–5 – 6.31E–5 2.00 1.70E–5 2.00
5d – 3 3.33E–6 2.00 1.58E–5 2.00 4.26E–6 1.99
2.5d – 3 9.06E–7 1.99 3.95E–6 2.00 1.06E–6 2.01
1.25d – 3 2.43E–7 1.99 6.05E–7 2.00 1.06E–6 2.01

Example 2 Consider the following space fractional Fitzhugh–Nagumo model on a square
� = [0, 2.5]2:

⎧
⎨

⎩

∂u
∂t = Kx

∂αx u
∂|x|αx + Ky

∂αy u
∂|y|αy + u(1 – u)(u – μ) – w, (x, y) ∈ �, t ∈ (0, T],

∂w
∂t = ε(βu – γ w – δ), (x, y) ∈ �, t ∈ (0, T],

(30)

with μ = 0.1, ε = 0.01,β = 0.5,γ = 1, and δ = 0. The Fitzhugh–Nagumo model is used to
describe the propagation of the transmembrane potential in the nerve axon. The initial
conditions in this example are taken as

u(x, y, 0) =

⎧
⎨

⎩

1, (x, y) ∈ (0, 1.25] × (0, 1.25],

0, elsewhere,

w(x, y, 0) =

⎧
⎨

⎩

0, (x, y) ∈ (0, 2.5) × (0, 1.25),

0.1, (x, y) ∈ (0, 2.5) × [1.25, 2.5),

(31)

with homogeneous Dirichlet boundary condition.

The Fitzhugh–Nagumo model can generate the stable patterns in the form of spiral
waves. Initially, we set the state in the lower-left quarter of the domain as u = 1 and in
the upper-half part as w = 0.1. Then the trivial state (u, w) = (0, 0) was perturbed and fur-
ther curved and rotated clockwise, generating the spiral pattern.

In our simulation, the computation domain is discretised using Nx = Ny = 256 points in
each spatial coordinate. The time step is chosen as t = 0.2 and the final time is set to be
T = 1000. We first consider the integer-order Fitzhugh–Nagumo model (i.e., αx = αy = 2).
The spiral wave solutions for two diffusion coefficients Kx = Ky = 1E – 4 and Kx = Ky = 1E –
5 are shown in Fig. 1. We find that the number of wavefronts increases with decreasing the
diffusion coefficient. Keeping the coefficients Kx = Ky = 1E – 4 and reducing the fractional
powers αx and αy, we then get the stable rotating solution for αx = αy = 1.8 (Fig. 2(a)) and
αx = αy = 1.5 (Fig. 2(b)). As expected, the width of the excitation wavefront (red areas)
reduces with decreasing αx and αy, so does the number of the wavefronts. However, it is
noted that the role of reducing the fractional power is not equivalent to the influence of a
decreased diffusion coefficient in the integral order case. This can be clearly observed by
comparing Figs. 1 and 2.

We take the different diffusion coefficients in the x- and y-directions as Kx = 1E – 4, Ky =
2.5E – 5. Figure 3(a) displays the wave propagation at T = 1000. The smaller diffusion
coefficient in the y-direction leads to an elliptical pattern. Next we consider the anisotropic
fractional power αx = 2,αy = 1.7 with Kx = Ky = 1E – 4. A similar pattern is displayed in
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Figure 1 Solutions of Example 2 with αx = αy = 2 for varying diffusion coefficient: (a) Kx = Ky = 1E – 4 and
(b) Kx = Ky = 1E – 5

Figure 2 Solutions of Example 2 with Kx = Ky = 1E – 4 for varying fractional power: (a) αx = αy = 1.8 and
(b) αx = αy = 1.5

Fig. 3(b), showing that the superdiffusion effect in the y-direction causes a similar elliptic
spiral wave.

5 Concluding remarks
In this paper, the weighted shifted Grünwald difference method is developed to solve the
two-dimensional Riesz space fractional nonlinear reaction–diffusion equation, in which
the temporal component is discretized by the compact implicit integration factor method.
The advantage of the method is that computing exponentials of large matrices is reduced
to the computation of exponentials of matrices of significantly smaller sizes. The sta-
bility and convergence are strictly proven, which shows that the compact implicit in-
tegration factor method is stable in L2-norm and convergent with second-order accu-
racy. The WSGD method coupled with cIIF method is applied to solve the fractional
Fitzhugh–Nagumo model. Numerical experiments are provided to verify the theoreti-
cal analysis. The numerical results confirm that the proposed method is a powerful and
reliable method for the fractional reaction–diffusion equations. Given its efficiency and
good stability conditions, the cIIF method can be extended to the fourth-order fractional
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Figure 3 Solutions of Example 2 for varying diffusion coefficient and fractional power: (a) αx = αy = 2 and
Kx = 1E – 4,Ky = 2.5E – 5, (b) αx = 2,αy = 1.7 and Kx = Ky = 1E – 4

parabolic equations (e.g., Cahn–Hilliard equations), which will also be further explored in
the future work.
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