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Abstract
Our aim in this paper is presenting an attractive numerical approach giving an
accurate solution to the nonlinear fractional Abel differential equation based on a
reproducing kernel algorithm with model endowed with a Caputo–Fabrizio fractional
derivative. By means of such an approach, we utilize the Gram–Schmidt
orthogonalization process to create an orthonormal set of bases that leads to an
appropriate solution in the Hilbert spaceH2[a,b]. We investigate and discuss stability
and convergence of the proposed method. The n-term series solution converges
uniformly to the analytic solution. We present several numerical examples of potential
interests to illustrate the reliability, efficacy, and performance of the method under
the influence of the Caputo–Fabrizio derivative. The gained results have shown
superiority of the reproducing kernel algorithm and its infinite accuracy with a least
time and efforts in solving the fractional Abel-type model. Therefore, in this direction,
the proposed algorithm is an alternative and systematic tool for analyzing the
behavior of many nonlinear temporal fractional differential equations emerging in the
fields of engineering, physics, and sciences.
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1 Introduction
The area of fractional calculus is an active interesting dynamic branch of theoretical and
applied mathematical analysis, quantum mechanics, engineering. and physical sciences.
The original idea of fractional calculus dates back to a question of L’Hospital at the end of
the seventeenth century, whose text was about the noninteger-order derivative of a func-
tion. Despite the early discovery of the fractional order derivatives, which generalizes the
foundations and principles of the classical calculus analysis, applied scientists were not lat-
terly aware of the fact that they could mathematically make use of the fractional calculus
in modeling the real-life situations. During the past few decades, an interest of mathemati-
cians has been focused on developing operators of fractional derivatives and some appli-
cations in dealing with solutions of the generalized classic differential equations, knowing
the effect of the fractional conditioning on the quality of the established models [1–4].
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This trend contributed a lot to the emergence of a number of fractional derivative defi-
nitions such as Riemann–Liouville, Caputo, Marchaud, Erdélyi–Kober, Feller, Atangana–
Baleanu, Grünwald–Letnikov, Sonin–Letnikov, Hadamard, and so forth [5–9]. Anyhow,
it has been shown through numerous studies on fractional analysis that different defini-
tions are equivalent under certain circumstances. This variety of differential and integral
fractional operators provides the opportunity to choose the most suitable one according
to the problem associated with the initial and boundary conditions to obtain the optimal
solution to the studied problem. Although these definitions are well known and widely
used, they have some flaws and limitations and sometimes fail to differentiate the func-
tions, as in the chain, quotient, and Leibniz rules, in addition to some having a singular
kernel. Nevertheless, the Caputo concept possesses several interesting features and allows
traditional initial and boundary conditions to be included in the problem formulation.
Therefore some modern concepts were developed based on the Caputo sense, among
which the Atangana–Baleanu–Caputo derivative, Caputo–Fabrizio derivative, and Ca-
puto k-fractional derivatives. Caputo and Fabrizio [10] introduced a novel concept of the
fractional derivative, known as the Caputo–Fabrizio fractional derivative, which contains
a nonsingular exponential kernel that leads to better modeling of real-world problems.
Since then, the Caputo–Fabrizio and Atangana-Baleanu-Caputo (ABC) concepts have wit-
nessed an increasing demand from scholars to conduct numerous analytical and applied
studies in various scopes of engineering, physics and pure mathematics [11–18].

From a historical point of view, Abel-type dynamic equations date back to the Norwe-
gian mathematician Niels Abel while studying the theory of elliptic functions. Depend-
ing on the context, Abel differential equations of the first and second kinds are one of
the most important nonlinear nonhomogeneous equations having a long history and var-
ious applications in physics, chemistry, biology, medicine, and epidemiology, including
fuel mechanics, magnetic statistics, solid mechanics, thin film condensation, and medium
problems [19, 20]. For completeness, we also stress that Abel differential equations find ap-
plications in probability when full moment problems are involved and, moreover, partial
and pseudodifferential equations also very suitably fit in the modeling of real phenom-
ena like those aforementioned; see [21–24]. Furthermore, they are a generalization of the
common Riccati and Bernoulli differential equations and of a particular class of logis-
tic differential equations. In many situations, nonlinear partial differential equations that
have unpredictable solution behaviors can be reduced to a class of Abel differential equa-
tions. Using some integrability terms of Abel equation, various classes of traveling wave
and soliton solutions to nonlinear partial evolution equations can be obtained. For further
illustration, exact-form solutions of certain types of the Schrödinger equation, Fisher–
Kolmogorov equation, Newell–Whitehead equation, FitzHugh–Nagumo equation, and
Pochhammer–Chree equation can be achieved using standard integrability conditions for
Abel differential equations with high efficiency compared to direct conventional methods
[25].

In this analysis, we employ the reproducing kernel algorithm (RKA) for investigating
numerical solutions for a class of nonlinear fractional Abel differential equations (FADE)
of both kinds in the sense of Caputo–Fabrizio derivative. More specifically, we consider
the following nonlinear FADE of the first kind:

CFDα
a ω(t) = p3(t)ω3(t) + p2(t)ω2(t) + p1(t)ω(t) + p0(t), 0 < α ≤ 1, (1.1)
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where a ≤ t ≤ b, p3(t) �= 0, and p2(t), p1(t), and p0(t) are meromorphic functions in tem-
poral direction x. Also, we consider the following nonlinear FADE of the second kind:

ω(t)CFDα
a ω(t) = p3(t)ω3(t) + p2(t)ω2(t) + p1(t)ω(t) + p0(t), 0 < α ≤ 1, (1.2)

along with the initial condition

ω(a) = ω0, (1.3)

where ω0 is a real constant, and a ≤ t ≤ b. For aforesaid equations, ω(t) ∈ H2[a, b] is an
unknown analytic function to be solved, and CFDα

a is a differential operator of order α in
the Caputo–Fabrizio sense. More descriptively, when p2(t) = 0 and p0(t) = 0, the first-kind
FADE (1.1) reduces to the fractional Bernoulli differential equation, and when p3(t) = 0,
it reduces to the fractional Riccati differential equation. Using the substitution ω(t) = 1

ω(t) ,
the first-kind FADE can be transformed into the second-kind FADE [26]. These models
are obtained by replacing the classical-order derivative for the ordinary Abel differential
equation by the fractional-order derivative in the Caputo–Fabrizio sense. For more detail
on fractional versions of Abel differential problems using various fractional operators, we
refer the reader to [27–30] and the references therein.

In general, the exact-form solutions of several classes of ordinary Abel DEs and FADEs of
a cubic or higher order are rare and missing in the literature, and only specific approximate
solutions are provided. However, the importance of the Abel DEs often coincides with the
inability to find an analytical solution due to the complexities involved. Hence the urgent
need is developing efficient numerical methods to obtain approximate analytical solutions
for these types of dynamic differential equations. For instance, the short-memory principle
technique is also applied to compute approximate solutions for the first- and second-kind
fractional Abel differential equations with Grünwald–Letnikov operator [28]. The opera-
tional matrix method [27] is proposed, depending on Genocchi polynomials, to solve both
kinds of the fractional Abel differential equations in the Caputo sense, whereas the homo-
topy analysis method [26] is used to obtain approximate solutions of the fractional Abel
differential equations in the Caputo sense. In [29], the spectral and Newton–Krylov sub-
space methods are implemented based on generalized Bessel functions to handle the first-
kind fractional Abel differential equations in the Riemann–Liouville sense. On the other
aspect as well, to deal with the ordinary Abel differential equations, several mathematical
methods can be found in [31–33] and the references therein. The main contribution of
this work is developing RKA to numerically solve the nonlinear FADEs of both kinds in
the Hilbert space H2[a, b].

Nevertheless, RKA is among the most accurate and effective numerical approximate
methods, which have wide applications in various fields of applied sciences [34–40]. In
recent years, researchers have devoted a lot of efforts and attention to understanding the
advanced implementation procedures and the characteristics of the RK method as well as
its applications to various scientific models due to its capacity, potential, and distinctive
properties. Among these advantages, it is specifically designed for working with nonlinear
differential equations to obtain accurate solutions with less time effort and infinite preci-
sion along the entire respective domain. This method also ensures a rapid convergence
of solutions, in which approximate solutions uniformly converge to the exact solutions
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in the concerned Hilbert space, in addition to the adaptive ability to deal with fractional
operators and easily fit any changes to the model. For more detail, we refer to [41–47].

This research is organized as follows. In Sect. 2, we review several properties of the
Caputo–Fabrizio (CF) derivative. In Sect. 3, we describe the reproducing kernel Hilbert
spaces with some important theories. Section 4 is devoted to the implementation of the
RK algorithm to deal with a nonlinear FADE under the CF-derivative. In Sect. 5, we discuss
the stability and convergence of the proposed method. Numerical examples are given in
Sect. 6 to demonstrate the reliability and efficiency of the RKA method. This analysis ends
with a brief conclusion.

2 CF-derivative and preliminaries for reproducing kernel spaces
In this section, we consider a fractional version of differentiation operators without sin-
gular kernel, the Caputo–Fabrizio fractional derivative, equipped with some preliminary
facts. Such a novel update provides the more recent and accurate interpretation of the real-
life situations compared to various previous releases. The Caputo fractional and Caputo–
Fabrizio fractional derivatives are read as follows.

Definition 2.1 ([40]) The Caputo fractional derivative of a differentiable function ω(t) is
defined as

Dα
a ω(t) =

1
�(1 – α)

∫ t

a
(t – s)–αω′(s) ds,

where α ∈ [0, 1), t > a, and � is the special gamma function.

Despite the widespread use of the aforesaid definition, it has some limitations and ob-
stacles when modeling some physical phenomena whose effects and setbacks are clearly
negative regarding the accuracy of the calculation and results. Much of this deficiency is
limited to the fact that Caputo’s definition possesses a singular kernel. Therefore a novel
version of the fractional differential operator has been introduced by Caputo and Fabrizio
in 2015. The idea of this novel operator is replacing the singular kernel in Caputo’s op-
erator with a regular exponential one, which has the ability to work effectively with the
phenomenon accurately and correctly. Such modification improves the quality of the cal-
culation and results [12].

Definition 2.2 ([10]) For 0 < α ≤ 1, let ω(t) be a function in the usual Sobolev space over
[a, b], that is, ω(t) ∈ H[a, b]. Then the fractional order of the Caputo–Fabrizio derivative
(CF-derivative) is defined as

CFDα
a ω(t) =

1
2
M(α)(2 – α)

1 – α

∫ t

a
ω′(s) exp

[
–α(t – s)

1 – α

]
ds, (2.1)

where M(α) is the normalization function, depending on α, such that M(0) = M(1) = 1.

It is proper to mention that an explicit formula when M(α) = 2
2–α

is provided in [11] so
that the CF-derivative, referred to in (2.1), can be equivalently converted into

CFDα
a ω(t) =

1
1 – α

∫ t

a
ω′(s) exp

[
–α(t – s)

1 – α

]
ds.
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Definition 2.3 ([11]) For 0 < α ≤ 1, let ω(t) ∈H[a, b]. Then, the fractional integral of ω(t)
corresponding to the CF-derivative of order α is defined as

CFIα
a ω(t) =

2(1 – α)
(2 – α)M(α)

ω(t) +
2α

(2 – α)M(α)

∫ t

0
ω(s) ds.

Let us now introduce certain interesting properties of the CF derivative:
1. The CF-derivative of any constant is zero, that is, CFDα

a M = 0, ∀ M ≥ 0.
2. The CF-derivative is a linear operator, that is,

CFDα
a
(
λ1ω1(t) + λ2ω2(t)

)
= λ1

CFDα
a ω1(t) + λ2

CFDα
a ω2(t).

3. For 0 < α ≤ 1 and ω ∈H[a, b], we have

(CFIα
a
)(CFDα

a
)
ω(t) = ω(ξ ) – ω(a).

4. For 0 < α ≤ 1, the CF-derivative of order α + n is defined for n ∈ N as

CFDα+n
0 ω(t) = CFDα

(
D(n)

a ω(t)
)

=
1

1 – α

∫ t

a
ω(n)(s) exp

[
–α(t – s)

1 – α

]
ds.

Now, to solve the nonlinear FADEs (1.1)–(1.3) in the Hilbert space H2[a, b], we build two
reproducing kernel functions.

Definition 2.4 ([36]) Let W be the Hilbert space consisting of all functions defined on a
nonempty set � into C. Then W is a reproducing kernel Hilbert space (RKHS) if for every
t ∈ �, the evaluation function δt(f ) = f (t) is bounded in W .

Definition 2.5 ([36]) Let W be an RKHS defined in a nonempty set �. Then there exists
a unique R(·, t) ∈W such that 〈f (·),R(·, t)〉 = f (t) for each f ∈W .

Definition 2.6 ([36]) Let � be a nonempty abstract set, and let W be an RKHS. Then a
function R : �×� −→C defined as R(t, s) = Rt(s) is called a reproducing kernel function
(RKF) of the space W .

The kernel function possesses some important properties of being unique representa-
tion, conjugate symmetric, and positive-definite.

Definition 2.7 ([41]) The reproducing kernel space H1[a, b] is defined by

H1[a, b] =
{
ω(t) | ω : [a, b] −→ R is absolutely continuous on [a, b],ω′(t) ∈ L2[a, b]

}
.

The inner product and norm associated with the space H1[a, b] are given as

⎧⎨
⎩

〈ω1,ω2〉H1 = ω1(a)ω2(a) +
∫ b

a ω1
′(t)ω2

′(t) dt, ∀ω1,ω2 ∈H1[a, b],

‖ω1‖H1 = 〈ω1,ω1〉1/2, ∀ω1 ∈H1[a, b].
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The unique representation of the reproducing kernel Rt(s) of H1[a, b] is

Rt(s) =
1

2 sinh(b – a)
[
cosh(t + s – b – a) + cosh

(|t – s| – b + a
)]

.

Definition 2.8 ([41]) The reproducing kernel space H2[a, b] is defined by

H2[a, b] =
{
ω(t) | ω,ω′ : [a, b] −→ R are absolutely continuous on [a, b],

ω(2)(t) ∈ L2[a, b]
}

.

The inner product and norm associated with the space H2[a, b] are given as

⎧⎨
⎩

〈ω1,ω2〉H2 =
∑1

i=0 ω
(i)
1 (a)ω(i)

2 (a) +
∫ b

a ω
(2)
1 (t)ω(2)

2 (t) dt, ∀ω1,ω2 ∈H2[a, b],

‖ω1‖H2 = 〈ω1,ω1〉1/2, ∀ω1 ∈H2[a, b].

The unique representation of the reproducing kernel Kt(s) of H2[a, b] is given as

Kt(s) =

⎧⎨
⎩

1 + (s – t)(t – a) + 1
2 (s – a)(t – a)2 – 1

6 (t – a)3, a ≤ s < t,

1 + (t – s)(s – a) + 1
2 (t – a)(s – a)2 – 1

6 (s – a)3, a < t ≤ s.

3 RKA for solving FADEs under CF-derivative
In this section, the RK implementation method is applied to solve the nonlinear FADEs
(1.1)–(1.3) of both kinds in the sense of CF-derivative. Meanwhile, some related lemmas
and theories are provided to create analytical and approximate solutions of the FADEs in
the space H2[a, b]. First, define the linear operator

L : H2[a, b] −→H1[a, b]

by

Lω(t) = CFDα
a ω(t).

On the other hand, by introducing the simple transformation ω(t) := ω(t) – ω0 to homog-
enize the initial condition (1.3), the FADEs (1.1)–(1.3) can be equivalently rewritten as

⎧⎨
⎩
Lω(t) = Nσ (t,ω(t)), σ = 1, 2,

ω(a) = 0,
(3.1)

where Nσ (t,ω(t)), σ = 1, 2, are the nonlinear terms of both kinds of the FADEs such that
N1(t,ω(t)) = p3(t)ω3(t) + p2(t)ω2(t) + p1(t)ω(t) + p0(t) and N2(t,ω(t)) = ω–1(t)(p0(t)ω3(t) +
p1(t)ω2(t) + p2(t)ω(t) + p3(t)), where ω(t) ∈H2[a, b] and Nk(t,ω(t)) ∈H1[a, b].

To apply the proposed algorithm for solving (3.1) in the space H2[a, b], we need the
following theorems.

Theorem 3.1 The linear fractional differential operator L : H2[a, b] −→ H1[a, b] is
bounded.
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Proof To show the boundedness of the operator L, we have

∥∥Lω(t)
∥∥2
H1 =

〈
Lω(t),Lω(t)

〉
H1 =

[
Lω(a)

]2 +
∫ b

a

[
∂

∂t
(
Lω(t)

)]2

dt.

By the RK property of Rt(s) on the space H1[a, b] and the continuity of Rt(s) and R′
t(s) on

[a, b] there exist constants K1, K2 such that ‖ ∂ i(CFDα
aRt (s))

∂ti ‖2
H2 ≤ Ki, i = 1, 2. Consequently,

we get

∣∣(CFDα
a ω

)(i)(t)
∣∣ =

∣∣〈(CFDα
a ω

)(i)(t),Rt(s)
〉
H1

∣∣

=
∣∣∣∣
〈
ω(t),

∂ i(CFDα
aRt(s))

∂ti

〉
H2

∣∣∣∣

≤
∥∥∥∥∂ i(CFDα

aRt(s))
∂ti

∥∥∥∥
H2

∥∥ω(τ )
∥∥
H2

≤ K
∥∥ω(t)

∥∥
H2 ,

where K = max{K1, K2}. �

Without loss of generality, hereunder are the steps to create an orthogonal basis system
of the space H2[a, b]:

• Take a countable dense subset {ti}∞i=1 ⊂ [a, b].
• Define the function �i(·) = Rti (·).
• Put 
i(·) = L��i(·), where L� is the adjoint operator of L.

Hence by means of the Gram–Schmidt orthogonalization process for {
i(·)}∞i=1 the nor-
malized basis system {
̂i(·)}∞i=1 can be given as


̂i(t) =
i∑

k=1

βik
i(t) (βii > 0, i = 1, 2, . . .). (3.2)

Therefore the procedure of obtaining the orthonormal coefficients βik of (3.2) can be il-
lustrated by Algorithm 1.

Theorem 3.2 If {ti}∞i=1 is a dense set on [a, b], then the orthogonal function system {
i(t)}∞i=1

is complete in H2[a, b], and 
i(t) = LsKt(s)|s=ti .

Algorithm 1 Gram–Schmidt normalization process
procedure To obtain the normalized basis system 
̂i(·)}∞i=1 of H2[a, b]:

for i = 1 to n and k = 1 to i do
βik|i=k=1 = (‖
i(t)‖H2 )–1

βik|i=k �=1 = (‖
i(t)‖ –
∑i–1

p=1〈
i(t), 
̂p(t)〉2
H2 )–1

βik|i>k = –(‖
i(t)‖H2 –
∑i–1

p=1〈
i(t), 
̂p(t)〉2
H2 )– 1

2
∑i–1

p=k〈
i(t), 
̂p(t)〉H2 )

for i = 1 to n do

̂i(t) =

∑i
k=1 βik
i(t).
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Proof Note that


i(τ ) = L∗�i(t) =
〈
L∗�i(s),Kt(s)

〉
H2 =

〈
LKt(s),�i(s)

〉
H1 = LsKt(s)|s=ti .

Let us show the completeness of the orthogonal basis system {
i(t)}∞i=1 in H2[a, b]. For
each fixed ω(t) ∈H2[a, b], letting 〈ω(t),
i(t)〉H2 = 0 for i = 1, 2, . . . , we have

〈
ω(t),
i(t)

〉
H2 =

〈
ω(t),L∗�i(t)

〉
H2 =

〈
Lω(t),�i(t)

〉
H2

= Lω(ti) = 0.

Since {ti}∞i=1 is dense on [a, b], we have Lω(t) = 0. Therefore ω(t) = 0 by the existence of
the inverse operator L–1. �

Lemma 3.3 The orthonormal basis system {
̂i(t)}n
i=1 in H2[a, b] is linearly independent.

Proof Let {
̂i(t)}n
i=1 be an orthonormal basis sequence. Then

n∑
1=1

μi
̂i(t) = 0.

Multiplication by a stationary 
̂j(t) gives

〈 n∑
1=1

μi
̂i(t), 
̂j(t)

〉

H2

=
n∑

1=1

μi
〈

̂i(t), 
̂j(t)

〉
H2 = μj = 0, j = 1, 2, . . . , n.

When n tends to infinity, the proof is similar. �

Theorem 3.4 If {t}∞i=1 is dense on [a, b] and ω(t) ∈H2[a, b] is the exact solution of the FADE
(3.1), then ω(t) can be represented as

ω(t) =
∞∑
i=1

�i
̂i(t),

where �i =
∑i

k=1 βikNσ (tk ,ω(tk)), σ = 1, 2, and βik are the orthogonalization coefficients.

Proof For each ω(t) ∈ H2[a, b] and for any complete orthonormal sequence {
̂i(t)}n
i=1 on

H2[a, b], the function ω(t) can be expressed as the form of the Fourier series expansion∑∞
1=1〈ω(t), 
̂i(t)〉H2
̂i(t), which is a convergent series in the sense of ‖ · ‖H2 . Therefore we

obtain

ω(t) =
∞∑
i=1

〈
ω(t), 
̂i(t)

〉
H2
̂i(t)

=
∞∑
i=1

i∑
k=1

βik
〈
ω(t),
i(t)

〉
H2
̂i(t)

=
∞∑
i=1

i∑
k=1

βik
〈
ω(t),L∗�k(t)

〉
H2
̂i(t)
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=
∞∑
i=1

i∑
k=1

βik
〈
Lω(t),�k(t)

〉
H2
̂i(t)

=
∞∑
i=1

i∑
k=1

βikNσ

(
tk ,ω(tk)

)

̂i(t)

=
∞∑
i=1

�i
̂i(t). �

To obtain an approximate solution ωn(t) of the nonlinear FADEs of both kinds, we define
the n-term truncated solution of the analytical solution ω(t) with coefficients �i as follows

⎧⎨
⎩

ωn(t) =
∑n

i=1 �i
̂i(t),

�i =
∑i

k=1 βikNσ (tk ,ωk–1(tk)).
(3.3)

In fact, the solution of the nonlinear FADE is fixed and depends on the appropriate choice
for the initial condition.

4 Stability and convergence analysis of the RKA
In this section, we investigate the stability and convergence of the proposed method to
solve the nonlinear FADEs (1.1)–(1.3) in the space H2[a, b].

Theorem 4.1 Suppose thatNσ (t,ω(t)) satisfies the Lipschitz condition with respect to ω(t):

∣∣Nσ

(
t,ω(t)

)
– Nσ

(
t, ω̄(t)

)∣∣ ≤ K
∣∣ω(t) – ω̄(t)

∣∣, ∀Nσ

(
t,ω(t)

)
,Nσ

(
t, ω̄(t)

)
,

where K is the Lipschitz coefficient. Then the iterative sequence (3.3) converges if K < ‖L‖∞.

Proof From the Lipschitz condition we have

∥∥Nσ

(
t,ω(t)

)
– Nσ

(
t, ω̄(t)

)∥∥∞ ≤ K
∥∥ω(t) – ω̄(t)

∥∥∞,

where ‖ω(t)‖∞ = supt∈[a,b] |ω(t)|. By (3.1) we can write

ωn(t) – ωn–1(t) = L–1(Nσ

(
t,ωn–1(t)

)
– Nσ

(
t,ωn–2(t)

))
.

Letting n ∈N, we have

‖ωn – ωn–1‖∞ ≤ K
‖L‖∞

‖ωn–1 – ωn–2‖∞

≤
(

K
‖L‖∞

)2

‖ωn–2 – ωn–3‖∞

≤ · · ·

≤
(

K
‖L‖∞

)n–1

‖ω1 – ω0‖∞.

(4.1)
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Thus, for m, n ∈N such that m > n,

‖ωm – ωn‖∞ ≤ ‖ωm – ωm–1‖∞ + ‖ωm–1 – ωm–2‖∞ + · · · + ‖ωn+1 – ωn‖∞

≤
(

K
‖L‖∞

)m–1

‖ω1 – ω0‖∞+ ≤
(

K
‖L‖∞

)m–2

‖ω1 – ω0‖∞ + · · ·

≤
(

K
‖L‖∞

)n

‖ω1 – ω0‖∞

≤
(

K
‖L‖∞

)n m–n–1∑
i

(
K

‖L‖∞

)i

‖ω1 – ω0‖∞

≤
(

K
‖L‖∞

)n ‖L‖∞
‖L‖∞ – K

‖ω1 – ω0‖∞.

So, for any ε > 0, there exist m > n > p such that ‖ωm – ωn‖∞ < ε. This shows that ωn is a
Cauchy sequence and hence converges. �

Now we discuss the stability of the proposed method for the solution of the nonlinear
FADEs. To do this, we need the following lemma.

Lemma 4.2 If ω(t) ∈H2[a, b], then there exists a constant M > 0 such that

‖ω‖∞ ≤ M‖ω‖H2 and
∥∥ω′∥∥∞ ≤ M‖ω‖H2,

where ‖ω‖∞ = sup{|ω(t)|t ∈ [a, b]}.

Proof Letting ω(i)(t) ∈H2[a, b], i = 0, 1, we have

∣∣ω(i)(t)
∣∣ =

∣∣〈ω(i)(s),Kt(s)
〉
H2

∣∣ =
∣∣∣∣
〈
ω(s),

∂ i

∂si Kt(s)
〉
H2

∣∣∣∣

≤
∥∥∥∥ ∂ i

∂si Kt(s)
∥∥∥∥
H2

∥∥ω(s)
∥∥
H2 ≤ M

∥∥ω(s)
∥∥
H2 . �

Theorem 4.3 If the nonlinear FADE (3.1) has a unique solution, then the solution achieved
by the RK method is stable.

Proof Assume that ωn(t) ∈H2[a, b] is an approximate solution of Eq. (3.1) of the form

ωn(t) =
n∑

i=1

i∑
k=1

βik
(
Nσ

(
tk ,ω(tk)

))

̂i(t), (4.2)

and assume that

ω∗
n(t) =

n∑
i=1

i∑
k=1

βik
(
Nσ

(
tk ,ω(tk)

)
+ ε(tk)

)

̂i(t) (4.3)

is an approximate solution of Lω(t) = Nσ (t,ω(t)) + ε(t), where ε(t) is small bounded per-
turbation. We will prove that there exists δ > 0 such that ‖ωn – ω∗

n‖∞ < δ. To show this,
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note that

ω∗
n(t) – ωn(t) =

n∑
i=1

i∑
k=1

βikε(tk)
̂i(t). (4.4)

On the other hand, since L–1 exists and L–1ε(t) ∈H2[a, b], we obtain

L–1ε(t) =
n∑

i=1

i∑
k=1

βik
〈
L–1ε(t),
k(t)

〉

̂i(t)

=
n∑

i=1

i∑
k=1

βik
〈
ε(t),

(
L–1)�


k(t)
〉

̂i(t)

=
n∑

i=1

i∑
k=1

βikε(tk)
̂i(t).

(4.5)

Hence, comparing (4.4) and (4.5), we get

ω∗
n(t) – ωn(t) = L–1ε(t).

Since L–1 is continuous on [a, b], there exists c > 0 such that ‖L–1‖H2 ≤ c. Therefore we
have

∥∥ω∗
n(t) – ωn(t)

∥∥
H2 ≤ ∥∥L–1∥∥

H2

∥∥ε(t)
∥∥
H2

≤ c
∥∥ε(t)

∥∥
H2 .

Finally, this gives

∥∥ω∗
n(t) – ωn(t)

∥∥∞ ≤ cM
∥∥ε(t)

∥∥
H2 .

Thus taking δ = cM‖ε(t)‖H2 completes the proof of the theorem. �

5 RKA simulations for the nonlinear FADEs
To ensure the effectiveness and efficiency of the modified RK method in solving the non-
linear FADEs and the effect of using the CF-derivative on the quality of calculations and
processing time, in this section, we conduct some numerical examples for both kinds of
the FADEs within the CF-derivative. Indeed, the exact solutions to these examples are
somewhat difficult to be obtained even for the integer-order derivative, and only approxi-
mate and numerical solutions can be found. As a result, we make numerical comparisons
using the residual error displayed in [30] to highlight the accuracy of the approximate so-
lutions obtained. Also, to show the effect of the CF-derivative to the FADEs, we compare
the RK solutions for the integer-order ADEs and FADEs in the Hilbert space H2[a, b]. The
RKA results are provided tabularly and graphically using 2D graphs, which show a remark-
able effect on the solution behavior depending on the fractional order in the time direc-
tion. All calculations and drawings were performed via Mathematica 12 software package.
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Anyhow, the residual function can be constructed as follows

Res(t) = CFDα
0 ωn(t) – Nσ

(
t,ωn(t)

)

=
1

1 – α

∫ t

a
exp

[
–α(t – s)

1 – α

]
ω′

n(s) ds – Nσ

(
t,ωn(t)

)
, σ = 1, 2.

(5.1)

Example 5.1 Consider the following CF-derivative nonlinear FADE of the first kind:

CFDα
0 ω(t) + tω(t) + ω2(t) + t2ω3(t) = te–t – t2e–3t , 0 < α ≤ 1,

ω(0) = 0.
(5.2)

By applying the RK algorithm, taking ti = i–1
n–1 , i = 1, . . . , n, and constructing the residual

function Res(t) we compare the approximate solutions and the residual errors for α ∈
{0.85, 0.9, 0.95} when n = 30, and the obtained results are included in Table 1. To show
the accuracy of the RK algorithm for solving this example graphically, the approximate
solutions for several orders of the CF-derivative are shown in Fig. 1 for t ∈ [0, 1], n = 30,
and α ∈ {0.8, 0.85, 0.9, 0.95, 1}. Table 2 shows the residual errors for α = 1 and n = 30, 25,
and 20, where the residual error function is

Res(t) = CFDα
0 ωn(t) + tωn(t) + ω2

n(t) + t2ω3
n(t) – te–t + t2e–3t .

Table 1 Numerical results of Example 5.1 when n = 30

t α = 0.95 α = 0.9 α = 0.85

RKM Res(t) RKM Res(t) RKM Res(t)

0.1 0.0095 3.495× 10–6 0.0087 3.015× 10–4 0.0120 4.102× 10–4

0.2 0.0269 3.441× 10–6 0.0281 8.575× 10–4 0.0351 1.036× 10–3

0.3 0.0502 4.195× 10–6 0.0525 1.322× 10–3 0.0615 1.448× 10–3

0.4 0.0770 4.542× 10–6 0.0797 1.525× 10–3 0.0890 1.526× 10–3

0.5 0.1053 4.282× 10–6 0.1073 1.380× 10–3 0.1155 1.245× 10–3

0.6 0.1330 3.282× 10–6 0.1336 8.837× 10–4 0.1399 6.530× 10–4

0.7 0.1586 1.548× 10–6 0.1573 9.206× 10–5 0.1611 1.653× 10–4

0.8 0.1810 7.694× 10–7 0.1775 8.970× 10–4 0.1786 1.108× 10–3

0.9 0.1994 3.720× 10–6 0.1937 1.970× 10–3 0.1923 2.077× 10–3

1.0 0.2134 6.824× 10–6 0.2058 2.675× 10–3 0.2022 2.679× 10–3

Figure 1 Fractional level curves of CF-derivative of Example 5.1: blue α = 0.8, yellow α = 0.85, green α = 0.9,
red α = 0.95, and black α = 1
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Table 2 Residual error values of Example 5.1 at α = 1

ti n = 30 n = 25 n = 20

0.1 5.2372501× 10–7 1.5964249× 10–7 2.117866× 10–6

0.2 6.7692091× 10–7 1.2426483× 10–6 2.670997× 10–6

0.3 5.2263923× 10–7 5.4744324× 10–6 1.827156× 10–6

0.4 1.1384547× 10–6 1.9588250× 10–6 3.804081× 10–6

0.5 3.3141327× 10–6 5.6558277× 10–6 1.162380× 10–5

0.6 5.3876273× 10–6 9.4607339× 10–6 1.894390× 10–5

0.7 6.4785581× 10–6 8.8094418× 10–6 2.255140× 10–5

0.8 7.6642283× 10–6 1.0000134× 10–5 2.666220× 10–5

0.9 9.3547507× 10–6 3.0000166× 10–5 3.285510× 10–5

1.0 1.1247700× 10–5 3.0000198× 10–5 3.990170× 10–5

Table 3 Numerical results of Example 5.2 when n = 30 and α ∈ {0.85, 0.9, 0.95, 1}
t α = 1 α = 0.95 α = 0.9 α = 0.85

RKM Res(t) RKM Res(t) RKM Res(t) RKM Res(t)

0.1 0.0050 2.89449× 10–8 0.0098 1.59473× 10–6 0.0089 1.77786× 10–4 0.0123 2.28399× 10–4

0.2 0.0202 3.13636× 10–7 0.0296 4.42954× 10–7 0.0307 2.89764× 10–4 0.0392 3.49224× 10–4

0.3 0.0459 9.93014× 10–7 0.0598 2.14734× 10–6 0.0629 3.84891× 10–4 0.0765 4.45448× 10–4

0.4 0.0828 1.70363× 10–6 0.1010 4.15871× 10–6 0.1062 4.75687× 10–4 0.1248 5.35930× 10–4

0.5 0.1314 2.23322× 10–6 0.1537 6.18034× 10–6 0.1610 5.55430× 10–4 0.1844 6.09900× 10–4

0.6 0.1922 3.40658× 10–6 0.2181 7.62633× 10–6 0.2274 6.12771× 10–4 0.2546 6.50843× 10–4

0.7 0.2653 5.44348× 10–6 0.2935 7.62471× 10–6 0.3040 6.30588× 10–4 0.3329 6.39091× 10–4

0.8 0.3494 7.14417× 10–6 0.3773 5.88718× 10–6 0.3873 5.92579× 10–4 0.4140 5.68195× 10–4

0.9 0.4409 8.65241× 10–6 0.4636 7.90205× 10–6 0.4697 5.07416× 10–4 0.4894 4.69630× 10–4

1.0 0.5309 2.31501× 10–5 0.5418 2.65822× 10–5 0.5402 4.19486× 10–4 0.5496 3.89029× 10–4

From Table 2 we can see that as n increases, the residual error function Res(t) decreases,
which confirms the convergence of the proposed algorithm.

Example 5.2 Consider the following CF-derivative nonlinear FADE of the first kind:

CFDα
0 ω(t) = –

1
cos2(t)

ω(t)3 +
1

sin(t)
ω(t)2 – t2ω(t) + tan(t), 0 < α ≤ 1,

ω(0) = 0.
(5.3)

To apply the proposed algorithm, take ti = i–1
n–1 , i = 1, . . . , n, and construct the residual func-

tion

Res(t) = sin(t)CFDα
0 ωn(t) + tan(t) sec(t)ωn(t)3 – ωn(t)2 + t2 sin(t)ωn(t) – sin(t) tan(t).

Anyhow, the obtained numerical values of the approximate solutions are summarized
in the form of tables and graphs as follows: The RK solutions and residual errors are
shown in Table 3 for α ∈ {0.85, 0.9, 0.95, 1} and n = 30. Table 4 shows the residual er-
rors of ωn(t) for different values of n and α = 1. Meanwhile, the fractional level curves
of the CF-derivative of the approximate solutions are presented in 2D graphs in Fig. 2 for
α ∈ {0.8, 0.85, 0.9, 0.95, 1} and n = 30. These results show that the behavior of solutions for
various fractional levels is in harmony with each other.
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Table 4 Residual error Res(t) of Example 5.2 for α = 1

t n = 30 n = 27 n = 24

0.1 2.89449× 10–8 6.41053× 10–8 4.23570× 10–8

0.2 3.13636× 10–7 1.06130× 10–7 7.07269× 10–7

0.3 9.93014× 10–7 1.21778× 10–6 2.14039× 10–6

0.4 1.70363× 10–6 1.73659× 10–6 3.71293× 10–6

0.5 2.23322× 10–6 3.18848× 10–6 5.13686× 10–6

0.6 3.40658× 10–6 4.32221× 10–6 7.89540× 10–6

0.7 5.44348× 10–6 7.31437× 10–6 1.20295× 10–5

0.8 7.14417× 10–6 5.38354× 10–6 1.54016× 10–5

0.9 8.65241× 10–6 1.66259× 10–5 2.00506× 10–5

1.0 2.31501× 10–5 3.18956× 10–5 5.20328× 10–5

Figure 2 Fractional level curves of CF-derivative of Example 5.2: blue α = 0.8, yellow α = 0.85, green α = 0.9,
red α = 0.95, and black α = 1

Table 5 Absolute and relative errors of Example 5.3 at α = 1

t Exact solution RK solution Absolute error Relative error

0.0 1.0 1.0 0.0 0.0
0.1 0.904837 0.904877 3.95866× 10–5 4.37499× 10–5

0.2 0.818731 0.818818 8.72577× 10–5 1.06577× 10–4

0.3 0.740818 0.740951 1.32383× 10–4 1.78698× 10–4

0.4 0.670320 0.670493 1.73199× 10–4 2.58382× 10–4

0.5 0.606531 0.606738 2.07475× 10–4 3.42069× 10–4

0.6 0.548812 0.549045 2.33234× 10–4 4.24980× 10–4

0.7 0.496585 0.496835 2.49262× 10–4 5.01953× 10–4

0.8 0.449329 0.449584 2.55378× 10–4 5.68354× 10–4

0.9 0.406570 0.406822 2.52431× 10–4 6.20880× 10–4

1.0 0.367879 0.368122 2.42089× 10–4 6.58065× 10–4

Example 5.3 Consider the following CF-derivative nonlinear FADE of second kind:

ω(t)CFDα
0 ω(t) + tω(t) + ω(t)2 + t2ω(t)3 = te–t + t2e–3t , 0 < α ≤ 1,

ω(0) = 1.
(5.4)

The exact solution of the FADE (5.4) at α = 1 is e–t [27]. By applying the RK algorithm
the absolute and relative errors over the interval [0, 1] for α = 1 and n = 30 are provided
in Table 5 with step size 0.1. Figure 3 illustrates the curve behavior of the exact and RK
solutions for α = 1 and n = 30, whereas Fig. 4 shows the maximum absolute error during
the interval [0, 1] for α = 1.
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Figure 3 Absolute error of Example 5.3 when α = 1 and n = 30

Figure 4 Exact ω(t) (red) and RK solution ω30(t) (dashed) for Example 5.3 at α = 1

Table 6 Numerical comparison of RK solutions of Example 5.3

Caputo–Fabrizio derivative

t α = 0.95 α = 0.9 α = 0.85 α = 0.8

0.1 0.878154 0.841424 0.809596 0.779507
0.2 0.803522 0.775775 0.754698 0.735620
0.3 0.734319 0.715288 0.702245 0.689792
0.4 0.670852 0.659133 0.652587 0.646019
0.5 0.612250 0.606508 0.604833 0.602217
0.6 0.558018 0.556914 0.558814 0.559845
0.7 0.507762 0.510076 0.514403 0.515875
0.8 0.461224 0.465891 0.471920 0.485746
0.9 0.418228 0.424361 0.430753 0.345449
1.0 0.378651 0.385541 0.396784 0.307297

Caputo derivative

t α = 0.95 α = 0.9 α = 0.85 α = 0.8

0.1 0.890657 0.877026 0.861834 0.845039
0.2 0.798776 0.782397 0.765453 0.748147
0.3 0.719922 0.704886 0.690238 0.676195
0.4 0.651426 0.639660 0.628876 0.619175
0.5 0.591366 0.583572 0.576929 0.571390
0.6 0.538143 0.534214 0.531258 0.529125
0.7 0.490422 0.489770 0.489718 0.490092
0.8 0.447148 0.448978 0.450998 0.453077
0.9 0.407549 0.411063 0.414430 0.417593
1.0 0.371111 0.375624 0.379777 0.383579
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Figure 5 Fractional level curves of approximate solution of Example 5.3: blue α = 0.8, yellow α = 0.85, green
α = 0.9, red α = 0.95, and black line α = 1

On the other hand, numerical comparison of the approximate solutions between the
CF and Caputo fractional derivative is presented in Table 6 for different fractional val-
ues α ∈ {0.8, 0.85, 0.9, 0.95} of Example 5.3 when n = 30. Figure 5 illustrates the behavior
of the fractional level curves of the RKM solutions within the CF-derivative and the Ca-
puto derivative for several orders α and n = 30. Consequently, the acquired results show
the great convergence of computations with preference for the novel CF-derivative due
to the time spent on CPU speed compared to the simulation formulas using the Caputo
derivative.

6 Conclusion
In this paper, we implemented the reproducing kernel method for a nonlinear fractional
Abel differential equation involving the CF-fractional derivative with an exponential ker-
nel. The reproducing kernel functions have been employed to generate the basis functions
that satisfied the specified initial condition. In Hilbert spaces a numerical algorithm for
solving FADE of both kinds has been developed utilizing the related RK theory. The sta-
bility and convergence were also discussed, whereas the RK solution of the FADE (4.1) was
proved to be stable in H2[a, b]. The results obtained from the numerical experiments indi-
cate that the proposed method is simple, robust, and impressive. Moreover, the presented
method has the ability to handle nonlinear evolution models. The numeric calculations
were provided via Mathematica 12—Wolfram.
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