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1 Introduction
The generalized harmonic numbers are defined by

H (r)
0 = 0 and H (r)

n =
n∑

k=1

1
kr for n, r = 1, 2, . . . ;

when r = 1, they reduce to the classical harmonic numbers Hn = H (1)
n .

For z ∈C, the shifted factorial is defined by

(z)0 = 1 and (z)n = z(z + 1) · · · (z + n – 1) for n = 1, 2, . . . .

The complete Bell polynomials Bn(x1, x2, . . . , xn) are defined by [10, p. 134]

exp

( ∞∑

k=1

xk
zk

k!

)
=

∞∑

n=0

Bn(x1, x2, . . . , xn)
zn

n!
, B0 := 1, (1)

with explicit expression

Bn(x1, x2, . . . , xn) =
∑

π (n)

n!
k1!k2! · · ·kn!

(
x1

1!

)k1(x2

2!

)k2

· · ·
(

xn

n!

)kn

, (2)

where π (n) denotes all partitions of n into nonnegative parts, that is, all nonnegative in-
teger solutions of the equation

m1 + 2m2 + · · · + nmn = n.
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The way of the partial fraction decomposition plays an important role in studying the
combinatorial identities and related questions (see, e.g., [1–9, 11, 12, 14, 16–22, 24] and
the references therein).

In 2005, Chu [4] established the partial fraction decompositions of two rational func-
tions 1

(x)λn+1
and xθ

(x)λn+1
based on the induction principle and famous the Faà di Bruno for-

mula and obtained several striking harmonic number identities from two partial fraction
decompositions. He constructed the generalized Hermite–Padé approximates to the log-
arithm and therefore resolved completely the open problem of Driver et al. [13].

We now rewrite two main results of Chu.

Theorem A ([4, Theorem 2]) Let λ, θ , and n be three natural numbers such that 0 ≤ θ <
λ(n + 1). Then we have the algebraic identity

(n!)λ

(x)λn+1
=

n∑

k=0

(–1)kλ

(
n
k

)λ λ–1∑

j=0

�j(λ, –k)
j!(x + k)λ–j , (3)

where the �-coefficients are defined as

��(λ, x) = (–1)��!
∑

‖m̃‖=�

λ|m̃|

m̃!

�∏

i=1

Hmi
i (x)
imi

,

��(λ, –k) = �!
∑

‖m̃‖=�

λ|m̃|

m̃!

�∏

i=1

{θ – λki[H (i)
k + (–1)iH (i)

n–k]}mi

imi
.

Theorem B ([4, Theorem 5]) Let λ, θ , and n be three natural numbers such that 0 ≤ θ <
λ(n + 1). Then we have the algebraic identity

(n!)λxθ

(x)λn+1
=

n∑

k=0

(–1)kλ

(
n
k

)λ λ–1∑

j=0

�j(λ, θ , –k)
j!(x + k)λ–j , (4)

where �-coefficients are defined as

��(λ, θ , x) = xθ–�
∑

‖m̃‖=�

(–1)�+|m̃| �!
m̃!

�∏

i=1

{θ – λxiHi(x)}mi

imi
,

��(λ, θ , –k) = kθ–�
∑

‖m̃‖=�

(–1)θ+|m̃| �!
m̃!

�∏

i=1

{θ – λki[H (i)
k + (–1)iH (i)

n–k]}mi

imi
.

For definitions of m̃!, |m̃|,‖m̃‖, and Hi(x), see [4, p. 43, and p. 44, (1.4a)].
Comparing ��(λ, –k), and ��(λ, θ , –k) with expression (2) of complete Bell polynomials,

it is not difficult to reformulate Theorem A and Theorem B as follows (let θ �−→ M).

Theorem 1 Suppose that λ and n are positive integers and x ∈C \ {0, –1, . . . , –n}. Let N =
λ(n + 1). Then we have the partial fraction decomposition

1
(x)λn+1

=
n∑

k=0

(–1)kλ

(n!)λ

(
n
k

)λ λ–1∑

j=0

Bj(x1, x2, . . . , xj)
j!(x + k)λ–j , (5)
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where

xi = λ(i – 1)!
(
H (i)

k + (–1)iH (i)
n–k

)
, i = 1, 2, . . . ,λ – 1.

Theorem 2 Let λ, M, and n be three natural numbers such that λ ≤ M < λ(n + 1). Then
we have the partial fraction decomposition

xM

(x)λn+1
=

n∑

k=0

(–1)λk+M

(n!)λ

(
n
k

)λ

kM
λ–1∑

j=0

Bj(x1, x2, . . . , xj)
j!(x + k)λ–j ,

where

xi = (i – 1)!
[
λ
(
H (i)

k + (–1)iH (i)
n–k

)
–

M
ki

]
, i = 1, 2, . . . ,λ – 1.

In the present paper, we give a novel proof of Theorem 1 and Theorem 2 by constructing
an appropriate contour integral.

We also use the following lemma in Sects. 2 and 3.

Lemma 3 ([15]) Let P(z) and Q(z) be polynomials (in the complex variable z) of degrees m
and n, respectively, given by

P(z) = a0zm + a1zm–1 + · · · + am and Q(z) = b0zn + b1zn–1 + · · · + bn.

Suppose that P(z) and Q(z) have no common zeros. If C is a simple closed path containing
the poles of P(z)/Q(z) in its interior, then

∮

C

P(z)
Q(z)

dz =

⎧
⎨

⎩

2π ia0
b0

, n – m = 1,

0, n – m ≥ 2.
(6)

2 The proof of Theorem 1
In this section, we give a novel proof of Theorem 1 using a contour integral and Cauchy’s
residue theorem. We need two lemmas.

Lemma 4 Suppose that λ and n are positive integers and x ∈ C \ {0, –1, . . . , –n}. Let N =
λ(n + 1). Then we have the algebraic identity

(n!)λ

(x)λn+1
=

n∑

k=0

(–1)λk

(n!)λ(x + k)

(
n
k

)λ Bλ–1(y1, . . . , yλ–1)
(λ – 1)!

, (7)

where

yi = (i – 1)!
[
λ
(
H (i)

k + (–1)iH (i)
n–k

)
+

1
(x + k)i

]
. (8)

Proof We first consider two polynomials P(z) and Q(z) of degrees 0 and N +1, respectively,
given by

P(z) = 1 and Q(z) = (z – x)
n∏

j=0

(z + j)λ.
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We next construct the following contour integrals for the rational functions 1/Q(z):∮
�

1
Q(z) dz, where � is a simple closed contour, which only surrounds the single pole x of

1/Q(z);∮
�1

1
Q(z) dz, where �1 is a simple closed contour, which surrounds the poles 0, –1, . . . , –n

of 1/Q(z).
Applying Cauchy’s residue theorem, we compute the contour integral

∮
�

1
Q(z) dz:

∮

�

1
Q(z)

dz = 2π i Res
z=x

1
(z – x)

∏n
j=0(z + j)λ

= 2π i lim
z→x

1∏n
j=0(z + j)λ

=
2π i∏n

j=0(x + j)λ
=

2π i
(x)λn+1

.

We compute the contour integral
∮
�1

1
Q(z) dz. By utilizing Cauchy’s residue theorem, the

power series expansion of logarithmic function

log(1 + z) =
∞∑

n=1

(–1)n–1 zn

n
(|z| < 1

)
,

and the definition of complete Bell polynomials, we obtain

∮

�1

1
Q(z)

dz = 2π i
n∑

k=0

Res
z=–k

1
(z – x)

∏n
j=0(z + j)λ

= 2π i
n∑

k=0

[
(z + k)λ–1] 1

(z – x)
∏n

j=0
j 	=k

(z + j)λ

= 2π i
n∑

k=0

[
zλ–1] 1

(z – x – k)
∏n

j=0
j 	=k

(z – k + j)λ

= –2π i
n∑

k=0

{
1

(x + k)
∏n

j=0
j 	=k

(j – k)λ

× [
zλ–1] exp

[
– log

(
1 –

z
x + k

)
– λ

n∑

j=0,j 	=k

log

(
1 +

z
j – k

)]}

= –2π i
n∑

k=0

{
(–1)λk

(n!)λ(x + k)

(
n
k

)λ

× [
zλ–1] exp

[ ∞∑

i=1

(i – 1)!
(

λ
(
H (i)

k + (–1)iH (i)
n–k

)
+

1
(x + k)i

)]
zi

i!

}

= –2π i
n∑

k=0

(–1)λk

(n!)λ(x + k)

(
n
k

)λ Bλ–1(y1, . . . , yλ–1)
(λ – 1)!

.

Let C = � + �1. Applying the second result of Lemma 3, we have that
∮
�+�1

1
Q(z) dz = 0

or, equivalently, that
∮
�

1
Q(z) dz = –

∮
�1

1
Q(z) dz. Therefore we directly obtain the algebraic

identity (7). �
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Lemma 5 The complete Bell polynomials have the following recursive relations:

Bλ–1(y1, . . . , yλ–1)
(λ – 1)!

=
λ–1∑

j=0

Bj(x1, . . . , xj)
j!(x + k)λ–j–1 . (9)

Proof Let

xi = (i – 1)!
[
λ
(
H (i)

k + (–1)iH (i)
n–k

)]
.

Write yi = xi + (i–1)!
(x+k)i in (8). By using the definition of complete Bell polynomials, power

series expansion of the logarithmic function

log(1 + z) =
∞∑

n=1

(–1)n–1 zn

n
,

and the geometric series

1
1 – z

=
∞∑

n=0

zn,

we get

Bλ–1(y1, . . . , yλ–1)
(λ – 1)!

=
[
tλ–1] exp

( ∞∑

n=1

yn
tn

n!

)

=
[
tλ–1] exp

{ ∞∑

n=1

(
xn +

(n – 1)!
(x + k)n

)
tn

n!

}

=
λ–1∑

j=0

[
tj] exp

{ ∞∑

n=1

xn
tn

n!

}
[
tλ–1–j] exp

{ ∞∑

n=1

1
n

(
t

x + k

)n
}

=
λ–1∑

j=0

Bj(x1, . . . , xj)
j!

[
tλ–1–j] exp

{
– log

(
1 –

t
x + k

)}

=
λ–1∑

j=0

Bj(x1, . . . , xj)
j!

[
tλ–1–j]

∞∑

n=0

(
t

x + k

)n

=
λ–1∑

j=0

Bj(x1, . . . , xj)
j!(x + k)λ–j–1 .

The proof is complete. �

Proof of Theorem 1 Replacing (9) of Lemma 5 by (7) of Lemma 4, we immediately obtain
Theorem 1. �

3 The proof of Theorem 2
In this section, we give a different proof of Theorem 2 in the same line. We first state the
following result.
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Theorem 6 Let M be a nonnegative integer, let λ and n be positive integers, and let x ∈
C \ {0, –1, . . . , –n}. Let N = λn for M < λn. Then we have the partial fraction decomposition

xM

(x + 1)λn
=

n∑

k=1

(–1)λ(k+1)+M

(n!)λ

(
n
k

)λ

kλ+M
λ–1∑

j=0

Bj(y1, y2, . . . , yj)
j!(x + k)λ–j , (10)

where

yi = (i – 1)!
[
λ
(
H (i)

k + (–1)iH (i)
n–k

)
–

λ + M
ki

]
, i = 1, 2, . . . ,λ – 1. (11)

Proof The proof is similar to that of Theorem 1, and thus we only present the important
steps and omit many details.

We construct two polynomials P(z) and Q(z) of degrees M and N + 1, respectively, given
by

P(z) = zM and Q(z) = (z – x)
n–1∏

j=0

(z + j + 1)λ.

We consider two contour integrals for the rational functions P(z)/Q(z):∮
�

P(z)
Q(z) dz, where � is a simple closed contour, which only surrounds the single pole x of

P(z)/Q(z);∮
�1

P(z)
Q(z) dz, let �1 be a simple closed contour which surrounds the poles –1, –2, . . . , –n of

P(z)/Q(z).
We obtain contour integrals

∮
�

P(z)
Q(z) dz and

∮
�1

P(z)
Q(z) dz:

∮

�

P(z)
Q(z)

dz = 2π i
xM

(x + 1)λn
,

∮

�1

P(z)
Q(z)

dz = –2π i
n∑

k=1

(–1)λk(–k)λ+M

(n!)λ(x + k)

(
n
k

)λ Bλ–1(y1, . . . , yλ–1)
(λ – 1)!

.

Applying the second result of Lemma 3, we have the following algebraic identity:

xM

(x + 1)λn
=

n∑

k=1

(–1)λk(–k)λ+M

(n!)λ(x + k)

(
n
k

)λ Bλ–1(w1, . . . , wλ–1)
(λ – 1)!

, (12)

where

wi = (i – 1)!
[
λ
(
H (i)

k + (–1)iH (i)
n–k

)
–

λ + M
ki +

1
(x + k)i

]
, i = 1, 2, . . . ,λ – 1.

We can also obtain that

Bλ–1(w1, . . . , wλ–1)
(λ – 1)!

=
λ–1∑

j=0

Bj(y1, . . . , yj)
j!(x + k)λ–j–1 . (13)

Substituting (13) into (12), we complete the proof of Theorem 6. �
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Proof of Theorem 2 We obviously have

xM

(x)λn+1
≡ xM–λ

(x + 1)λn
.

Letting M �−→ M – λ in Theorem 6, we immediately obtain Theorem 2. �

4 Conclusion
The basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) hy-
pergeometric functions and basic (or q-)hypergeometric polynomials, are known to have
widespread applications, particularly, in several areas of number theory and combinatorial
analysis such as the theory of partitions.

Recently, Srivastava [23] published a survey-cum-expository paper on the q-calculus
and fractional q-calculus in geometric function theory of complex analysis. Remarkably, a
considerably large group of authors have made use of the so-called (p, q)-analysis by intro-
ducing a seemingly redundant parameter p in the already known results dealing with the
classical q-analysis. On page 340, Professor Srivastava pointed out an important demon-
strated observation that any (p, q)-variations of the proposed q-results would be trivially
inconsequential, because the additional parameter p is obviously redundant.

In this concluding section, we also suggest the corresponding basic (or q-) extensions of
the results of this paper to the interested reader.
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