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Abstract
Recently, considering the susceptible population size-guided implementations of
control measures, several modelling studies investigated the global dynamics and
bifurcation phenomena of the state-dependent impulsive SIR models. In this study,
we propose a state-dependent impulsive model based on the SIS model. We firstly
recall the complicated dynamics of the ODE system with saturated treatment. Based
on the dynamics of the ODE system, we firstly discuss the existence and the stability
of the semi-trivial periodic solution. Then, based on the definition of the Poincaré
map and its properties, we systematically investigate the bifurcations near the
semi-trivial periodic solution with all the key control parameters; consequently, we
prove the existence and stability of the positive periodic solutions.

Keywords: SIS model; State-dependent impulsive control; Bifurcations; Impulsive
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1 Introduction
The emerge and re-emergence of infectious diseases have always led to unpredictable epi-
demics and posed serious challenges to public health. In the past 200 years, at least seven
waves of cholera, four new strains of influenza virus, tuberculosis, and HIV spread across
the world and resulted in at least 100 million deaths [1]. Particularly in developed coun-
tries, infectious disease mortality disproportionately affects indigenous and disadvantaged
minorities [2]. Since the outbreak of COVID-19 at the end of 2019, it has spread to over
200 countries with 163,212,543 confirmed cases and 3,383,979 deaths globally till May 18,
2021 [3]. Therefore, it is crucial to conduct an early prediction and give warning of the
epidemics for guiding the development of control interventions [4] and to evaluate the ef-
ficacy of different strategies of control interventions in successfully controlling the spread
of the disease [5–7].

As an attractive tool, mathematical models have been widely applied to understand the
transmission mechanism of infectious diseases and to provide evidence for the effects of
interventions in different groups of populations. During this COVID-19 pandemic, vari-
ous mathematical models have been developed and further studied [8–10], which played
a key role in controlling the spread of the virus [5, 11]. We note that, in terms of con-
trol strategies, the state-dependent feedback control was frequently used aiming at pre-
venting the spread of infectious diseases [12–14]; consequently, abundant state-dependent
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impulsive models have been proposed [15–19]. Fractional calculus is a generalization of
the standard integer calculus. It has become a significant field of investigation due to
its immense opportunity and wide applications. A considerable number of articles have
been concerned with reviewing the presence of solutions to fractional systems. Several
researchers pioneered their attempts to extend the impulsive modelling methods to the
fractional models [20–23] or the fractional integro-differential equations [24, 25], with
various new analytic techniques developed and lots of interesting results obtained [26].
Gupta et al. in [20] investigated the existence and uniqueness of impulsive dynamical frac-
tional systems with quadratic perturbation of second type subject to nonlocal boundary
conditions. Kumar et al. in [22] explored the existence of solution of non-autonomous
fractional differential equations with integral impulse condition by the measure of non-
compactness (MNC), fixed point theorems, and k-set contraction. Ravichandran in [24]
discussed the existence and uniqueness of solution to the integro-differential equations
involving Atangana–Baleanu fractional derivatives.

Recently, several studies have introduced the susceptible population guided impulsive
control into the SIR-type models and systematically investigated the dynamic behaviors
[27–30]. In this study, we extend this modelling idea to the SIS-type model and investigate
the rich dynamical behaviors and the bifurcations. The classical SIS-type model is given
by

⎧
⎨

⎩

dS(t)
dt = A – dS – βSI + vI,

dI(t)
dt = βSI – (d + v)I,

(1.1)

where S and I are the populations of susceptible and infectious, respectively. A is the re-
cruitment rate of the susceptible populations, and d is the natural death rate. β is the
property of transmission per contact, and the incidence rate is denoted by βSI . The re-
covery from the infected compartment is presented by vI . Furthermore, considering the
continuous interventions, including the treatment and vaccination for controlling infec-
tious diseases, system (1.1) becomes the following three-dimensional SIVS model:

⎧
⎪⎪⎨

⎪⎪⎩

dS(t)
dt = A – dS – βSI + vI + θV + cI

b+I – qS,
dI(t)

dt = βSI – (d + v)I – cI
b+I ,

dV (t)
dt = qS – θV – dV .

(1.2)

Here, the added compartment V denotes the vaccinated population. The recovery from
the infected compartment with hospital treatment is represented by cI

b+I . Moreover, the
susceptible population is vaccinated with rate q, and the vaccine protection wanes with
rate θ . Then, we can extend model (1.2) by including the state-dependent control strategies
and replacing the continuous vaccination with impulsive vaccination, and we obtain the
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following state-dependent impulsive model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = A – dS – βSI + vI + θV + cI

b+I ,
dI(t)

dt = βSI – (d + v)I – cI
b+I ,

dV (t)
dt = –θV – dV ,

⎫
⎪⎪⎬

⎪⎪⎭

S(t) < ST ,

S(t+) = (1 – q)S(t),

I(t+) = I(t),

V (t+) = V (t) + qS(t),

⎫
⎪⎪⎬

⎪⎪⎭

S(t) = ST .

(1.3)

Here, q ∈ (0, 1) denotes the vaccination rate of the susceptible population.

2 Preliminaries
Subject to the restriction N(t) = S(t) + I(t) + V (t) for the ODE system of model (1.3), we
have

dN(t)
dt

= A – dN(t),

which means that N(t) will tend to A
d as t approaches infinity. Without loss of generality,

the ODE system in model (1.3) can be reduced to the following system:

⎧
⎨

⎩

dS(t)
dt = A – dS – βSI + vI + θ ( A

d – S – I) + cI
b+I ,

dI(t)
dt = βSI – (d + v)I – cI

b+I .
(2.1)

Consequently, the proposed state-dependent impulsive model (i.e. system (1.3)) is re-
duced to the following system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt = A – dS – βSI + vI + θ ( A

d – S – I) + cI
b+I ,

dI(t)
dt = βSI – (d + v)I – cI

b+I ,

⎫
⎬

⎭
S(t) < ST ,

S(t+) = (1 – q)S(t),

I(t+) = I(t),

⎫
⎬

⎭
S(t) = ST .

(2.2)

We start with concluding the main dynamics of ODE system (2.1), while the detailed
proof is similar to the existing study [31]. From biological considerations, we study (2.1)
in the closed set

D =
{

(S, I)|S, I ≥ 0, S + I ≤ A/d
}

,

which is invariant set under nonnegative initial conditions.
Let the right-hand side of (2.1) be zero, we obtain that (2.1) has a disease-free equilibrium

E0 = ( A
d , 0). Using the notation in van den Driessche and Watmough [32], the reproduction

number is given by

R0 =
Abβ

d(c + b(d + v))
. (2.3)
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Note that the characteristic equation of (2.1) at E0 reads

(
λ + (d + θ )

)
(

λ +
(

d + v +
c
b

)

(1 – R0)
)

= 0, (2.4)

then it follows that all the eigenvalues of (2.4) have negative real parts if and only if R0 < 1.
Thus, we obtain the following.

Proposition 1 For model (2.1), the disease-free equilibrium E0 is locally asymptotically
stable if R0 < 1 and unstable if R0 > 1.

In order to obtain the existence of endemic equilibria, we give the following quadratic
equation from model (2.1) depending on the solutions of

I2 + a1I + a2 = 0,

with

a1 = b +
d + v

β
–

A
d

, a2 =
c + b(d + v)

β
–

bA
d

.

For convenience, we denote

I∗ =
–a1 +

√
�

2
, S∗ =

A
d

– I∗ and I∗ =
–a1 –

√
�

2
, S∗ =

A
d

– I∗,

with � = a2
1 – 4a2.

We further denote

A1 = bd +
d(d + v)

β
, R̂0 =

4Abdβ2

4Abdβ2 + (d2 + dv + bdβ – Aβ)2 .

Then we get the result regarding the number of endemic equilibrium.

Theorem 2 For model (2.1), with A1 and R̂0 defined as above, we have:
(1) When R0 > 1 or R0 = 1 and A > A1, there is a unique endemic equilibrium E∗.
(2) When R0 < 1 and A ≤ A1, there is no endemic equilibrium.
(3) When 1 > R0 > R̂0 and A > A1, there are two endemic equilibria E∗ and E∗.
(4) When R0 = R̂0 and A > A1, E∗ and E∗ coincide into a unique endemic equilibrium of

multiplicity 2.
(5) When R0 < R̂0 and A > A1, there is no endemic equilibrium.

Remark 1 When A > A1, this theorem shows that there exists R̂0 (0 < R̂0 < 1) such that the
model has a unique endemic equilibrium for R0 = R̂0, then the model has two endemic
equilibria for 1 > R0 > R̂0 and a unique endemic equilibrium for R0 = 1. This situation
corresponds to a backward bifurcation which occurs at R0 = 1. There is also a forward
transcritical bifurcation at E0 (where R0 = 1) if A ≤ A1.

When model (2.1) has no endemic equilibria, we get the global stability of the disease-
free equilibrium E0.
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Theorem 3 If R0 < 1 and A ≤ A1 or R0 < R̂0 and A > A1 hold, then the disease-free equi-
librium E0 of (2.1) is globally asymptotically stable.

Next, we study the stability of the endemic equilibria. Denote H(I) = θ +d +q+βI – cI
(b+I)2 ,

we get the following results.

Theorem 4 Suppose R0 > 1 or 1 > R0 > R̂0 and A > A1, the endemic equilibrium E∗ of model
(2.1) is a stable node or focus when H(I∗) > 0; E∗ is an unstable node or focus when H(I∗) < 0;
and E∗ is a center of the linear system of (2.1) when H(I∗) = 0.

To investigate the dynamical behaviors of system (2.2), we first briefly summarize the
basic definitions and properties of the impulsive semi-dynamical systems. We consider
the following generalized planer impulsive semi-dynamical system with state-dependent
feedback control:

⎧
⎨

⎩

dx
dt = P(x, y), dy

dt = Q(x, y), (x, y) /∈ �,

�x = a(x, y), �y = b(x, y), (x, y) ∈ �,
(2.5)

where (x, y) ∈ R2
+ = {(x, y) : x ≥ 0, y ≥ 0}, �x = x+ – x, and �y = y+ – y. Here, P, Q, a, b

are continuous functions from R2
+ to R, � ⊂ R2

+ is the impulsive set. For (x, y) ∈ �, the
impulsive function ψ : R2

+ → R2
+ is defined as

ψ(x, y) = z=(
x + a(x, y), y + b(x, y)

)
,

with z=(x+, y+) called an impulsive point of z = (x, y). Then, based on the definitions in [12],
we can define the impulsive semi-dynamical system and the order-k period solution. Par-
ticularly, the following analogue of Poincaré criterion in [33] determines the local stability
of an order-k periodic solution.

Lemma 5 Let φ(x, y) be a sufficiently smooth function with gradφ(x, y) 	= 0. The order-k
periodic solution (x, y) = (ξ (t),η(t)) with period T of (2.5) is orbitally asymptotically stable
if the Floquet multiplier μ2 satisfies |μ2| < 1. Here,

μ2 =
q∏

k=1

�k exp

[∫ T

0

(
∂P
∂x

(
ξ (t),η(t)

)
+

∂Q
∂y

(
ξ (t),η(t)

)
)

dt
]

,

where

�k =
P+( ∂b

∂y
∂φ

∂x – ∂b
∂x

∂φ

∂y + ∂φ

∂x ) + Q+( ∂a
∂y

∂φ

∂y – ∂a
∂y

∂φ

∂x + ∂φ

∂y )

P ∂φ

∂x + Q ∂φ

∂y

,

and P, Q, ∂a
∂x , ∂a

∂y , ∂b
∂x , ∂b

∂y , ∂φ

∂x , ∂φ

∂y are calculated at the point (ξ (τk),η(τk)), and P+ =
P(ξ (τ+

k ),η(τ+
k )), Q+ = Q(ξ (τ+

k ),η(τ+
k )) with τk(k ∈ N) is the time of the kth jump.

In order to study the bifurcations of the Poincaré map defined by system (2.5), we intro-
duce the following lemmas [34].
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Lemma 6 (Transcritical bifurcation) Let G : U × I → R define a one-parameter family of
maps, where G is Cr with r ≥ 2, and U , I are open intervals of the real line containing 0.
Assume

(1) G(0,α) = 0 for all α; (2)
∂G
∂x

(0, 0) = 1;

(3)
∂2G
∂x∂α

(0, 0) > 0; (4)
∂2G
∂x2 (0, 0) > 0.

Then there are α1 < 0 < α2 and ε > 0 such that:
(1) If α1 < α < 0, then Gα has two fixed points, 0 and x1α > 0 in (–ε, ε). The origin is

asymptotically stable, while the other fixed point is unstable.
(2) If 0 < α < α2, then Gα has two fixed points, 0 and x1α < 0 in (–ε, ε). The origin is

unstable, while the other fixed point is asymptotically stable.

Note that making the change of parameter α → –α, we can handle the case ∂2G(0,0)
∂x∂α

< 0.

Lemma 7 (Supercritical pitchfork bifurcation) Let G : U × I → R define a one-parameter
family of maps, where G is Cr with r ≥ 3, and U , I are open intervals of the real line con-
taining 0. Assume that

(1) G(0,α) = 0 for all α; (2)
∂G
∂x

(0, 0) = 1;

(3) frac∂2G∂x∂α(0, 0) > 0; (4)
∂2G
∂x2 (0, 0) = 0 and

∂3G
∂x3 (0, 0) < 0.

Then there are α1 < 0 < α2 and ε > 0 such that:
(1) If α1 < α < 0, then Gα has a unique fixed point, x = 0 in (–ε, ε), which is asymptotically

stable.
(2) If 0 < α < α2, then Gα has three fixed points, 0 and x1α < 0 < x2α in (–ε, ε). The origin

is unstable, while the other two fixed points are asymptotically stable.

Similarly, note that we can handle the case ∂2G(0,0)
∂x∂α

< 0 by making the change of parameter
α → –α.

3 Poincaré map and its properties
In this section, we first define the Poincaré map of system (2.2), and then we discuss its
main properties. Before moving to the details, we firstly provide some intuitive basis on
the Poincaré map. Poincaré used a cross section (called the Poincaré section) to transverse
the trajectory of continuous motion. Then, according to the discrete motion of the inter-
section points of the trajectory to the cross section, we can simply judge the trend of the
continuous motion. In the diagram on the Poincaré section, the succeed point where the
trajectory crosses the Poincaré section can be regarded as a mapping of the point where
the trajectory crosses the Poincaré section last time, which can be denoted by xn+1 = f (xn),
n = 1, 2, 3, . . . . This is actually the Poincaré map, and its function is to study the continu-
ous motion through a simple discrete mapping. Based on the above interpretation, we can
easily know that the fixed points of the Poincaré map actually reflect the periodic motion
of the phase space.
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We assume that ST < A
d holds true. Denote the two isolines of the system

⎧
⎨

⎩

dS(t)
dt = A – dS – βSI + vI + θ ( A

d – S – I) + cI
b+I = F1(S, I),

dI(t)
dt = βSI – (d + v)I – cI

b+I = F2(S, I),
(3.1)

as follows:

L1 : Ṡ = F1(S, I) = 0, L2 : İ = F2(S, I) = 0,

and define two sections as follows:

L3 : SST =
{

(S, I)|S = ST , I ≥ 0
}

, L4 : SqST =
{

(S, I)|S = (1 – q)ST , I ≥ 0
}

.

According to the definitions in the last section, we have that the impulsive function H(S, I)
can be defined as

H1(S, I) = (1 – q)S, H2(S, I) = I.

Set the section SqST as a Poincaré section. Choosing an initial point P+
k = ((1 – q)ST , I+

k )
on the Poincaré section, and the orbit starting from P+

k reaches SST . We denote the inter-
section point as Pk+1 = (ST , Ik+1), then the trajectory will jump to P+

k+1 = ((1 – q)ST , Ik+1)
on the section SqST . It follows from the existence and uniqueness of solutions that Ik+1 is
identically determined by I+

k . Therefore, we can define a function g with g(I+
k ) = Ik+1, and

then the Poincaré map P1 can be defined as follows:

P1 : I+
k+1 = Ik+1 = g

(
I+

k
) .= P1

(
q, A, ST , I+

k
)
.

Since the domain and range of the Poincaré map depends on the dynamics of system (3.1),
we conclude the dynamics of system (3.1) by considering the following cases:

(C1)R0 < 1 and A ≤ A1 or R0 < R̂0 and A > A1;
(C2)R0 > 1 and H(I∗) > 0;
(C3)R0 > 1 and H(I∗) < 0;
(C4)1 > R0 > R̂0 and A > A1.
Note that the phase trajectories of system (3.1) for case (C3) or (C4) show complexity,

which leads to the complicated impulsive and phase sets of impulsive system (2.1). In what
follows we discuss the definitions of the impulsive set and the phase set of system (2.2) for
case (C1) and case (C2). Under case (C1), the DFE E0( A

d , 0) is globally asymptotically stable.
It follows from the properties of the vector fields of system (3.1) that there exists an orbit
�1 tangent to SqST at the point QqST = ((1 – q)ST , IqST ) with IqST satisfying

BI2
qST

+ (D + Bb + c)IqST + Db = 0, (3.2)

with B = v – θ – β(1 – q)ST , D = (d + θ )( A
d – (1 – q)ST ) > 0. Note that if B ≥ 0, there is no

positive solution of equation (3.2), while if B < 0, there is a unique positive solution of (3.2):

IqST =
–(D + Bb + c) –

√
(D + Bb + c)2 – 4BDb
2B

.



Wang Advances in Difference Equations        (2021) 2021:287 Page 8 of 19

The intersection point of �1 to SST is denoted by

Q∗ =
(
ST , I∗) =

(
ST , I

(
ST ; (1 – q)ST , IqST

))
.

Then the impulsive set is

M =
{

(S, I)|S = ST , 0 ≤ I ≤ I∗},

and the phase set N can be defined as follows:

N = H(M) =
{(

S+, I+)|S+ = (1 – q)ST , 0 ≤ I ≤ I∗}.

For case (C2), the endemic equilibrium E∗(S∗, I∗) is a stable focus or node. If ST < S∗

holds, the impulsive set and the phase set of system (2.2) are similar to case (C1). If ST > S∗,
we let

B1I2
ST

+ (D1 + B1b + c)IST + D1b = 0, (3.3)

with B = v – θ – βST , D = (d + θ )( A
d – ST ) > 0. Note that if B1 ≥ 0, there is no positive

solution of equation (3.3), while if B1 < 0, there is a unique positive solution of (3.3):

IST =
–(D1 + B1b + c) –

√
(D1 + B1b + c)2 – 4B1D1b
2B1

.

We assume B1 < 0, then there exists an orbit �2 tangent to the set SST at the point
QST = (ST , IST ). And we denote the intersection point of the orbit �2 to the section SqST as
Qq = ((1 – q)ST , Iq) with I(ST ; (1 – q)ST , Iq) = IST . Any solution of model (2.2) with initial
value (S+

0 , I+
0 ) with S+

0 = (1 – q)ST and I+
0 ∈ (0, Iq) will reach the section SST at finite time.

Therefore, the impulsive set and the phase set of system can be defined as

M =
{

(S, I)|S = ST , 0 ≤ I ≤ IST

}

and

N = H(M) =
{(

S+, I+)|S+ = (1 – q)ST , 0 ≤ I ≤ IST

}
,

respectively.

4 Semi-trivial periodic solution
4.1 Existence and stability of semi-trivial periodic solution
Let I(t) = 0 for all t ∈ (0, +∞), system (2.2) becomes the following subsystem:

⎧
⎨

⎩

dS(t)
dt = (d + θ )( A

d – S), S(t) < ST ,

S(t+) = (1 – q)S(t), S(t) = ST .
(4.1)

Integrating the first equation of (4.1) with the initial conditions S(0) = (1 – q)ST , we have

S(t) =
A
d

–
(

A
d

– (1 – q)ST

)

exp
(
–(d + θ )t

)
.
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Let A
d – ( A

d – (1 – q)ST ) exp(–(d + θ )T) = ST , and solving it with respect to T , we get the
period

T =
1

d + θ
ln

A – d(1 – q)ST

A – dST
.

Therefore, system (2.2) has a semi-trivial periodic solution with period T , which is given
as follows:

⎧
⎨

⎩

Ŝ(t) = A
d – ( A

d – (1 – q)ST ) exp(–(d + θ )(t – (k – 1)T)),

Î(t) = 0, (k – 1)T < t ≤ kT , k ∈ N .
(4.2)

Denote (̂S(t),̂ I(t)) = (ξ (t), 0), then we discuss the stability of the semi-trivial periodic solu-
tion (ξ (t), 0). There are

P(S, I) = A – dS – βSI + vI + θ

(
A
d

– S – I
)

+
cI

b + I
,

Q(S, I) = βSI – (d + v)I –
cI

b + I
,

α̂(S, I) = –qS(t), β̂(S, I) = 0, φ(S, I) = S – ST ,
(
ξ (T),η(T)

)
= (ST , 0),

(
ξ
(
T+)

,η
(
T+))

=
(
(1 – q)ST , 0

)
.

It is easy to calculate that

∂P
∂S

= –d – θ – βI,
∂Q
∂I

= –(d + v) + βS –
bc

(b + I)2 ,

∂α̂

∂S
= –q,

∂α̂

∂I
= 0,

∂β̂

∂S
= 0,

∂β̂

∂I
= 0,

∂φ

∂S
= 1,

∂φ

∂I
= 0,

and

�1 =
P+( ∂β̂

∂I
∂φ

∂S – ∂β̂

∂S
∂φ

∂I + ∂φ

∂S ) + Q+( ∂α̂
∂S

∂φ

∂I – ∂α̂
∂I

∂φ

∂S + ∂φ

∂I )
P ∂φ

∂S + Q ∂φ

∂I

=
P+ – qQ+

P
=

P(ξ (T+),η(T+))
P(ξ (T),η(T))

=
A – d(1 – q)ST

A – dST
.

Moreover, there is

exp

(∫ T

0

(
∂P
∂S

(
ξ (t),η(t)

)
+

∂Q
∂I

(
ξ (t),η(t)

)
)

dt
)

= exp

(∫ T

0

(

–2d – θ – v –
c
b

+ βξ (t)
)

dt
)

= exp

(∫ T

0

(

–2d – θ – v –
c
b

+
βA
d

–
β(A – d(1 – q)ST ) exp(–(d + θ )t)

d

)

dt
)
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= exp

(–2d – θ – v – c
b + βA

d
d + θ

ln
A – d(1 – q)ST

A – dST
–

βqST
d + θ

)

=
(

A – d(1 – q)ST

A – dST

) –2d–θ–v– c
b + βA

d
d+θ

exp

(

–
βqST
d + θ

)

.

Thus, the Floquet multiplier μ2 can be calculated as

μ2 = �1 exp

(∫ T

0

(
∂P
∂S

(
ξ (t),η(t)

)
+

∂Q
∂I

(
ξ (t),η(t)

)
)

dt
)

=
(

A – d(1 – q)ST

A – dST

) –d–v– c
b + βA

d
d+θ

exp

(

–
βqST
d + θ

)

> 0.

Because 0 < 1 – q < 1, exp(– βqST
d+θ

) > 0, and A–d(1–q)ST
A–dST

> 1, we have that if R0 < 1, then there

are –d–v– c
b + βA

d
d+θ

< 0 and 0 < ( A–d(1–q)ST
A–dST

)
–d–v– c

b + βA
d

d+θ < 1; if R0 > 1, then there are –d–v– c
b + βA

d
d+θ

> 0

and ( A–d(1–q)ST
A–dST

)
–d–v– c

b + βA
d

d+θ > 1.
It follows from the definition of Poincaré map and the property of system (3.1) that the

Poincaré map P1 is monotonically decreasing under case (C1) on the whole domain of
definition. Therefore, the semi-trivial periodic solution (ξ (t), 0) is globally attractive. Based
on the above discussion, we have the following conclusion.

Theorem 8 If R0 < 1, then the semi-trivial periodic solution is orbitally asymptotically
stable. Particularly, for case (C1), the semi-trivial periodic solution of system (2.2) is globally
stable.

4.2 Bifurcation of the semi-trivial periodic solution
Consider system (3.1) in the phase space, we have

dI
dS

=
F2(S, I)
F1(S, I)

.= h(S, I).

Given an initial point (S0, I0) on the Poincaré section with S0 = (1 – q)ST , I0 ∈ (0, Iq), we
can solve I with respect to S as follows:

I(S; S0, I0) = I0 +
∫ S

(1–q)ST

h
(
s, I

(
s; (1 – q)ST , I0

))
ds .= I(S, I0).

P1 can be also represented as

P1(I0,α) = g(I0;α) = I
(
Sv; (1 – q)Sv, I0

)
,

with I0 ∈ (0, Iq) as the variable, α ∈ � being the bifurcation parameter. For example, if we
consider the bifurcation with respect to q, then α means q. For convenience, we denote

∂I(Sv; (1 – q)Sv, I0)
∂I0

=
∂g(I0;α)

∂I0

.= g ′(I0;α).
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Through easy calculation, there are

∂I(S, I0)
∂I0

= exp
∫ S

(1–q)ST

∂h(s, I(s, I0))
∂I

ds,

∂2I(S, I0)
∂I2

0
=

∂I(S, I0)
∂I0

∫ S

(1–q)ST

∂2h(s, I(s, I0))
∂I2

∂I(s, I0)
∂I0

ds,

∂3I(S, I0)
∂I3

0
=

∂2I(S, I0)
∂I2

0

∫ S

(1–q)ST

∂2h(s, I(s, I0))
∂I2

∂I(s, I0)
∂I0

ds

+
∂I(S, I0)

∂I0

∫ S

(1–q)ST

[
∂3h(s, I(s, I0))

∂I3

(
∂I(s, I0)

∂I0

)2

+
∂2h(s, I(s, I0))

∂I2
∂2I(s, I0)

∂I2
0

]

ds.

Therefore, we have

∂P1

∂I0
(0,α) = g ′(0;α) = μ2 > 0,

∂2P1

∂I2
0

(0,α) = g ′′(0;α),

∂3P1

∂I3
0

(0,α) = g ′′′(0,α),

∂2P1

∂I2
0

(0,α) =
∂μ2

∂α
,

with

g ′(0;α) =
∂I(ST , 0)

∂I0
= exp

∫ ST

(1–q)ST

∂h(s, I(s, 0))
dI

ds = exp
∫ ST

(1–q)ST

βs – d – v – c
b

( A
d – s)(d + θ )

ds

=
(

A – d(1 – q)ST

A – dST

) –d–v– c
b + βA

d
d+θ

exp

(

–
βqST
d + θ

)

= μ2 > 0,

g ′′(0;α) =
∂2I(ST , 0)

∂I2
0

= g ′(0;α)
∫ ST

(1–q)ST

∂2h(s, I(s, 0))
∂I2

∂I(s, 0)
∂I0

ds

= g ′(0;α)
∫ ST

(1–q)ST

m(s)
∂I(s, 0)

∂I0
ds,

g ′′′(0,α) =
∂3I(ST , 0)

∂I3
0

= g ′(0;α)
∫ ST

(1–q)ST

[

n(s)
(

∂I(s, 0)
∂I0

)2

+ m(s)
∂2I(s, 0)

∂I2
0

]

ds

+ g ′′(0;α)
∫ ST

(1–q)ST

m(s)
∂I(s, 0)

∂I0
ds

= g ′(0;α)
∫ ST

(1–q)ST

[

n(s)
(

∂I(s, 0)
∂I0

)2

+ m(s)
∂I(s, 0)

∂I0

(∫ ST

(1–q)ST

m(s)
∂I(s, 0)

∂I0

)]

ds

+ g ′′(0;α)
∫ ST

(1–q)ST

m(s)
∂I(s, 0)

∂I0
ds,
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where

m(s) =
∂2h(s, I(s, 0))

∂I2 =
2c
b2 ( A

d – s)(d + θ ) – 2(βs – d – v – c
b )(–βs + v – θ + c

b )
( A

d – s)2(d + θ )2
,

n(s) =
∂3h(s, I(s, 0))

∂I3

=
6c
b2 ( A

d – s)(d + θ )(2βs – 2v – d + θ – 2c
b ) – 6c

b3 ( A
d – s)2(d + θ )2 + 6(βs – d – v – c

b )2(βs – d – v – c
b )

( A
d – s)3(d + θ )3

,

∂I(s, 0)
∂I0

=
∂I(ST , 0)

∂I0
=

(
A – d(1 – q)ST

A – ds

) –d–v– c
b + βA

d
d+θ

exp

(

–
β(s – (1 – q)ST )

d + θ

)

,

∂2I(s, 0)
∂I2

0
=

∂I(s, 0)
∂I0

∫ s

(1–q)ST

m(s)
∂I(s, 0)

∂I0
ds.

4.2.1 Bifurcations with respect to q
Firstly, we consider the existence of q∗ such that μ2|q=q∗ = 1. Taking the derivative of μ2

with respect to q yields

∂μ2

∂q
=

μ2 dST (β(1 – q)ST – d – v – c
b )

(d + θ )(A – d(1 – q)ST )
.

Definitely, there is μ2 dST
(d+θ )(A–d(1–q)ST ) > 0, thus the sign of ∂μ2

∂q is determined by β(1 – q)ST –
d – v – c

b . If b(b+v)+c
bβ

< ST < A
d , there is q̃ = 1 – b(b+v)+c

bβST
∈ (0, 1), thus we have ∂μ

∂q = 0 for q = q̃,
∂μ

∂q < 0 for q > q̃, and ∂μ

∂q > 0 for q < q̃. This means that μ2(q) is decreasing in the interval
(̃q, 1) and increasing in the interval (0, q̃). Furthermore, we have

μ2|q=0 = 1, μ2|q=1 =
(

A
A – dST

) –d–v– c
b + βA

d
d+θ

exp

(

–
βST

d + θ

)

> 0,

with

(
A

A – dST

) –d–v– c
b + βA

d
d+θ

> 1.

Therefore, we have that
(1) If μ2|q=1 ≥ 1, then there is no q∗ ∈ (0, 1) satisfying μ2|q=q∗ = 1.
(2) If μ2|q=1 < 1, then there is q∗ = q∗

1 ∈ (̃q, 1) such that μ2|q=q∗
1

= 1. And, it is easy to verify
that ∂2P1

∂I0∂q (0, q∗
1) < 0 holds true.

On the other hand, if 0 < ST < b(b+v)+c
bβ

, then μ2(q) is decreasing in the interval (0, 1). Thus,
there is no q∗ ∈ (0, 1) satisfying μ2|q=q∗ = 1. Therefore, we have the following proposition.

Proposition 9 If R0 > 1, b(b+v)+c
bβ

< ST < A
d , and μ2|q=1 ≥ 1 hold true, then the semi-trivial

periodic solution (ξ (t), 0) is unstable for q ∈ (0, 1); If R0 > 1, b(b+v)+c
bβ

< ST < A
d , and μ2|q=1 < 1

hold true, then the semi-trivial periodic solution (ξ (t), 0) is orbitally asymptotically stable
for q ∈ (q∗

1, 1) and unstable for q ∈ (0, q∗
1); If R0 > 1 and 0 < ST < b(b+v)+c

bβ
hold true, then the

semi-trivial periodic solution (ξ (t), 0) is orbitally asymptotically stable for q ∈ (0, 1).
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In what follows, we consider the bifurcations with respect to q under the conditions of
the existence of q∗. It is easy to see that there is P1(0, q) = 0 for all q ∈ (0, 1), and

∂P1

∂I0

(
0, q∗

1
)

= 1,
∂2P1

∂I0∂q
(
0, q∗

1
)

< 0.

Moreover, we have

g ′′(0; q∗
1
)

= g ′(0; q∗
1
)
∫ ST

(1–q∗
1)ST

m(s)
∂I(s, 0)

∂I0
ds. (4.3)

As a result of the indeterminacy of the sign of m(s) in the interval s ∈ ((1 – q∗
1)ST , ST ), the

sign of g ′′(0; q∗
1) is undetermined. If we assume g ′′(0; q∗

1) > 0, then we have

∂2P1

∂I2
0

(
0, q∗

1
)

= g ′′(0; q∗
1
)

> 0.

Based on the above discussion, we have the following conclusion.

Theorem 10 If R0 > 1, b(b+v)+c
bβ

< ST < A
d , and μ2|q=1 < 1 hold true, then the Poincaré map

P1(I0, q) undergoes a transcritical bifurcation at p∗
1. Further, an unstable positive fixed

point appears when q goes through q = q∗
1 from left to right. Correspondingly, system (2.2)

has an unstable positive periodic solution if p ∈ (p∗
1, p∗

1 + δ) with δ > 0.

Theorem 11 If R0 > 1, b(b+v)+c
bβ

< ST < A
d , μ2|q=1 < 1, g ′′(0; q∗

1) = 0, and g ′′′(0; q∗
1) > 0 hold

true, then the Poincaré map P1(I0, q) undergoes a supercritical pitchfork bifurcation at p∗
1.

Therefore, an unstable positive fixed point appears when q goes through q = q∗
1 from left to

right. Correspondingly, system (2.2) has an unstable positive periodic solution if p ∈ (p∗
1, p∗

1 +
δ) with δ > 0.

4.2.2 Bifurcation with respect to ST

Similar to the case for q, we first analyze the existence of S∗
T such that μ2|ST =S∗

T
= 1. Taking

the derivative of μ2 with respect to ST yields

∂μ2

∂ST
=

qμ2

d + θ
f (ST )

with

f (ST ) =
dA(–d – v – c

b + βA
d )

(A – dST )(A – d(1 – q)ST )
– β .

The roots of the equation f (ST ) = 0, denoted by ST , satisfy the following equation:

βd(1 – q)S2
T + βA(q – 2)ST + A

(

d + v +
c
b

)

= 0. (4.4)
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Let

� = β2A2(q – 2)2 + 4βAd(1 – q)
(

d + v +
c
b

)

× β2A2
(

(q – 2)2 –
4(1 – q)

R0

)

.

Thus, � > 0 is equivalent to R0 > 4(1–q)
(q–2)2 . Denote K(q) = 4(1–q)

(q–2)2 . There are K(0) = 1 and
K ′(q) = 4q

(q–2)3 < 0. Therefore, we have that K(q) < 1 holds for all q ∈ (0, 1). This means
that � > 0 when R0 > 1, hence equation (4.4) has two roots, denoted by

ST1 =
– A

d (q – 2) – A
d

√

(q – 2)2 – 4(1–q)
R0

2(1 – q)
,

ST2 =
– A

d (q – 2) + A
d

√

(q – 2)2 – 4(1–q)
R0

2(1 – q)
.

We can verify that 0 < ST1 < A
d < ST2 . Thus, μ2 is decreasing when ST ∈ (0, ST1 ) and in-

creasing when ST ∈ (ST1 , A
d ).

Furthermore, when R0 > 1, there are

μ2|ST =0 = 1, μ2|ST =ST1
< 1, μ2|ST → A

d
– = +∞.

Therefore, there is a unique S∗
T ∈ (ST1 , A

d ) such that μ2|ST =ST1
= 1 with S∗

T satisfying

(
A – d(1 – q)S∗

T
A – dS∗

T

) –d–v– c
b + βA

d
d+θ

exp

(

–
βqS∗

T
d + θ

)

= 1.

Based on the above discussion, we can conclude the following.

Proposition 12 If R0 > 1, there exists unique S∗
T ∈ (ST1 , A

d ) such that μ2|ST =S∗
T

= 1. Then
the semi-trivial periodic solution (ξ (t), 0) is orbitally asymptotically stable for ST ∈ (0, S∗

T )
and unstable for ST ∈ (S∗

T , A
d ).

In what follows, we investigate the bifurcations of the semi-trivial periodic solution at
S∗

T . We can easily verify that P1(0, ST ) = 0 holds true for all ST ∈ (0, A
d ), and

∂P1

∂I0

(
0, S∗

T
)

= 1,
∂2P1

∂I0∂ST

(
0, S∗

T
)

> 0.

Moreover, we have

g ′′(0; S∗
T
)

= g ′(0; S∗
T
)
∫ S∗

T

(1–q)S∗
T

m(s)
∂I(s, 0)

∂I0
ds. (4.5)
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As a result of the indeterminacy of the sign of m(s) in the interval s ∈ ((1 – q)S∗
T , S∗

T ), the
sign of g ′′(0; S∗

T ) is undetermined. If we assume g ′′(0; S∗
T ) > 0, then we have

∂2P1

∂I2
0

(
0, S∗

T
)

= g ′′(0; S∗
T
)

> 0.

Based on the above discussion, we have the following conclusion.

Theorem 13 If R0 > 1 and g ′′(0; S∗
T ) > 0 hold true, then the Poincaré map P1(I0, ST ) under-

goes a transcritical bifurcation at ST = S∗
T . Further, an unstable positive fixed point appears

when ST goes through ST = S∗
T from right to left. Correspondingly, system (2.2) has an un-

stable positive periodic solution if ST ∈ (S∗
T – δ, S∗

T ) with δ > 0.

Theorem 14 If R0 > 1, g ′′(0; S∗
T ) = 0 and g ′′′(0; S∗

T ) > 0 hold true, then the Poincaré map
P1(I0, ST ) undergoes a supercritical pitchfork bifurcation at ST = S∗

T . Therefore, an unsta-
ble positive fixed point appears when ST goes through ST = S∗

T from right to left. Corre-
spondingly, system (2.2) has an unstable positive periodic solution if ST ∈ (S∗

T – δ, S∗
T ) with

δ > 0.

4.3 Bifurcation with respect to A
Taking μ2 as a function of A, we have

μ2(A) =
(

A – d(1 – q)ST

A – dST

) –d–v– c
b + βA

d
d+θ

exp

(
–βqST
d + θ

)

.

It is continuously differentiable when A ∈ (dST , +∞), and there are

lim
A→dS+

T
μ2(A) = +∞, lim

A→+∞
μ2(A) = exp

(

–
βqST
d + θ

)

< 1. (4.6)

Taking the derivative of μ2 with respect to A yields

∂μ2

∂A
=

βμ2

d + θ
∗ B1(A)

with

B1(A) = ln
A – d(1 – q)ST

A – dST
–

( –d–v– c
b

β
+ A

d )dqST

(A – d(1 – q)ST )(A – dST )
.

Then, taking the derivative of B1 with respect to A, we have

∂B1(A)
∂A

=
qST

(A – dST )2(A – d(1 – q)ST )2 ∗ B2(A),

with

B2(A) = (1 – d)A2 +
(

d2(2 – q)ST + 2d
(

d + v +
c
b

))

A

+ d2ST

( (2 – q)(d + v + c
b )

β
– (1 + d)(1 – q)ST

)

.
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If (2–q)(d+v+ c
b )

β
– (1 + d)(1 – q)ST ≥ 0 i.e. ST ≤ (2–q)(d+v+ c

b )
β(1+d)(1–q) . Under this case, B2(A) > 0

holds for A ∈ (dST , +∞). Furthermore, there is limA→+∞ B1(A) = 0, hence B1(A) < 0 for
A ∈ (dST , +∞), which means that ∂μ2

∂A < 0 for A ∈ (dST , +∞). Combining with (4.6), we
have that there exists unique A∗ ∈ (dST , +∞) satisfying μ2(A∗) = 1 with ∂μ2(A∗)

∂A < 0.
If (2–q)(d+v+ c

b )
β

– (1 + d)(1 – q)ST < 0 i.e. ST > (2–q)(d+v+ c
b )

β(1+d)(1–q) . Under this scenario, there exists
one and only one positive A1 such that B2(A1) = 0. If A1 ≤ dST , then the situation is similar
to ST ≤ (2–q)(d+v+ c

b )
β(1+d)(1–q) discussed above. If A1 > dST , when A ∈ (dST , A1), B2(A) < 0, hence

B1(A) is decreasing. Similarly, we get that B1(A) is increasing when A ∈ (A1, +∞). Further,
limA→+∞ B1(A) = 0, thus B1(A) < 0 holds for A ∈ (A1, +∞). If we also assume that B1(A) <
0 for A ∈ (dST , A1), then there is ∂μ2

∂A < 0 for A ∈ (dST , +∞). Therefore, there is unique
A∗ ∈ (dST , +∞) satisfying μ2(A∗) = 1 with ∂μ2(A∗)

∂A < 0. On the other hand, if we assume
that there is Ã ∈ (dST , A1) such that B1(Ã) = 0, then μ2 is increasing for A ∈ (dST , Ã), and
μ2 is decreasing for A ∈ (Ã, +∞). Therefore, there is also unique A∗ ∈ (Ã, +∞) satisfying
μ2(A∗) = 1 with ∂μ2(A∗)

∂A < 0. Therefore, we have the following conclusion.

Proposition 15 If R0 > 1 holds, then there exists unique A∗ > dST satisfying μ2(A∗) = 1
with ∂μ2(A∗)

∂A < 0. And the semi-trivial periodic solution (ξ (t), 0) is orbitally asymptotically
stable when A ∈ (A∗, +∞) and unstable when A ∈ (dST , A∗).

In what follows, we consider the bifurcations of the semi-trivial periodic solution at A∗.
Similarly, we can easily verify thatP1(0, A) = 0 holds for all A ∈ (dST , +∞), and ∂P1

∂I0
(0, A∗) =

1, ∂2P1
∂I0∂A (0, A∗) < 0. Moreover, we have

∂2P1

∂I2
0

(
0, A∗) = g ′′(0; A∗). (4.7)

Similarly, the sign of g ′′(0; A∗) is undetermined. If we assume g ′′(0; A∗) > 0, we have
∂2P1
∂I2

0
(0, A∗) > 0, then there appears an unstable fixed point of the Poincaré map P1 when

A passes through A∗ from left to right.
Based on the above discussion, we have the following conclusion.

Theorem 16 If R0 > 1 and g ′′(0; A∗) > 0 hold, then the Poincaré map P1(I0, A) undergoes a
transcritical bifurcation at A = A∗. Further, an unstable positive fixed point appears when
A passes through A = A∗ from left to right. Correspondingly, system (2.2) has an unstable
positive periodic solution if A ∈ (A∗, A∗ + δ) with δ > 0.

Theorem 17 If R0 > 1, g ′′(0; A∗) = 0, and g ′′′(0; A∗) > 0 hold true, then the Poincaré map
P1(I0, A) undergoes a supercritical pitchfork bifurcation at A = A∗. Therefore, an unstable
positive fixed point appears when A goes through A = A∗ from left to right. Correspondingly,
system (2.2) has an unstable positive periodic solution if A ∈ (A∗, A∗ + δ) with δ > 0.

By choosing ST , q, A as the bifurcation parameters and fixing all the other parameters,
we numerically verified the existence of the critical bifurcation point with respect to these
three parameters in Fig. 1. In Fig. 2(A), we showed that the semi-trivial periodic solution
is globally stable when we choose ST = 6.3. As ST increases to 8, then an unstable periodic
solution appears, the semi-trivial periodic solution and the positive equilibrium E∗ are
bistable, as shown in Fig. 2(B).
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Figure 1 (A)-(C) One parameter bifurcation with respect to ST , q, and A, respectively. (E)–(G) Counter plots of
μ2. The baseline values of all the parameters are fixed as follows: β = 1, A = 7, d = 0.7, v = 4, c = 2.5, θ = 0.1,
b = 1, q =, 0.22, ST = 8

5 Conclusion and discussion
Recently, several studies pioneered the attempt to include the susceptible population-
guided interventions for controlling infectious diseases into the SIR systems [27–30]. As
highlighted in these studies, with this kind of control strategies, it is possible to define
the control reproduction number for the impulsive system compared with the infected-
population induced control interventions. In this study, we extended the SIS model by
including the control strategy i.e. susceptible population-guided impulsive control, and
systematically studied its dynamics and bifurcations.

We started with recalling the dynamic behavior of the ODE system. By defining the
Poincaré map of the proposed model and presenting the proof of its properties, we ex-
plored the existence and stability of the semi-trivial periodic solution. We found a thresh-
old parameter, which can be defined as the control reproduction number, determining the
stability of the semi-trivial periodic solution. In detail, it is locally stable when the control
reproduction number is less than 1 and unstable when the reproduction number exceeds
the threshold value 1.

Furthermore, we investigated the bifurcations near the semi-trivial periodic solution
considering the key parameters, including the constant recruitment rate A, the threshold
level of the susceptible population ST , and the pulse vaccination rate q. We proved that
as the bifurcation parameters vary, the system can undergo the transcritical or pitchfork
bifurcation near the semi-trivial periodic solution; consequently, the semi-trivial periodic
solution loses its stability, while an unstable positive periodic solution appears. It is also
interesting to summarize the biological implications by this impulsive SIS model and its
dynamic behaviors and bifurcations. Through the bifurcation analysis with respect to ST ,
we obtained a critical value of the threshold to guarantee the disease-free periodic solution
to be stable. This means that by choosing a proper threshold of the susceptible population
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Figure 2 (A) The semi-trivial periodic solution is globally stable. (B) There exists an unstable positive order-1
periodic solution, and the semi-trivial periodic solution and the positive equilibrium E∗ are bistable. The other
parameters are fixed as follows: β = 0.8, A = 7, d = 0.7, v = 4, c = 2.5, θ = 0.1, b = 1, q =, 0.22

size, this kind of control strategy can indeed help to eliminate the disease. The bifurcations
with respect to other parameters can actually reflect similar implications, like choosing a
proper vaccination rate. On the other hand, the bistability of the positive equilibrium and
the semi-trivial periodic solution indicate that the outcomes under this state-dependent
control strategy depend on the initial conditions of the susceptible population and the
infected population, hence a personalized strategy is recommended. Our model does not
cover spatio-temporal delay, thus considering the effect of spatio-temporal delay [7] could
be a valuable issue for future research.
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