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Abstract
This paper investigates the problem of finite-/fixed-time synchronization for
Clifford-valued recurrent neural networks with time-varying delays. The considered
Clifford-valued drive and response system models are firstly decomposed into
real-valued drive and response system models in order to overcome the difficulty of
the noncommutativity of the multiplication of Clifford numbers. Then, suitable
time-delayed feedback controllers are devised to investigate the synchronization
problem in finite-/fixed-time of error system. On the basis of new
Lyapunov–Krasovskii functional and new computational techniques,
finite-/fixed-time synchronization criteria are formulated for the corresponding
real-valued drive and response system models. Two numerical examples demonstrate
the effectiveness of the theoretical results.

Keywords: Clifford-valued neural network; Synchronization; Finite-time; Fixed-time;
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1 Introduction
Recurrent neural network (RNN) models have been used effectively to address optimiza-
tion, associative memory, signal and image processing, as well as other complex problems.
Recently, the dynamic analysis of RNN models has attracted immense interest from var-
ious researchers, and useful methods with respect to the stability theory of RNN models
have been published [1–4]. In this respect, time delays are frequently observed in neural
network (NN) models, owing to the slow speed of signal spread. Time delays are the main
source of various dynamics such as chaos, poor functionality, divergence, and instability
[5–9]. As such, studies on NN dynamics involving constant or time-varying delays are
essential. On the other hand, quaternion-valued and complex-valued NN models are use-
ful in many fields, including night vision color, radar images, polarized signals classifica-
tion, 3D wind forecasts, and others [10–14]. Recently, many important results concerning
different dynamics of the complex-valued and quaternion-valued NN models have been
published [6–8, 15–18]. For example, stability analysis [8, 9, 16, 17], finite-time stability
[6], stabilizability and instabilizability [7], optimization [19, 20], controllability and ob-
servability [21], multistability [18], and so on.
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Clifford algebra provides a solid principle to solve geometry problems. It has been imple-
mented in many diverse areas, e.g., neural systems, computers, robot and control prob-
lems [22–26]. Clifford-valued NN models represent a generalization of real-, complex-
, and quaternion-valued NN models. To address the challenges associated with high-
dimensional data and spatial geometric transformation, Clifford-valued NN models are
superior to real-, complex-, and quaternion-valued NN models [24–27]. Recently, theo-
retical and applied studies on Clifford-valued NN models have become a new research
subject. However, the dynamic properties of Clifford-valued NN models are usually more
complex than those of real-, complex-, and quaternion-valued NN models. Due to the
noncommutativity of multiplication with respect to Clifford numbers [28–36], studies on
Clifford-valued NN dynamics are still limited. By using the linear matrix inequality ap-
proach, the authors in [28] derived the global exponential stability criteria for delayed
Clifford RNN models. By using the decomposition process, the issue of global asymptotic
stability in Clifford-valued NN models was explored in [29]. In [31], the authors studied the
presence of globally asymptotic almost automorphic synchronization to the problem of
Clifford-valued RNN models by using suitable feedback controllers. Utilizing the Banach
fixed point theorem and Lyapunov functional, the global asymptotic almost periodic syn-
chronization problems for Clifford-valued NN models were examined in [33]. Recently,
the effects of neutral delay and discrete delays have been considered in a class of Clifford-
valued NNs [37], and the associated existence, uniqueness, and global stability criteria
have been obtained. By considering impulsive effects, the problem of global exponential
stability of Clifford-valued NN models with time-varying delays has been investigated in
[38].

On the other hand, synchronization is an important dynamical behavior in network sys-
tems, which has been applied in many different areas, including image processing, neural
computing, traffic systems, and secure communication. As such, various kinds of synchro-
nization have already been suggested in the previous literature [39–46]. Different from the
classical synchronization analysis, finite-time synchronization means that the dynamical
behaviors of coupled systems achieve the same time spatial state in finite settling time.
Therefore, the concept of finite-time synchronization occurs naturally. In recent decades,
literature for the finite-time synchronization of NNs has been widely published [47–52].
The use of the feedback controller technique to achieve finite-time synchronization of
complex dynamical networks with time delay has been investigated [47]. In [48], the au-
thors showed a detailed study of the finite-time synchronization of stochastic coupled
NNs subject to Markovian switching and input saturation. In [49], the authors explored
synchronization issues in finite-time complex-valued RNN models with time-varying de-
lays and discontinuous activation functions. With respect to finite-time distributed delays,
the synchronization issue of finite-time complex-valued NN models was examined in the
work [50].

However, in practical networks, it is difficult to obtain initial values in advance. There-
fore, finite-time synchronization of such networks is impossible. Fixed-time synchroniza-
tion would be a reasonable choice for scientists and engineers in this case as well. The
settling time for fixed-time synchronization is calculated using known parameters and
does not depend on the initial values, so it is widely accepted when compared to classical
finite-time synchronization [53–56]. Furthermore, in realistic engineering problems, it is
desirable that the systems can be synchronized for any initial conditions within a fixed-
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time period. The definition of fixed-time stability was suggested in [53]. Thereafter, the
principle of fixed-time stability in various areas, including rigid spacecraft, secure com-
munication, and power systems, was successfully utilized [57–59]. In the papers [54, 55],
during fixed-time synchronization of the NNs being addressed, the controllers were de-
signed so as to achieve synchronization criteria within a fixed settling time interval. In [56],
a unified control framework was designed for finite-time and fixed-time synchronization
of discontinuous complex networks. In [57], fixed-time synchronization of quaternion-
valued NNs was obtained by the feedback control principle and the Lyapunov functional
method.

However, to the best of authors’ knowledge, the problem of finite-/fixed-time synchro-
nization of Clifford-valued RNN with time-varying delays has not yet been considered by
any researcher. Indeed, this interesting topic is still an open challenge. Therefore, we at-
tempt to derive sufficient conditions pertaining to finite-/fixed-time synchronization of
Clifford-valued RNN models in this paper. The main contributions of this paper are as
follows:

(1) The finite-time and fixed-time synchronization of Clifford-valued RNNs with
time-varying delays is investigated for the first time.

(2) By considering appropriate feedback controllers, Lyapunov functional, and new
computational methods, some sufficient conditions that ascertain the
finite-/fixed-time synchronization of Clifford-valued RNN models are derived by
decomposing the Clifford-valued RNN model into real-valued models.

(3) When Clifford-valued NN model is reduced to real-, complex-, and
quaternion-valued ones, the results obtained in this paper are valid as special cases.

(4) Two numerical examples with simulations are given to support the effectiveness and
merits of the theoretical results.

We organize this paper as follows. The proposed Clifford-valued RNN model is formally
defined in Sect. 2. The finite-/fixed-time synchronization criteria are presented in Sect. 3,
while two numerical examples are given in Sect. 4. The conclusion of this paper is given
in Sect. 5.

2 Mathematical fundamentals and problem formulation
2.1 Notations
The superscripts T and ∗ indicate the matrix transposition and matrix involution trans-
position, respectively. Any matrix O > 0 (< 0) denotes a positive (negative) definite matrix,
while A is defined as the Clifford algebra which has m generators over real number R. In
addition, Rn and A

n denote the n-dimensional real vector space and n-dimensional real
Clifford vector space, respectively; while R

n×n and A
n×n denote the set of all n × n real

matrices and the set of all n × n real Clifford matrices, respectively. We define the norm
of Rn as ‖r‖ =

∑n
i=1 |ri|, and for A = (aij)n×n ∈ R

n×n, denote ‖A‖ = max1≤i≤n{∑n
j=1 |aij|}.

While r =
∑

A rAeA ∈A, denote |r|A =
∑

A |rA|, and for A = (aij)n×n ∈A
n×n, denote ‖A‖A =

max1≤i≤n{∑n
j=1 |aij|A}. For ϕ ∈ C([–τ , 0],An), ‖ϕ‖τ ≤ sup–τ≤s≤0 ‖ϕ(t + s)‖.
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2.2 Clifford algebra
In this subsection, we recall some definitions, notations, and basic results of Clifford alge-
bra. The Clifford real algebra over Rm is defined as

A =
{ ∑

A⊆{1,2,...,m}
aAeA, aA ∈R

}

,

where eA = el1 el2 , . . . , elν with A = {l1, l2, . . . , lν}, 1 ≤ l1 < l2 < · · · < lν ≤ m. Moreover, e∅ =
e0 = 1 and el = e{l}, l = 1, 2, . . . , m, are denoted as the Clifford generators, and they satisfy
eiej + ejei = 0, i �= j, i, j = 1, 2, . . . , m, e2

i = –1, i = 1, 2, . . . , m.

Remark 2.1 When one element is the product of multiple Clifford generators, we will write
its subscripts together: e4e5e6e7 = e4567.

Let � = {∅, 1, 2, . . . , A, . . . , 12, . . . , m}, and we have

A =
{∑

A

aAeA, aA ∈ R

}

,

where
∑

A denotes
∑

A∈� and dimA =
∑m

k=0
(m

k
)

= 2m. For r =
∑

A rAeA : R → A, where
rA : R →R, A ∈ �, its derivative is represented by dr(t)

dt =
∑

A
drA(t)

dt eA. For more knowledge
about Clifford algebra, we refer the reader to [28–30].

2.3 Problem definition
Consider the following Clifford-valued RNN model with time-varying delays:

ṙi(t) = –diri(t) +
n∑

j=1

aijhj
(
rj(t)

)
+

n∑

j=1

bijhj
(
rj
(
t – τj(t)

))
+ ki, t ≥ 0, (1)

ri(t) = ϕi(t), t ∈ [–τ , 0], (2)

where i ∈ N , j ∈ N (N = 1, 2, . . . , n), and n corresponds to the number of neurons; ri(t) ∈A

represents the state vector of the ith unit; di ∈R
+ indicates the rate with which the ith unit

will reset its potential to the resting state in isolation when it is disconnected from the net-
work and external inputs; aij, bij ∈ A indicate the strengths of connection weights without
and with time-varying delays between cells i and j, respectively; ki ∈ A is an external in-
put on the ith unit; hj(·) : An → A

n is the activation function of signal transmission; τj(t)
corresponds to the transmission delay which satisfies 0 ≤ τj(t) ≤ τ , where τ is a positive
constant, and τ = max1≤j≤n{τj(t)}. Furthermore, ϕi ∈ C([–τ , 0],An) is the initial condition
with respect to model (1).

Remark 2.2 It is clear that NN model (1) includes real-valued, complex-valued, and
quaternion-valued NN models. These mean that the proposed NN model is more gen-
eral than the corresponding one in the existing articles. For example, when we consider
m = 0 in NN model (1), then the model can be reduced to the real-valued NN model pro-
posed in [5]. If we take m = 1 in NN model (1), then the model can be reduced to the
complex-valued NN model proposed in [9]. If we choose m = 2 in NN model (1), then the
model can be reduced to the quaternion-valued NN model proposed in [17].
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The corresponding response system is defined by

ṡi(t) = –disi(t) +
n∑

j=1

aijhj
(
sj(t)

)
+

n∑

j=1

bijhj
(
sj
(
t – τj(t)

))
+ ui(t) + ki, t ≥ 0, (3)

si(t) = φi(t), t ∈ [–τ , 0], (4)

where i ∈ N , j ∈ N (N = 1, 2, . . . , n), and n corresponds to the number of neurons; si(t) ∈A

represents the state vector of the ith unit; φi ∈ C([–τ , 0],An) is the initial condition for
model (3). In addition, ui(t) is state-feedback controller, while other notations associated
with (3) and (4) are the same as those in (1) and (2).

(A1) Function hj(·) fulfills the Lipschitz continuity condition with respect to the
n-dimensional Clifford vector. For each j ∈ N , there exists a positive constant lj

such that, for any x, y ∈ A,

∣
∣hj(x) – hj(y)

∣
∣
A

≤ lj|x – y|A, j ∈ N , (5)

where lj (j ∈ N ) is known as the Lipschitz constant and hj(0) = 0. In addition, there
exists a positive constant lj such that |hj(x)|A ≤ lj for any x ∈A.

3 Main results
To address the issue of noncommutativity of multiplication of Clifford numbers, we trans-
form the original Clifford-valued models into multidimensional real-valued models. This
can be achieved with the help of eAēA = ēAeA = 1 and eBēAeA = eB. Given any G ∈A, unique
GC that is able to satisfy GCeChAeA = (–1)σ [B.Ā]GChAeB = GB.ĀhAeB can be identified. By
decomposing (1) and (2) into ṙ =

∑
A ṙAeA, we have the following real-valued models:

ṙA
i (t) = –dirA

i (t) +
n∑

j=1

∑

B

aA.B̄
ij hB

j
(
rj(t)

)

+
n∑

j=1

∑

B

bA.B̄
ij hB

j
(
rj
(
t – τj(t)

))
+ kA

i , t ≥ 0, (6)

rA
i (t) = ϕA

i (t), t ∈ [–τ , 0], (7)

where

rA(t) =
(
rA

1 (t), rA
2 (t), . . . , rA

n (t)
)T , ri(t) =

∑

A∈�

rA
i (t)eA,

kA =
(
kA

1 , kA
2 , . . . , kA

n
)T , ki =

∑

A∈�

kA
i eA,

hB(
r(t)

)
=

(
hB

1
(
rC1

1 (t), rC2
1 (t), . . . , rC2m

1 (t)
)
, hB

2
(
rC1

2 (t), rC2
2 (t), . . . , rC2m

2 (t)
)
,

. . . , hB
n
(
rC1

n (t), rC2
n (t), . . . , rC2m

n (t)
))T ,

hB(
r
(
t – τ (t)

))
=

(
hB

1
(
rC1

1
(
t – τ (t)

)
, rC2

1
(
t – τ (t)

)
, . . . , rC2m

1
(
t – τ (t)

))
,

hB
2
(
rC1

2
(
t – τ (t)

)
, rC2

2
(
t – τ (t)

)
, . . . , rC2m

2
(
t – τ (t)

))
,
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. . . , hB
n
(
rC1

n
(
t – τ (t)

)
, rC2

n
(
t – τ (t)

)
, . . . , rC2m

n
(
t – τ (t)

)))T ,

aij =
∑

C

aC
ij eC , aA.B̄

ij = (–1)σ [A.B̄]aC
ij ,

bij =
∑

C

bC
ij eC , bA.B̄

ij = (–1)σ [A.B̄]bC
ij ,

eAēB = (–1)σ [A.B̄]eC .

Remark 3.1 If r = (r0
1, r1

1, r2
1, . . . , r1,2,...,m

1 , r0
2, r1

2, r2
2, . . . , r1,2,...,m

2 , . . . , r0
n, r0

n, r2
n, . . . , r1,2,...,m

n )T = {rA
i }

is a solution to system (6), then r = (r1, r2, . . . , rn)T must be a solution to system (1), where
ri =

∑
A rA

i eA, i = 1, 2, . . . , n, A ∈ �.

Also, we can use the same method to transform (3) and (4) into the following real-valued
models:

ṡA
i (t) = –disA

i (t) +
n∑

j=1

∑

B

aA.B̄
ij hB

j
(
sj(t)

)
+

n∑

j=1

∑

B

bA.B̄
ij hB

j
(
sj
(
t – τj(t)

))

+ uA
i (t) + kA

i , t ≥ 0, (8)

sA
i (t) = φA

i (t), t ∈ [–τ , 0], (9)

where

sA(t) =
(
sA

1 (t), sA
2 (t), . . . , sA

n (t)
)T , si(t) =

∑

A∈�

sA
i (t)eA,

uA(t) =
(
uA

1 (t), uA
2 (t), . . . , uA

n (t)
)T , ui(t) =

∑

A∈�

uA
i (t)eA,

hB(
s(t)

)
=

(
hB

1
(
sC1

1 (t), sC2
1 (t), . . . , sC2m

1 (t)
)
, hB

2
(
sC1

2 (t), sC2
2 (t), . . . , sC2m

2 (t)
)
,

. . . , hB
n
(
sC1

n (t), sC2
n (t), . . . , sC2m

n (t)
))T ,

hB(
s
(
t – τ (t)

))
=

(
hB

1
(
sC1

1
(
t – τ (t)

)
, sC2

1
(
t – τ (t)

)
, . . . , sC2m

1
(
t – τ (t)

))
,

hB
2
(
sC1

2
(
t – τ (t)

)
, sC2

2
(
t – τ (t)

)
, . . . , sC2m

2
(
t – τ (t)

))
,

. . . , hB
n
(
sC1

n
(
t – τ (t)

)
, sC2

n
(
t – τ (t)

)
, . . . , sC2m

n
(
t – τ (t)

)))T .

Note that the remaining notations of (8) and (9) are the same as those in (6) and (7).
Define the error vector between the real-valued drive models (6), (7) and the real-valued

response models (8), (9) as eA
i (t) = sA

i (t) – rA
i (t) and ψA

i (t) = φA
i (t) – ϕA

i (t); then, from (6)–
(9), the following error models are produced:

ėA
i (t) = –dieA

i (t) +
n∑

j=1

∑

B

aA.B̄
ij

(
hB

j
(
sj(t)

)
– hB

j
(
rj(t)

))

+
n∑

j=1

∑

B

bA.B̄
ij

(
hB

j
(
sj
(
t – τj(t)

))
– hB

j
(
rj
(
t – τj(t)

)))
+ uA

i (t), t ≥ 0, (10)

eA
i (t) = ψA

i (t), t ∈ [–τ , 0]. (11)
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Remark 3.2 As we all know, the multiplication of Clifford numbers does not satisfy the
commutative law, which complicates the investigation of Clifford-valued NNs dynamics.
Therefore, the known results on Clifford-valued neural networks are limited. On the other
hand, the decomposition approach is very effective to overcome the difficulty of the non-
commutativity of the multiplication of Clifford numbers. Therefore, it is highly meaning-
ful to use the decomposition method to study Clifford-valued NNs. Recently, most exist-
ing results have been derived by decomposing Clifford valued NNs into real-valued NNs
[28, 29, 33, 37, 38].

The following lemmas, definitions are used as the main techniques in the paper.

Definition 3.3 ([58]) The origin of a nonlinear dynamical model is said to be globally
finite-time stable if, for any solution r(t, r0), the following are true:

(1) Lyapunov stability: For any ε > 0, there is δ = δ(ε) > 0 such that ‖r(t, r0)‖ < ε for any
‖r0‖ < δ and t ≥ t0.

(2) Finite-time convergence: There exists a function T : Rn \ {0} → (0, +∞), denoted as
the settling time function, such that limt→T(r0) = 0 and r(t, r0) = 0 for all t ≥ T(r0).

Definition 3.4 ([59]) The origin of the nonlinear dynamical model is said to be fixed-time
stable if it is globally finite-time stable and the settling time function T(r0) is bounded for
any r0 ∈ R

n, i.e., there exists Tmax > 0 such that T(r0) ≤ Tmax for all r0 ∈R
n.

Definition 3.5 ([60]) Consider drive-response models (6) and (7) as well as (8) and (9). If,
for a suitable controller ui(t) =

∑
A uA

i (t)eA, there exists a function T = T(ψi) > 0, depend-
ing on the initial value ψi, such that

lim
t→T

∣
∣sA

i (t) – rA
i (t)

∣
∣ = lim

t→T

∣
∣eA

i (t)
∣
∣ = 0

and |eA
i (t)| = 0 for t > T , i ∈ N , A ∈ �, then drive models (6) and (7) and response models

(8) and (9) achieve synchronization in finite-time.

Definition 3.6 ([61]) A function V(r) : Rn →R+ is C-regular if it is
(1) regular in R

n,
(2) positive definite, i.e., V(r) > 0 for r �= 0 and V(0) = 0,
(3) radially unbounded, i.e., V(r) → ∞ as ‖r‖ → ∞.

Definition 3.7 ([57]) Drive-response models (6) and (7) as well as (8) and (9) are said to
achieve fixed-time synchronization if, for any initial condition, there exist time Tmax and
a settling time function T(eA

0 ) such that

lim
t→T(eA

0 )
eA(t) = 0, eA(t) = 0,∀t ≥ T

(
eA

0
)
,

and T(eA
0 ) ≤ Tmax, where eA(t) = (eA

i (t))T , eA
0 = (eA

i (0))T , i ∈ N , A ∈ �.

Lemma 3.8 ([62]) Suppose that V : R2mn → R+ is continuous, differentiable, positive def-
inite, and it satisfies the following differential inequality:

V̇(t) ≤ –FVυ (t), t ≥ t0,V(t0) ≥ 0,
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where F > 0 and 0 < υ < 1 are constants. Then, for any given t0, V(t) satisfies the following
inequality:

V1–υ(t) ≤ V1–υ(t0) – F (1 – υ)(t – t0), t0 ≤ t ≤ T+,

and

V(t) = 0, t ≥ T+,

and the settling time T+ is given by

T+ = t0 +
V1–υ(t0)
F (1 – υ)

.

Lemma 3.9 ([59]) If there exists a continuous radically unbounded function V : R2mn →
R+ ∪ {0} such that

(1) V(eA) = 0 �⇒ eA = 0,
(2) If there exist C1 > 0, C2 > 0, 0 < P < 1, and Q > 1 such that

V̇
(

eA(t)
) ≤ –C1VP(

eA(t)
)

– C2VQ(
eA(t)

)
, (12)

where V̇ denotes the derivative of V .
Then V(eA(t)) = 0, ∀t ≥ T+

max with the settling time T+
max given by

T+
max =

1
C1(1 – P)

+
1

C2(Q – 1)
. (13)

Lemma 3.10 ([63]) If ξ1, ξ2, . . . , ξn are the positive constants and 0 < α1 < α2, then

( n∑

i=1

ξ
α2
i

) 1
α2

≤
( n∑

i=1

ξ
α1
i

) 1
α1

.

3.1 Finite-time synchronization
In this subsection, the finite-time synchronization criterion for the error system models
(10) and (11) is derived. The state-feedback controllers for models (10) and (11) are chosen
as follows:

ui(t) =
∑

A

uA
i (t)eA,

uA
i (t) = –λ1ieA

i (t) – λ2i
∣
∣eA

i (t)
∣
∣α sgn

(
eA

i (t)
)

– λ3i

n∑

j=1

∣
∣eA

j
(
t – τj(t)

)∣
∣ sgn

(
eA

i (t)
)
, (14)

where i ∈ N , j ∈ N , A ∈ �, and 0 < α < 1 and λ1i, λ2i, λ3i are the parameters that will be
determined.
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Theorem 3.11 Based on Assumption (A1) and a proper selection of the parameters to
satisfy the following conditions:

di + λ1i –
n∑

i=1

n∑

j=1

∑

A

∑

B

∣
∣aA.B̄

ij
∣
∣lj ≥ 0, (15)

λ3i –
n∑

i=1

n∑

j=1

∑

A

∑

B

∣
∣bA.B̄

ij
∣
∣lj ≥ 0, (16)

λ2i > 0. (17)

Then the error system models (10) and (11) can achieve the finite-time synchronization with
controller (14). Moreover, the settling time of synchronization T+ satisfies

T+ = t0 +
V1–α(t0)

mini∈N (λ2i)(1 – α)
. (18)

Proof Consider the following Lyapunov function which is positive definite and radially
unbounded:

V(t) =
n∑

i=1

∑

A

∣
∣eA

i (t)
∣
∣. (19)

The Dini derivative D+V(t) is computed with model (10). We derive

D+V(t) =
n∑

i=1

∑

A

sgn
(

eA
i (t)

)
ėA

i (t)

=
n∑

i=1

∑

A

sgn
(

eA
i (t)

)
(

–dieA
i (t) +

n∑

j=1

∑

B

aA.B̄
ij

(
hB

j
(
sj(t)

)
– hB

j
(
rj(t)

))

+
n∑

j=1

∑

B

bA.B̄
ij

(
hB

j
(
sj
(
t – τj(t)

))
– hB

j
(
rj
(
t – τj(t)

)))
+ uA

i

)

=
n∑

i=1

∑

A

sgn
(

eA
i (t)

)
(

–dieA
i (t) +

n∑

j=1

∑

B

aA.B̄
ij

(
hB

j
(
sj(t)

)
– hB

j
(
rj(t)

))

+
n∑

j=1

∑

B

bA.B̄
ij

(
hB

j
(
sj
(
t – τj(t)

))
– hB

j
(
rj
(
t – τj(t)

)))
– λ1ieA

i (t)

– λ2i
∣
∣eA

i (t)
∣
∣α sgn

(
eA

i (t)
)

– λ3i

n∑

j=1

∣
∣eA

j
(
t – τj(t)

)∣
∣ sgn

(
eA

i (t)
)
)

= –
n∑

i=1

∑

A

sgn
(

eA
i (t)

)
dieA

i (t)

+
n∑

i=1

∑

A

sgn
(

eA
i (t)

) n∑

j=1

∑

B

aA.B̄
ij

(
hB

j
(
sj(t)

)
– hB

j
(
rj(t)

))

+
n∑

i=1

∑

A

sgn
(

eA
i (t)

) n∑

j=1

∑

B

bA.B̄
ij

(
hB

j
(
sj
(
t – τj(t)

))
– hB

j
(
rj
(
t – τj(t)

)))
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–
n∑

i=1

∑

A

sgn
(

eA
i (t)

)
λ1ieA

i (t) –
n∑

i=1

∑

A

sgn
(
eA

i (t)
)
λ2i

∣
∣eA

i (t)
∣
∣α sgn

(
eA

i (t)
)

–
n∑

i=1

n∑

j=1

∑

A

sgn
(

eA
i (t)

)
λ3i

∣
∣eA

j
(
t – τj(t)

)∣
∣ sgn

(
eA

i (t)
)

=
n∑

i=1

∑

A

–di
∣
∣eA

i (t)
∣
∣ +

n∑

i=1

∑

A

sgn
(
eA

i (t)
) n∑

j=1

∑

B

aA.B̄
ij

(
hB

j
(
sj(t)

)
– hB

j
(
rj(t)

))

+
n∑

i=1

∑

A

sgn
(
eA

i (t)
) n∑

j=1

∑

B

bA.B̄
ij

(
hB

j
(
sj
(
t – τj(t)

))
– hB

j
(
rj
(
t – τj(t)

)))

–
n∑

i=1

∑

A

λ1i
∣
∣eA

i (t)
∣
∣ –

n∑

i=1

∑

A

λ2i
∣
∣eA

i (t)
∣
∣α –

n∑

i=1

n∑

j=1

∑

A

λ3i
∣
∣eA

j
(
t – τj(t)

)∣
∣

=
n∑

i=1

∑

A

–di
∣
∣eA

i (t)
∣
∣ +

n∑

i=1

n∑

j=1

∑

A

∑

B

∣
∣aA.B̄

ij
∣
∣
∣
∣hB

j
(
sj(t)

)
– hB

j
(
rj(t)

)∣
∣

+
n∑

i=1

n∑

j=1

∑

A

∑

B

∣
∣bA.B̄

ij
∣
∣
∣
∣hB

j
(
sj
(
t – τj(t)

))
– hB

j
(
rj
(
t – τj(t)

))∣
∣

–
n∑

i=1

∑

A

λ1i
∣
∣eA

i (t)
∣
∣ –

n∑

i=1

∑

A

λ2i
∣
∣eA

i (t)
∣
∣α –

n∑

i=1

n∑

j=1

∑

A

λ3i
∣
∣eA

j
(
t – τj(t)

)∣
∣

≤
n∑

i=1

∑

A

–di
∣
∣eA

i (t)
∣
∣ +

n∑

i=1

n∑

j=1

∑

A

∑

B

∣
∣aA.B̄

ij
∣
∣lj

∣
∣eA

j (t)
∣
∣

+
n∑

i=1

n∑

j=1

∑

A

∑

B

∣
∣bA.B̄

ij
∣
∣lj

∣
∣eA

j
(
t – τj(t)

)∣
∣ –

n∑

i=1

∑

A

λ1i
∣
∣eA

i (t)
∣
∣

–
n∑

i=1

∑

A

λ2i
∣
∣eA

i (t)
∣
∣α –

n∑

i=1

n∑

j=1

∑

A

λ3i
∣
∣eA

j
(
t – τj(t)

)∣
∣. (20)

By combining similar terms, we have

D+V(t) ≤
n∑

i=1

∑

A

(

–di – λ1i +
n∑

j=1

∑

B

∣
∣aA.B̄

ij
∣
∣lj

)
∣
∣eA

i (t)
∣
∣

+
n∑

i=1

∑

A

(

–λ3i +
n∑

j=1

∑

B

∣
∣bA.B̄

ij
∣
∣lj

)
∣
∣eA

j
(
t – τj(t)

)∣
∣ –

n∑

i=1

∑

A

λ2i
∣
∣eA

i (t)
∣
∣α

≤ –
n∑

i=1

∑

A

λ2i
∣
∣eA

i (t)
∣
∣α

≤ – min
i∈N

(λ2i)
n∑

i=1

∑

A

∣
∣eA

i (t)
∣
∣α . (21)

From Lemma (3.10), we obtain

n∑

i=1

∑

A

∣
∣eA

i (t)
∣
∣α ≤

( n∑

i=1

∑

A

∣
∣eA

i (t)
∣
∣

)α

. (22)
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Replacing (22) in (21), we have

D+V(t) ≤ – min(λ2i)

( n∑

i=1

∑

A

∣
∣eA

i (t)
∣
∣

)α

,

= – min
i∈N

(λ2i)Vα(t). (23)

According to Lemma (3.8), response model (8) with controller (14) can be synchronized
in finite-time with drive model (6). Furthermore, the settling time of synchronization T+

is given by (18). Thus, Theorem 3.11 is proved. �

3.2 Fixed-time synchronization
The fixed-time synchronization criterion for drive-response models (10) and (11) is de-
rived. The time-delay feedback controller for model (10) is chosen as follows:

ui(t) =
∑

A

uA
i (t)eA,

uA
i (t) = – λ1ieA

i (t) – λ2i
∣
∣eA

i (t)
∣
∣α sgn

(
eA

i (t)
)

– λ3i
∣
∣eA

i (t)
∣
∣β sgn

(
eA

i (t)
)

– λ4i

∣
∣
∣
∣
∣

n∑

j=1

eA
j
(
t – τj(t)

)
∣
∣
∣
∣
∣
sgn

(
eA

i (t)
)
, (24)

where i ∈ N , j ∈ N , A ∈ �, and 0 < α < 1, β > 1 and λ1i, λ2i, λ3i λ4i are the parameters that
will be determined.

Theorem 3.12 Based on Assumption (A1) and a proper selection of the parameters to
satisfy the following conditions:

di + λ1i –
n∑

i=1

n∑

j=1

∑

A

∑

B

∣
∣aA.B̄

ij
∣
∣lj ≥ 0, (25)

λ4i –
n∑

i=1

n∑

j=1

∑

A

∑

B

∣
∣bA.B̄

ij
∣
∣lj ≥ 0, (26)

λ2i > 0, λ3i > 0. (27)

The error system models (10) and (11) can achieve the fixed-time synchronization with
controller (24). Moreover, the settling time of synchronization T+ satisfies

T+
max =

1
�2(1 – α)

+
1

�1(β – 1)
. (28)

Proof Consider the same Lyapunov function defined in Theorem 3.11:

V(t) =
n∑

i=1

∑

A

∣
∣eA

i (t)
∣
∣. (29)
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The Dini derivative D+V(t) is computed with model (10). We derive

D+V(t) =
n∑

i=1

∑

A

sgn
(

eA
i (t)

)
ėA

i (t)

=
n∑

i=1

∑

A

sgn
(

eA
i (t)

)
(

–dieA
i (t) +

n∑

j=1

∑

B

aA.B̄
ij

(
hB

j
(
sj(t)

)
– hB

j
(
rj(t)

))

+
n∑

j=1

∑

B

bA.B̄
ij

(
hB

j
(
sj
(
t – τj(t)

))
– hB

j
(
rj
(
t – τj(t)

)))
+ uA

i

)

=
n∑

i=1

∑

A

sgn
(

eA
i (t)

)
(

–dieA
i (t) +

n∑

j=1

∑

B

aA.B̄
ij

(
hB

j
(
sj(t)

)
– hB

j
(
rj(t)

))

+
n∑

j=1

∑

B

bA.B̄
ij

(
hB

j
(
sj
(
t – τj(t)

))
– hB

j
(
rj
(
t – τj(t)

)))
– λ1ieA

i (t)

– λ2i
∣
∣eA

i (t)
∣
∣α sgn

(
eA

i (t)
)

– λ3i
∣
∣eA

i (t)
∣
∣β sgn

(
eA

i (t)
)

– λ4i

n∑

j=1

∣
∣eA

j
(
t – τj(t)

)∣
∣ sgn

(
eA

i (t)
)
)

= –
n∑

i=1

∑

A

sgn
(

eA
i (t)

)
dieA

i (t)

+
n∑

i=1

∑

A

sgn
(

eA
i (t)

) n∑

j=1

∑

B

aA.B̄
ij

(
hB

j
(
sj(t)

)
– hB

j
(
rj(t)

))

+
n∑

i=1

∑

A

sgn
(

eA
i (t)

) n∑

j=1

∑

B

bA.B̄
ij

(
hB

j
(
sj
(
t – τj(t)

))
– hB

j
(
rj
(
t – τj(t)

)))

–
n∑

i=1

∑

A

sgn
(

eA
i (t)

)
λ1ieA

i (t) –
n∑

i=1

∑

A

sgn
(

eA
i (t)

)
λ2i

∣
∣eA

i (t)
∣
∣α sgn

(
eA

i (t)
)

–
n∑

i=1

∑

A

sgn
(

eA
i (t)

)
λ3i

∣
∣eA

i (t)
∣
∣β sgn

(
eA

i (t)
)

–
n∑

i=1

n∑

j=1

∑

A

sgn
(

eA
i (t)

)
λ4i

∣
∣eA

j
(
t – τj(t)

)∣
∣ sgn

(
eA

i (t)
)

=
n∑

i=1

∑

A

–di
∣
∣eA

i (t)
∣
∣

+
n∑

i=1

∑

A

sgn
(

eA
i (t)

) n∑

j=1

∑

B

aA.B̄
ij

(
hB

j
(
sj(t)

)
– hB

j
(
rj(t)

))

+
n∑

i=1

∑

A

sgn
(

eA
i (t)

) n∑

j=1

∑

B

bA.B̄
ij

(
hB

j
(
sj
(
t – τj(t)

))
– hB

j
(
rj
(
t – τj(t)

)))

–
n∑

i=1

∑

A

λ1i
∣
∣eA

i (t)
∣
∣ –

n∑

i=1

∑

A

λ2i
∣
∣eA

i (t)
∣
∣α –

n∑

i=1

∑

A

λ3i
∣
∣eA

i (t)
∣
∣β
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–
n∑

i=1

n∑

j=1

∑

A

λ4i
∣
∣eA

j
(
t – τj(t)

)∣
∣

=
n∑

i=1

∑

A

–di
∣
∣eA

i (t)
∣
∣ +

n∑

i=1

n∑

j=1

∑

A

∑

B

∣
∣aA.B̄

ij
∣
∣
∣
∣hB

j
(
sj(t)

)
– hB

j
(
rj(t)

)∣
∣

+
n∑

i=1

n∑

j=1

∑

A

∑

B

∣
∣bA.B̄

ij
∣
∣
∣
∣hB

j
(
sj
(
t – τj(t)

))
– hB

j
(
rj
(
t – τj(t)

))∣
∣

–
n∑

i=1

∑

A

λ1i
∣
∣eA

i (t)
∣
∣ –

n∑

i=1

∑

A

λ2i
∣
∣eA

i (t)
∣
∣α –

n∑

i=1

∑

A

λ3i
∣
∣eA

i (t)
∣
∣β

–
n∑

i=1

n∑

j=1

∑

A

λ4i
∣
∣eA

j
(
t – τj(t)

)∣
∣

≤
n∑

i=1

∑

A

–di
∣
∣eA

i (t)
∣
∣ +

n∑

i=1

n∑

j=1

∑

A

∑

B

∣
∣aA.B̄

ij
∣
∣lj

∣
∣eA

j (t)
∣
∣

+
n∑

i=1

n∑

j=1

∑

A

∑

B

∣
∣bA.B̄

ij
∣
∣lj

∣
∣eA

j
(
t – τj(t)

)∣
∣ –

n∑

i=1

∑

A

λ1i
∣
∣eA

i (t)
∣
∣

–
n∑

i=1

∑

A

λ2i
∣
∣eA

i (t)
∣
∣α –

n∑

i=1

∑

A

λ3i
∣
∣eA

i (t)
∣
∣β

–
n∑

i=1

n∑

j=1

∑

A

λ4i
∣
∣eA

j
(
t – τj(t)

)∣
∣. (30)

By combining similar terms, we have

D+V(t) ≤
n∑

i=1

∑

A

(

–di – λ1i +
n∑

j=1

∑

B

∣
∣aA.B̄

ij
∣
∣lj

)
∣
∣eA

i (t)
∣
∣

+
n∑

i=1

∑

A

(

–λ4i +
n∑

j=1

∑

B

∣
∣bA.B̄

ij
∣
∣lj

)
∣
∣eA

j
(
t – τj(t)

)∣
∣

–
n∑

i=1

∑

A

λ2i
∣
∣eA

i (t)
∣
∣α –

n∑

i=1

∑

A

λ3i
∣
∣eA

i (t)
∣
∣β

≤ –
n∑

i=1

∑

A

λ2i
∣
∣eA

i (t)
∣
∣α –

n∑

i=1

∑

A

λ3i
∣
∣eA

i (t)
∣
∣β . (31)

From Lemma (3.10), we obtain

n∑

i=1

∑

A

λ2i
∣
∣eA

i (t)
∣
∣α ≤

( n∑

i=1

∑

A

λ2i
∣
∣eA

i (t)
∣
∣

)α

, (32)

n∑

i=1

∑

A

λ3i
∣
∣eA

i (t)
∣
∣β ≤

( n∑

i=1

∑

A

λ3i
∣
∣eA

i (t)
∣
∣

)β

. (33)
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Replacing (32) and (33) in (31), we have

D+V(t) ≤ –

( n∑

i=1

∑

A

λ2i
∣
∣eA

i (t)
∣
∣

)α

–

( n∑

i=1

∑

A

λ3i
∣
∣eA

i (t)
∣
∣

)β

≤ –
[
min
i∈N

(λ2i)
]α

Vα(t) –
[
min
i∈N

(λ3i)
]β

Vβ (t). (34)

According to Lemma (3.9), response model (8) can be synchronized in fixed time with
drive model (6) under controller (24). The settling time of synchronization T+

max max
is given by (28) with �1 = [mini∈N (λ3i)]β , �2 = [mini∈N (λ2i)]α . Thus, Theorem 3.12 is
proved. �

Remark 3.13 In Theorem 3.11 and Theorem 3.12, by decomposing the original n-
dimensional Clifford-valued system into a multidimensional real-valued system, several
sufficient conditions are derived to show that the considered system model is finite-time
and fixed-time synchronized, but the result we get is really about Clifford-valued systems
themselves.

Remark 3.14 As everyone knows, Clifford-valued neural networks aim to investigate new
capabilities and better accuracy in order to solve problems that cannot be solved with
real-valued, complex-valued, quaternion-valued counterparts. For example, the results of
finite-time and fixed-time synchronization of complex-valued NNs [49], fixed-time syn-
chronization of quaternion-valued NNs [57] can then be summarized as a special case of
the results of this paper.

Remark 3.15 In [30], fuzzy operations are incorporated into the Clifford-valued cellular
NN model to investigate its Sp-almost periodic solutions. The effects of discrete delays in
Clifford-valued recurrent NNs are considered in [31], and the associated globally asymp-
totic almost automorphic synchronization criteria are obtained. The leakage delay is intro-
duced into Clifford-valued high-order Hopfield NN models in [32] to explore its existence
and global exponential stability of almost automorphic solutions. However, any work on
the topic of finite-/fixed-time synchronization of Clifford-valued RNN with time-varying
delays has not yet been reported. Therefore, trying to fill such gaps, we for the first time de-
rived new sufficient conditions to ensure the finite/fixed-time synchronization of Clifford-
valued RNN models with time delays. Therefore, the main results of this paper are new
and different compared with those in the existing literature.

Remark 3.16 The computational complexity depends primarily on the maximum number
of LMI decision variables. As everyone knows, the number of decision variables increases
when using the augmented Lyapunov–Krasovskii functionals and the free-weighting-
matrix method; while when the delay subintervals number becomes higher, it might
prompt the complexity and the computational burden of the main results. In order to
handle this issue easily, we utilized standard Lyapunov functional and estimated its time
derivative without any integral inequalities and delay-decomposition approach. Hence,
the proposed results in this paper may provide a smaller computational burden.
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Remark 3.17 Compared with many controllers derived by early works [45, 46], the feed-
back controller methods are economic and easy to implement, they possess high value in
real industry processes and applications.

4 Numerical examples
In this section, we present two numerical examples to demonstrate the feasibility and ef-
fectiveness of the results established in Sect. 3.

Example 1 For m = 2 and n = 2, the following two-neuron drive model (1) is considered:

ṙ1(t) = –d1r1(t) + a11h1
(
r1(t)

)
+ a12h2

(
r2(t)

)
+ b11h1

(
r1

(
t – τ1(t)

))

+ b12h2
(
r2

(
t – τ2(t)

))
+ k1,

ṙ2(t) = –d2r2(t) + a21h1
(
r1(t)

)
+ a22h2

(
r2(t)

)
+ b21h1

(
r1

(
t – τ1(t)

))

+ b22h2
(
r2

(
t – τ2(t)

))
+ k2.

The corresponding response model (3) is

ṡ1(t) = –d1s1(t) + a11h1
(
s1(t)

)
+ a12h2

(
s2(t)

)
+ b11h1

(
s1

(
t – τ1(t)

))

+ b12h2
(
s2

(
t – τ2(t)

))
+ u1(t) + k1,

ṡ2(t) = –d2s2(t) + a21h1
(
s1(t)

)
+ a22h2

(
s2(t)

)
+ b21h1

(
s1

(
t – τ1(t)

))

+ b22h2
(
s2

(
t – τ2(t)

))
+ u2(t) + k2.

The multiplication generators are: e2
1 = e2

2 = e2
12 = e1e2e12 = –1, e1e2 = –e2e1 = e12, e1e12 =

–e12e1 = –e2, e2e12 = –e12e2 = e1, r1 = r0
1e0 +r1

1e1 +r2
1e2 +r12

1 e12, r2 = r0
2e0 +r1

2e1 +r2
2e2 +r12

2 e12,
s1 = s0

1e0 + s1
1e1 + s2

1e2 + s12
1 e12, s2 = s0

2e0 + s1
2e1 + s2

2e2 + s12
2 e12.

Furthermore, we take

d1 = 2.2,

d2 = 2.4,

a11 = 0.5e0 + 0.1e1,

a12 = 0.1e0 + 0.2e2 + 0.6e12,

a21 = 0.5e0 – 0.1e1 + 0.3e2,

a22 = 0.3e0 + 0.1e1 + 0.5e12,

b11 = 0.1e0 + 0.2e1 + 0.5e2,

b12 = 0.3e0 + 0.1e2 + 0.4e12,

b21 = 0.6e0 – 0.2e1 + 0.3e2,

b22 = 0.4e0 + 0.1e12,

k1 = 0.3e0 + 0.1e1 – 0.2e12,

k2 = 0.1e0 – 0.3e1 + 0.1e2 – 0.4e12,
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g1(e1) =
1 – e–e0

1

1 + e–e0
1

e0 +
1

1 + e–e1
1

e1 +
1 – e–e2

1

1 + e–e2
1

e2 +
1

1 + e–e12
1

e12,

g2(e2) =
1 – e–e0

2

1 + e–e0
2

e0 +
1

1 + e–e1
2

e1 +
1 – e–e2

2

1 + e–e2
2

e2 +
1

1 + e–e12
2

e12,

in which ei(t) = si(t) – ri(t) and eA
i (t) = sA

i (t) – rA
i (t), i = 1, 2. The time-varying delays are

considered as τ1(t) = τ2(t) = 0.4| cos(t)| + 0.03 with τ1 = τ2 = 0.43. Furthermore, the activa-
tion function satisfies Assumption (A1) with l1 = l2 = 0.5. By selecting λ11 = 2.5, λ12 = 2.6,
λ21 = 3.5, λ22 = 3.8, λ31 = 1.95, λ32 = 2, and α = 0.5.

Besides it is easy to obtain d1 = 2.2, d2 = 2.4, aA.B̄
11 = 0.6, aA.B̄

12 = 0.9, aA.B̄
21 = 0.7, aA.B̄

22 = 0.9,
bA.B̄

11 = 0.8, bA.B̄
12 = 0.8, bA.B̄

21 = 0.7, bA.B̄
22 = 0.5. The initial conditions of drive-response systems

(1) and (3) are taken as ϕ1(t) = 1.5e0 – 1.2e1 – 0.9e2 + 2e12 for t ∈ [–0.43, 0], ϕ2(t) = –1.6e0 +
2.5e1 +2.2e2 –1.4e12 for t ∈ [–0.43, 0], φ1(t) = –2.5e0 +1.1e1 +2.2e2 –1.5e12 for t ∈ [–0.43, 0],
and φ2(t) = 2.6e0 – 2.1e1 – 2.2e2 + e12 for t ∈ [–0.43, 0]. By simple calculation, we have

d1 + λ11 –
2∑

j=1

∑

A∈�

∑

B∈�

∣
∣aA.B̄

1j
∣
∣lj = 3.95 > 0,

d2 + λ12 –
2∑

j=1

∑

A∈�

∑

B∈�

∣
∣aA.B̄

2j
∣
∣lj = 4.2 > 0,

λ31 –
2∑

j=1

∑

A∈�

∑

B∈�

∣
∣bA.B̄

1j
∣
∣lj = 1.15 > 0,

λ32 –
2∑

j=1

∑

A∈�

∑

B∈�

∣
∣bA.B̄

2j
∣
∣lj = 1.4 > 0,

λ21 = 3.5 > 0,λ22 = 3.8 > 0.

Moreover, the settling time of synchronization T+ satisfies

T+ = t0 +
V1–α(t0)

mini∈N (λ2i)(1 – α)
= 2.1630.

Clearly, all conditions of Theorem 3.11 are satisfied. Drive-response models (1) and (3)
can achieve synchronization in finite-time with controller (14). Figures 1, 2, 4, 5, 7, 8, 10,
and 11, respectively, show the time responses of the states of drive-response models (1)
and (3). Besides, Figures 3, 6, 9, and 12 disclose the time responses of the states of error
systems (10). From Figures 3, 6, 9, and 12, it can be seen that model (6) synchronizes with
model (8) in finite-time through the controller (14) with the given initial values.

Example 2 For m = 2 and n = 2, the following two-neuron drive model (1) is considered:

[
ṙ1(t)
ṙ2(t)

]

= –

[
d1 0
0 d2

][
r1(t)
r2(t)

]

+

[
a11 a12

a21 a22

][
h1(r1(t))
h2(r2(t))

]

+

[
b11 b12

b21 b22s

][
h1(r1(t – τ1(t)))
h2(r2(t – τ2(t)))

]

+

[
k1

k2

]

.
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Figure 1 Time responses of state variables r01(t), s
0
1(t) of NN models (1) and (3)

Figure 2 Time responses of state variables r02(t), s
0
2(t) of NN models (1) and (3)

Figure 3 Synchronization curves of state variables e01(t), e02(t) of NN model (10) under controller (14)
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Figure 4 Time responses of state variables r11(t), s
1
1(t) of NN models (1) and (3)

Figure 5 Time responses of state variables r12(t), s
1
2(t) of NN models (1) and (3)

Figure 6 Synchronization curves of state variables e11(t), e12(t) of NN model (10) under controller (14)
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Figure 7 Time responses of state variables r21(t), s
2
1(t) of NN models (1) and (3)

Figure 8 Time responses of state variables r22(t), s
2
2(t) of NN models (1) and (3)

Figure 9 Synchronization curves of state variables e21(t), e22(t) of NN model (10) under controller (14)
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Figure 10 Time responses of state variables r121 (t), s121 (t) of NN models (1) and (3)

Figure 11 Time responses of state variables r122 (t), s122 (t) of NN models (1) and (3)

Figure 12 Synchronization curves of state variables e121 (t), e122 (t) of NN model (10) under controller (14)
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The corresponding response model (3) is

[
ṡ1(t)
ṡ2(t)

]

= –

[
d1 0
0 d2

][
s1(t)
s2(t)

]

+

[
a11 a12

a21 a22

][
h1(s1(t))
h2(s2(t))

]

+

[
b11 b12

b21 b22

][
h1(s1(t – τ1(t)))
h2(s2(t – τ2(t)))

]

+

[
u1(t)
u2(t)

]

+

[
k1

k2

]

.

The multiplication generators are: e2
1 = e2

2 = e2
12 = e1e2e12 = –1, e1e2 = –e2e1 = e12, e1e12 =

–e12e1 = –e2, e2e12 = –e12e2 = e1, r1 = r0
1e0 +r1

1e1 +r2
1e2 +r12

1 e12, r2 = r0
2e0 +r1

2e1 +r2
2e2 +r12

2 e12,
s1 = s0

1e0 + s1
1e1 + s2

1e2 + s12
1 e12, s2 = s0

2e0 + s1
2e1 + s2

2e2 + s12
2 e12.

Furthermore, we take

d1 = 2.6,

d2 = 2.8,

a11 = 0.3e0 – 0.1e1 + 0.5e12,

a12 = 0.1e0 + 0.3e1 + 0.4e2,

a21 = 0.2e0 + 0.6e2 – 0.3e12,

a22 = 0.3e0 + 0.5e12,

b11 = 0.4e0 + 0.1e12,

b12 = 0.3e0 – 0.1e2 + 0.4e2,

b21 = 0.6e0 + 0.2e1 – 0.3e12,

b22 = 0.1e0 + 0.2e1 + 0.5e2,

k1 = 0.5e0 – 0.2e1 + 0.3e2 – 0.1e12,

k2 = 0.4e0 – 0.1e1 + 0.3e12,

g1(e1) =
1 – e–e0

1

1 + e–e0
1

e0 +
1

1 + e–e1
1

e1 +
1 – e–e2

1

1 + e–e2
1

e2 +
1

1 + e–e12
1

e12,

g2(e2) =
1 – e–e0

2

1 + e–e0
2

e0 +
1

1 + e–e1
2

e1 +
1 – e–e2

2

1 + e–e2
2

e2 +
1

1 + e–e12
2

e12,

in which ei(t) = si(t) – ri(t) and eA
i (t) = sA

i (t) – rA
i (t), i = 1, 2. By selecting λ11 = 2.5, λ12 = 2.6,

λ21 = 3.5, λ22 = 3.8, λ31 = 4.2, λ32 = 4.4, λ41 = 1.95, λ42 = 2, α = 0.5, and β = 1.5
The time-varying delays are considered as τ1(t) = τ2(t) = 0.5| cos(t)| + 0.02 with τ1 = τ2 =

0.52. Furthermore, the activation function satisfies Assumption (A1) with l1 = l2 = 0.5.
Besides it is easy to obtain d1 = 2.6, d2 = 2.8, aA.B̄

11 = 0.7, aA.B̄
12 = 0.8, aA.B̄

21 = 0.5, aA.B̄
22 = 0.8,

bA.B̄
11 = 0.5, bA.B̄

12 = 0.6, bA.B̄
21 = 0.5, bA.B̄

22 = 0.8. The initial conditions of drive-response
models (1) and (3) are taken as ϕ1(t) = –1.5e0 + 1.8e1 – 0.9e2 + 2e12 for t ∈ [–0.52, 0],
ϕ2(t) = 1.6e0 – 2e1 + 2.2e2 – 1.4e12 for t ∈ [–0.52, 0], φ1(t) = –2.5e0 + 1.7e1 + 2.2e2 – 1.5e12

for t ∈ [–0.52, 0], and φ2(t) = 2.6e0 + 1.2e1 – 2.2e2 + e12 for t ∈ [–0.52, 0]. By simple com-
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putation, we have

d1 + λ11 –
2∑

j=1

∑

A∈�

∑

B∈�

∣
∣aA.B̄

1j
∣
∣lj = 4.35 > 0,

d2 + λ12 –
2∑

j=1

∑

A∈�

∑

B∈�

∣
∣aA.B̄

2j
∣
∣lj = 4.75 > 0,

λ41 –
2∑

j=1

∑

A∈�

∑

B∈�

∣
∣bA.B̄

1j
∣
∣lj = 1.4 > 0,

λ42 –
2∑

j=1

∑

A∈�

∑

B∈�

∣
∣bA.B̄

2j
∣
∣lj = 1.35 > 0,

λ21 = 3.5 > 0, λ22 = 3.8 > 0,

λ31 = 4.2 > 0, λ32 = 4.4 > 0.

Clearly, all conditions of Theorem 3.12 are satisfied. Therefore, drive-response models
(6) and (8) achieve fixed-time synchronization with controller (24). Moreover, the settling
time of synchronization T+

max satisfies

T+
max =

1
�2(1 – α)

+
1

�1(β – 1)
= 0.2291.

5 Conclusion
In this article, we have studied the finite-/fixed-time synchronization for Clifford-valued
RNN models with time-varying delays. In order to overcome the difficulty of the noncom-
mutativity of the multiplication of Clifford numbers, we first decomposed the considered
Clifford-valued drive and response models into real-valued drive and response models.
Besides, suitable time-delayed feedback controllers have been constructed to examine the
synchronization problem associated with the finite-/fixed-time error models. By utilizing
the finite-/fixed-time stability concepts, some computational techniques, new synchro-
nization criteria have been derived through appropriate Lyapunov functions to guarantee
that the drive-response models achieve synchronization in finite-/fixed-time. Finally, we
have also presented numerical examples to illustrate the effectiveness of the results. The
results obtained in this paper can be further extended to other complex systems. We would
like to extend our results to more general Clifford-valued NN models, such as Cohen–
Grossberg Clifford-valued NNs, Clifford-valued inertial NNs, Clifford-valued high-order
Hopfield NNs, and fuzzy Clifford-valued NNs. Moreover, we will focus on the problem of
global stabilization analysis of Clifford-valued NN models with the help of various control
systems. The corresponding results will be carried out in the near future.
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