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Abstract
Exact solutions to nonlinear differential equations play an undeniable role in various
branches of science. These solutions are often used as reliable tools in describing the
various quantitative and qualitative features of nonlinear phenomena observed in
many fields of mathematical physics and nonlinear sciences. In this paper, the
generalized exponential rational function method and the extended sinh-Gordon
equation expansion method are applied to obtain approximate analytical solutions to
the space-time conformable coupled Cahn–Allen equation, the space-time
conformable coupled Burgers equation, and the space-time conformable Fokas
equation. Novel approximate exact solutions are obtained. The conformable
derivative is considered to obtain the approximate analytical solutions under
constraint conditions. Numerical simulations obtained by the proposed methods
indicate that the approaches are very effective. Both techniques employed in this
paper have the potential to be used in solving other models in mathematics and
physics.
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1 Introduction
Despite the recent extensive advances in the theory of differential equations, it can gen-
erally be said that it is still a complex task to determine an analytical solution for many
ordinary and partial differential equations [1–9]. One of the events that led to the intro-
duction of a wide range of new methods was the emergence and use of computers. So
today it is almost impossible to use most of the existing techniques in solving differen-
tial equations, numerically or analytically, without the use of suitable computer software
[10–19].

In recent years, the search for accurate solutions to differential equations has become a
popular research topic. The natural result of this volume of attention has been the provi-
sion of efficient and powerful techniques. For example, the auxiliary equation method [20],
the simplest equation method [21], the Hirota bilinear method [22], the homotopy analy-
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sis method [23], the Jacobi elliptic method [24, 25], the complex transform [26], the bilin-
ear form approach [27], the G′/G expansion method [28], the exp(–φ)-expansion method
[29], the generalized logistic equation method [30], the modified Kudryashov method,
the extended tanh-coth method, the modified simple equation method and soliton ansatz
method [31], the Hirota bilinear method [32], the modified form of an auxiliary equation
approach [33]. Some more examples of differential equations and their applications can
be followed in [34–52].

Khalil in [53] proposed an interesting definition of a derivative, namely the conformable
derivative that generalizes the classical concept of derivative. This definition is well-
behaved and obeys the Leibniz rule and the chain rule. Nonlinear conformable differen-
tial and integral equations have been the focus of many studies due to their applications
in various applications in physics, biology, engineering, signal processing, control the-
ory, finance, etc. [54–58]. More precisely, the extended Zakharov–Kuzetsov equation with
conformable derivative using the generalized exponential rational function method was
solved in [59]. In [60], a generalized type of conformable local fractal derivative (GCFD)
was employed to investigate some nonlinear evolution equations. They also set up a gen-
eral technique to find exact solutions for their under studied PDEs. In [61] the first integral
method was employed to construct the solutions to the conformable Burgers equation,
modified Burgers equation, and Burgers–Korteweg–de Vries equation. In [62], several
wave solutions for Burgers’ type equations in the sense of conformable fractional deriva-
tive have been obtained via the residual power series method. Moreover, in [63] the aux-
iliary equation method has been employed to solve (2 + 1)-dimensional time-fractional
Zoomeron equation and the time-fractional third order modified KdV equation. Abun-
dant solitary wave solutions to an extended nonlinear Schrödinger’s equation with con-
formable derivative using an efficient integration method called the generalized exponen-
tial rational function method have been reported in [64]. Very recently, the conformable
derivative and adequate fractional complex transform have been implemented to discuss
the conformable higher-dimensional Ito equation [65].

In this paper, we apply both the generalized exponential rational function method
and the extended sinh-Gordon equation expansion method for solving space-time con-
formable partial differential equations. Approximate analytical solutions for the coupled
Cahn–Allen equation, coupled Burgers equation, and Fokas equation are obtained. Sev-
eral exact solutions for them are successfully established. The solutions obtained by the
methods indicate that they are easy to implement and effective. This article has been ar-
ranged as follows. In Sect. 2, we propose some mathematical definitions and prerequi-
sites required later in the article. The section also illustrates general principles of the con-
formable derivative along with basic steps of techniques. In Sect. 3, three equations includ-
ing the space-time conformable coupled Cahn–Allen equation, the space-time coupled
Burgers equation, and the space-time conformable Fokas equation are examined, and the
exact solution for them is determined using two techniques. This section also contains
several numerical simulations of acquired solutions. Finally, the article ends with some
conclusions.

2 Preliminaries and definitions
In this section, we review some of the necessary prerequisites that will be employed in the
article.
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2.1 The conformable derivative
Khalil proposed an interesting definition of derivative called conformable derivative [53].
This derivative can be considered to be a natural extension of the classical derivative. Fur-
thermore, the conformable derivative satisfies all the properties of the standard calculus,
for instance, the chain rule.

Definition 1 Let f : [0,∞) → R, the conformable derivative of a function f (t) of order α

is defined as [53]

Dα
t f (t) = lim

ε→0

f (t + εt1–α) – f (t)
ε

, α ∈ (0, 1], t > 0. (1)

It should be noted that taking α = 1 in this derivative yields the standard definition for
derivative. Therefore, this method can be considered a natural generalization for the con-
ventional derivative.

This new definition satisfies the following properties. Let α ∈ (0, 1], f , g be α-differ-
entiable at a point t, then

• Dα
t (af (t) + bg(t)) = aDα

t (f (t)) + bDα
t (g(t)) for a, b ∈ R.

• Dα
t (tμ) = μtμ–α for μ ∈ R.

• Dα
t (fg) = f (t)Dα

t (g(t)) + g(t)Dα
t (f (t)).

• Dα
t ( f (t)

g(t) ) = (t)Dα
t (f (t))–f (t)Dα

t (g(t))
g2(t) .

• If f (t) is a differentiable function (in standard sense), then we obtain
Dα

t (f (t))(t) = t1–σ df (t)
dt holds.

As stated in [64], many of the existing definitions for derivative do not meet some of these
mentioned properties. Enjoying these features is one of the valuable and distinctive points
for the conformable derivative.

2.2 The generalized exponential rational function method
In 2018, an integration method called the generalized exponential rational function
method (GERFM) was introduced by Ghanbari et al. to solve the resonance nonlinear
Schrödinger equation [66]. Following their work, the technique has been used success-
fully many times to handle other partial equations [67–82]. In this part, we outline the
main steps of GERFM as follows.

1. Let us take the following problem with the conformable derivative:

L
(
ψ , Dα

x {ψ}, Dα
t {φ}, D2α

x {ψ}, . . .
)

= 0. (2)

2. Using the transformations ψ = ψ(ξ ) and ξ = σ xα

�(α) – l tα
�(α) , we reduce the nonlinear

partial differential equation to the following ordinary differential equation:

L
(
ψ ,ψ ′,ψ ′′, . . .

)
= 0, (3)

where the values of σ and l will be found later.
3. Now, consider that Eq. (3) has the solution of the form

ψ(ξ ) = A0 +
M∑

k=1

Ak	(ξ )k +
M∑

k=1

Bk	(ξ )–k , (4)
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where

	(ξ ) =
p1eq1ξ + p2eq2ξ

p3eq3ξ + p4eq4ξ
. (5)

The values of constants pi, qi (1 ≤ i ≤ 4), A0, Ak , and Bk (1 ≤ k ≤ M) are
determined in such a way that solution (4) always persuades Eq. (3). By considering
the homogenous balance principle, the value of M is determined.

4. Putting Eq. (4) into Eq. (3) and collecting all terms, the left-hand side of Eq. (3) gives
us an algebraic equation P(Z1, Z2, Z3, Z4) = 0 in terms of Zi = eqiξ for i = 1, . . . , 4.
Setting each coefficient of P to zero, a system of nonlinear equations in terms of pi,
qi (1 ≤ i ≤ 4) and σ , l, A0, Ak and Bk (1 ≤ k ≤ M) is constructed.

5. By solving the above system of equations using any symbolic computation software,
the values of pi, qi (1 ≤ i ≤ 4), A0, Ak , and Bk (1 ≤ k ≤ M) are determined, replacing
these values in Eq. (4), we obtain the solutions of Eq. (2).

2.3 The extended sinh-Gordon equation expansion method
The extended sinh-Gordon equation expansion method (EShGEEM) is a robust method
that may easily derive dark, bright, combined dark-bright, singular, combined singular
soliton, and other trigonometric function solutions to nonlinear PDEs of an integer or
noninteger order [83]. This technique has had many successful applications in solving var-
ious problems. For example, the authors of [84] used EShGEEM to study the conformable
version of Biswas–Milovic equation with the Kerr law and parabolic law nonlinearity. An-
other application of EShGEEM can be found in [85], where they considered a nonlinear
partial differential equation describing the wave propagation in nonlinear low-pass elec-
trical transmission lines.

Following the works of [84, 85], we outline the main steps of EShGEEM as follows.
1. Let us take the following problem with the conformable derivative:

L
(
ψ , Dα

x {ψ}, Dα
t {φ}, D2α

x {ψ}, . . .
)

= 0. (6)

Using the transformations 	 = 	(ξ ) and ξ = σ xα

�(α) – l tα
�(α) , it is possible reduce the

NPDE to the following ordinary differential equation:

L
(
	 ,	 ′,	 ′′, . . .

)
= 0, (7)

where the values of σ and l will be found later, and the prime notation means the
derivative of 	 with respect to ξ .

2. Consider Eq. (7) has the solution of the form

	(θ ) = A0 +
M∑

j=1

coshj–1(θ )
[
Bj sinh(θ ) + Aj cosh(θ )

]
, (8)

where A0, Aj, Bj (j = 1, 2, . . . , M) are constants to be determined later and θ is a
function of ξ that satisfies the following ordinary differential equation:

θ ′ = sinh(θ ). (9)
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By considering the homogenous balance principle in (7), the value of M can be
determined.

Equation (9) possesses the following solutions:

sinh(θ ) = ± csch(ξ ), or sinh(θ ) = ±i sech(ξ ) (10)

and

cosh(θ ) = – coth(ξ ), or cosh(θ ) = – tanh(ξ ), (11)

where i =
√

–1.
3. Substituting Eq. (8) along with Eqs. (10) and (11) into Eq. (7) and collecting all

terms, we obtain a polynomial in terms of θ ′l sinhi(θ ) coshj(θ ) for l = 0,
1, i, j = 0, 1, 2, . . . . Setting each coefficient of such a polynomial equal to zero, a
system of nonlinear equations in terms of σ , l, A0, Aj, Bj (1 ≤ k ≤ M) is generated.

4. Solving the above algebraic equations using any symbolic computation software,
the values of σ , l and A0, Aj, Bj (1 ≤ j ≤ M) are determined.

5. Based on Eqs. (10) and (11), one can obtain the soliton solutions of Eq. (6) as
follows:

	(ξ ) = A0 +
M∑

j=1

(
– tanh(ξ )

)j–1[±iBj sech(ξ ) – Aj tanh(ξ )
]
, (12)

	(ξ ) = A0 +
M∑

j=1

(
– coth(ξ )

)j–1[±Bj csch(ξ ) – Aj coth(ξ )
]
. (13)

3 Applications of techniques and the main results
In this section, to illustrate the applicability of the generalized exponential rational func-
tion method and the extended sinh-Gordon equation expansion method to solve nonlin-
ear conformable partial differential equations, three examples are considered.

3.1 The space-time conformable coupled Cahn–Allen equation
Consider the space-time conformable Cahn–Allen equation [86]

Dα
t u – uxx + u3 – u = 0. (14)

Using the transformation

u(x, t) = U (ξ ), ξ = c
(

x –
νtα

�(α)

)
, (15)

where c and ν are two nonzero constants.
Utilizing the wave transformation (15) converts Eq. (14) into the following NODE:

–cνU ′ – c2U ′′ – U + U3 = 0. (16)

Using the balance principle on the terms U3 and U ′′ in Eq. (16), we have M + 2 = 3M, so
M = 1.
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Application of GERFM for (14)

Using Eq. (5) together with M = 1, we have

U (ξ ) = A0 + A1	(ξ ) +
B1

	(ξ )
. (17)

Proceeding as outlined in the second section, we acquire the following sets of solutions to
Eq. (14).

Set 1: One obtains r = [–1, 0, 1, 1] and s = [1, 0, 1, 0], so Eq. (5) turns into

	(ξ ) = –
1

1 + eξ
. (18)

Case 1: We obtain

c =
√

2
2

, ν =
3
√

2
2

, A0 = 0, A1 = –1, B1 = 0.

Putting values in Eqs. (17) and (18) yields the following solution:

U (ξ ) =
1

1 + eξ
.

Consequently, we get the solution of Eq. (14) as

u1(x, t) =
1

1 + e
√

2
2 (x– 3

√
2tα

3�(α) )
. (19)

Figure 1 depicts the dynamic behavior of solution u1(x, t) presented in (19).
Case 2: We obtain

c =
√

2
2

, ν = –
3
√

2
2

, A0 = 1, A1 = 1, B1 = 0.

Putting values in Eqs. (17) and (18) yields the following solution:

U (ξ ) =
eξ

1 + eξ
.

Figure 1 Dynamic behavior of solution u1(x, t) given by (19) for α = 0.8 (left) and α = 0.95 (right)
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Figure 2 Dynamic behavior of solution u2(x, t) given by (20) for α = 0.5 (left) and α = 0.85 (right)

Consequently, we get the solution of Eq. (14) as

u2(x, t) =
e

√
2

2 (x+ 3
√

2tα
2�(α) )

1 + e
√

2
2 (x+ 3

√
2tα

2�(α) )
. (20)

Figure 2 depicts the dynamic behavior of solution u2(x, t) presented in (19).

Set 2: One obtains r = [–3, –1, 1, 1] and s = [1, –1, –1, 1], so Eq. (5) turns into

	(ξ ) =
–2 cosh(ξ ) – sinh(ξ )

cosh(ξ )
. (21)

We obtain

c =
√

2
4

, ν = –
3
√

2
2

, A0 = –
3
2

, A1 = 0, B1 = –
3
2

.

Putting values in Eqs. (17) and (21) yields the following solution:

U (ξ ) =
–3 cosh(ξ ) – 3 sinh(ξ )
4 cosh(ξ ) + 2 sinh(ξ )

.

Consequently, we get the solution of Eq. (14) as

u3(x, t) = –
3 cosh(

√
2

4 (x + 3
√

2tα
2�(α) )) + 3 sinh(

√
2

4 (x + 3
√

2tα
2�(α) ))

4 cosh(
√

2
4 (x + 3

√
2tα

2�(α) )) + 2 sinh(
√

2
4 (x + 3

√
2tα

2�(α) ))
. (22)

Figure 3 depicts the dynamic behavior of solution u3(x, t) presented in (22).

Set 3: One obtains r = [1 – i, 1 + i, 1, 1] and s = [–i, i, –i, i], so Eq. (5) turns into

	(ξ ) =
– sin(ξ ) + cos(ξ )

cos(ξ )
. (23)

We obtain

c =
√

2
4

, ν =
3
√

2
2

, A0 = –
1
2

–
i
2

, A1 =
i
2

, B1 = 0.
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Figure 3 Dynamic behavior of solution u3(x, t) given by (22) for α = 0.5 (left) and α = 0.85 (right)

Putting values in Eqs. (17) and (23) yields the following solution:

U (ξ ) =
– cosh(ξ ) + sinh(ξ )

2 cosh(ξ )
.

Consequently, we get the solution of Eq. (14) as

u4(x, t) = –
cosh(

√
2

4 (x – 3
√

2tα
2�(α) )) – sinh(

√
2

4 (x – 3
√

2tα
2�(α) ))

2 cosh(
√

2
4 (x – 3

√
2tα

2�(α) ))
. (24)

Set 4: One obtains r = [1, 1, 1, 1] and s = [1, –1, 1, –1], so Eq. (5) turns to

	(ξ ) = –
cosh(ξ )
sinh(ξ )

. (25)

We obtain

c =
√

2
8

, ν =
3
√

2
2

, A0 = –
1
2

, A1 = –
1
4

, B1 = –
1
4

.

Putting values in Eqs. (17) and (25) yields the following solution:

U (ξ ) =
(coth(ξ ) – 1)2

4coth(ξ )
.

Consequently, we get the solution of Eq. (14) as

u5(x, t) =
(coth(

√
2

8 (x – 3
√

2tα
2�(α) )) – 1)2

4coth(
√

2
8 (x – 3

√
2tα

2�(α) ))
. (26)

Figure 4 depicts the dynamic behavior of solution u5(x, t) presented in (26).

Set 5: One obtains r = [3, 2, 1, 1] and s = [1, 0, 1, 0], so Eq. (5) turns into

	(ξ ) =
3eξ + 2
eξ + 1

. (27)
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Figure 4 Dynamic behavior of solution u5(x, t) given by (26) for α = 0.6 (left) and α = 0.8 (right)

We obtain

c =
√

2
2

, ν = –
3
√

2
2

, A0 = –3, A1 = 0, B1 = 6.

Putting values in Eqs. (17) and (27) yields the following solution:

U (ξ ) = –
3eξ

3eξ + 2
.

Consequently, we get the solution of Eq. (14) as

u6(x, t) = –
3e(

√
2

2 (x+ 3
√

2tα
2�(α) ))

3e(
√

2
2 (x+ 3

√
2tα

2�(α) )) + 2
. (28)

Application of EShGEEM for (14)

According to what was discussed above, we obtain M = 1. Taking M = 1 into account in
Eqs. (8), (12), and (13), we respectively obtain

U (θ ) = A0 + B1 sinh(θ ) + A1 cosh(θ ) (29)

and

U1(ξ ) = A0 ± iB1 sech(ξ ) – A1 tanh(ξ ),

U2(ξ ) = A0 ± B1 csch(ξ ) – A1 coth(ξ ).
(30)

Inserting Eq. (29) into Eq. (16) gives a polynomial in powers of hyperbolic functions. Sum-
ming each coefficient of the hyperbolic functions of the same power and equating each
summation to zero, we get a group of over-determined nonlinear algebraic equations. For
each set, if we substitute the values of the parameters into any of Eqs. (30), the solutions
to Eq. (14) are constructed as follows.

Set 1:

c = 1/4
√

2, ν = –3/2
√

2, A0 = –1/2, A1 = 1/2, B1 = 0.
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Using these values, the following solution for (16) is obtained:

U1(ξ ) = –
cosh(ξ ) + sinh(ξ )

2 cosh(ξ )
,

U2(ξ ) = –
cosh(ξ ) + sinh(ξ )

2 sinh(ξ )
.

(31)

Consequently, we get the solution of Eq. (14) as

u7(x, t) = –
cosh(

√
2x�(α)+3tα

4�(α) ) + sinh(
√

2x�(α)+3tα
4�(α) )

2 cosh(
√

2x�(α)+3tα
4�(α) )

,

u8(x, t) = –
cosh(

√
2x�(α)+3tα

4�(α) ) + sinh(
√

2x�(α)+3tα
4�(α) )

2 sinh(
√

2x�(α)+3tα
4�(α) )

.

(32)

Set 2:

c = 1/4
√

2, ν = 3/2
√

2, A0 = 1/2, A1 = 1/2, B1 = 0.

Using these values, the following solution for (16) is obtained:

U1(ξ ) =
cosh(ξ ) – sinh(ξ )

2 cosh(ξ )
,

U2(ξ ) = –
cosh(ξ ) – sinh(ξ )

2 sinh(ξ )
.

(33)

Consequently, we get the solution of Eq. (14) as

u9(x, t) =
cosh(

√
2x�(α)+3tα

4�(α) ) – sinh(
√

2x�(α)+3tα
4�(α) )

2 cosh(
√

2x�(α)+3tα
4�(α) )

,

u10(x, t) = –
cosh(

√
2x�(α)+3tα

4�(α) ) – sinh(
√

2x�(α)+3tα
4�(α) )

2 sinh(
√

2x�(α)+3tα
4�(α) )

.

(34)

Figure 5 depicts the dynamic behavior of solution u10(x, t) presented in (34).

Set 3:

c = 1/2
√

2, ν = 3/2
√

2, A0 = 1/2, A1 = 1/2, B1 = 1/2.

Using these values, the following solution for (16) is obtained:

U1(ξ ) =
i + cosh(ξ ) – sinh(ξ )

2 cosh(ξ )
,

U2(ξ ) =
– cosh(ξ ) + sinh(ξ ) + 1

2 sinh(ξ )
.

(35)
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Figure 5 Dynamic behavior of solution u10(x, t) given by (34) for α = 0.6 (left) and α = 0.8 (right)

Figure 6 Dynamic behavior of solution u12(x, t) given by (36) for α = 0.6 (left) and α = 0.8 (right)

Consequently, we get the solution of Eq. (14) as

u11(x, t) =
i + cosh(

√
2x�(α)–3tα

2�(α) ) – sinh(
√

2x�(α)–3tα
2�(α) )

2 cosh(
√

2x�(α)–3tα
2�(α) )

,

u12(x, t) =
– cosh(

√
2x�(α)–3tα

2�(α) ) + sinh(
√

2x�(α)–3tα
2�(α) ) + 1

2 sinh(
√

2x�(α)–3tα
2�(α) )

.

(36)

Figure 6 depicts the dynamic behavior of solution u5(x, t) presented in (36).

3.2 The space-time coupled Burgers equation
Consider the space-time conformable coupled Burgers equations [87]

Dα
t u – D2α

x u + 2uDα
x u + pDα

x (uv) = 0,

Dα
t v – D2α

x v + 2vDα
x v + qDα

x (uv) = 0.
(37)
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Using the transformation

u(x, t) = U (ξ ), v(x, t) = V(ξ ), ξ =
xα

�(α)
+

ctα

�(α)
, (38)

where c is a nonzero constant.
Utilizing the wave transformation (38) converts Eq. (37) into the following NODE:

cU ′ – U ′′ + 2UU ′ + p(UV)′ = 0,

cV ′ – V ′′ + 2VV ′ + q(UV)′ = 0.
(39)

Using the balance principle on the termsUU ′ andU ′′ in Eq. (39), we have M+2 = M+M+1,
so M = 1.

Application of GERFM for (37)

Using Eq. (5) together with M = 1, we have

U (ξ ) = A0 + A1	(ξ ) +
B1

	(ξ )
,

V(ξ ) = A′
0 + A′

1	(ξ ) +
B′

1

	(ξ )
.

(40)

Proceeding as outlined in the second section, we acquire the following sets of solutions to
Eq. (37).

Set 1: One obtains r = [1, 1, –1, 1] and s = [1, –1, 1, –1], so Eq. (5) turns into

	(ξ ) = –
cosh(ξ )
sinh(ξ )

. (41)

We obtain

c = –
2A0(pq – 1)

p – 1
, A0 = A0, A1 =

p – 1
pq – 1

, B1 = B1,

A′
0 =

A0(q – 1)
p – 1

, A′
1 =

q – 1
pq – 1

, B′
1 = B′

1.

Putting values in Eqs. (40) and (41) yields the following solution:

U (ξ ) =
pqA0 – coth(ξ )p + coth(ξ ) – A0

pq – 1
,

V(ξ ) =
pqA0 – coth(ξ )q + coth(ξ ) – A0

pq – 1
.

(42)

Consequently, we get the solution of Eq. (37) as

u1(x, t) =
pqA0 – coth(ξ )p + coth(ξ ) – A0

pq – 1
,

v1(x, t) =
pqA0 – coth(ξ )q + coth(ξ ) – A0

pq – 1
.

(43)
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Figure 7 Dynamic behavior of solution u1(x, t) (left) and v1(x, t) (right) given by (43) for p = 0.5, q = 1.2,
A0 = 0.8, and α = 0.8

Figure 7 depicts the dynamic behavior of solution u1(x, t), v1(x, t) presented in (43).

Set 2: One obtains r = [–2 – i, –2 + i, 1, 1] and s = [i, –i, i, –i], so Eq. (5) turns into

	(ξ ) =
–2 cos(ξ ) + sin(ξ )

cos(ξ )
. (44)

We obtain

c =
–2pA0q + 4p + 2A0 – 4

p – 1
, A0 = A0, A1 =

p – 1
pq – 1

, B1 = B1,

A′
0 =

A0(q – 1)
p – 1

, A′
1 =

q – 1
pq – 1

, B′
1 = B′

1.

Putting values in Eqs. (40) and (44) yields the following solution:

U (ξ ) =
(pqA0 – 2p – A0 + 2) cos(ξ ) + sin(ξ )(p – 1)

(pq – 1) cos(ξ )
,

V(ξ ) =
(pqA0 – 2q – A0 + 2) cos(ξ ) + sin(ξ )(q – 1)

(pq – 1) cos(ξ )
.

(45)

Consequently, we get the solution of Eq. (37) as

u2(x, t) =
(pqA0 – 2p – A0 + 2) cos(ξ ) + sin(ξ )(p – 1)

(pq – 1) cos(ξ )
,

v2(x, t) =
(pqA0 – 2q – A0 + 2) cos(ξ ) + sin(ξ )(q – 1)

(pq – 1) cos(ξ )
.

(46)

Figure 8 depicts the dynamic behavior of solution u2(x, t), v2(x, t) presented in (46).

Set 3: One obtains r = [1, 0, 1, 1] and s = [1, 0, 1, 0], so Eq. (5) turns into

	(ξ ) =
eξ

1 + eξ
. (47)
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Figure 8 Dynamic behavior of solution u2(x, t) (left) and v2(x, t) (right) given by (46) for p = 0.2, q = 0.2, A0 = 1,
and α = 0.8

We obtain

c =
–2pA′

0q + q + 2A′
0 – 1

q – 1
, A0 =

(p – 1)A′
0

q – 1
, A1 =

–p + 1
pq – 1

, B1 = B1,

A′
0 = A′

0, A′
1 =

–q + 1
pq – 1

, B′
1 = B′

1.

Putting values in Eqs. (40) and (47) yields the following solution:

U (ξ ) =
(p – 1)((pqA′

0 – q – A′
0 + 1)eξ + A′

0(pq – 1))
(q – 1)(pq – 1)(1 + eξ )

,

V(ξ ) =
(q – 1)((pqA′

0 – p – A′
0 + 1)eξ + A′

0(pq – 1))
(p – 1)(pq – 1)(1 + eξ )

.
(48)

Consequently, we get the solution of Eq. (37) as

u3(x, t) =
(p – 1)((pqA′

0 – q – A′
0 + 1)eξ + A′

0(pq – 1))
(q – 1)(pq – 1)(1 + eξ )

,

v3(x, t) =
(q – 1)((pqA′

0 – p – A′
0 + 1)eξ + A′

0(pq – 1))
(p – 1)(pq – 1)(1 + eξ )

.
(49)

Figure 9 depicts the dynamic behavior of solution u3(x, t), v3(x, t) presented in (49).

Application of EShGEEM for (37)

The initial assumption of the solution structure of (39) is taken to be:

U (θ ) = A0 + B1 sinh(θ ) + A1 cosh(θ ),

V(θ ) = A′
0 + B′

1 sinh(θ ) + A′
1 cosh(θ ),

(50)

U1(ξ ) = A0 ± iB1 sech(ξ ) – A1 tanh(ξ ),

V1(ξ ) = A′
0 ± iB′

1 sech(ξ ) – A′
1 tanh(ξ ),

(51)
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Figure 9 Dynamic behavior of solution u3(x, t) (left) and v3(x, t) (right) given by (49) for p = 0.2, q = 0.2, A′
0 = 1,

and α = 0.8

and

U2(ξ ) = A0 ± B1 csch(ξ ) – A1 coth(ξ ),

V2(ξ ) = A′
0 ± B′

1 csch(ξ ) – A′
1 coth(ξ ).

(52)

Applying the extended EShGEEM with the help of Eqs. (50)–(52), the following new ex-
act soliton solutions of the space-time conformable coupled Burgers equations (37) are
obtained.

Set 1:

c = –
2A0(pq – 1)

p – 1
, A0 = A0, A1 =

p – 1
2pq – 2

, B1 =
p – 1

2pq – 2
,

A′
0 =

A0(q – 1)
p – 1

, A′
1 =

q – 1
2pq – 2

, B′
1 =

q – 1
2pq – 2

.

Using these values, the following solution for (16) is obtained:

U1(ξ ) =
(2pqA0 – 2A0) cosh(ξ ) + (i – sinh(ξ ))(p – 1)

2(pq – 1) cosh(ξ )
,

V1(ξ ) =
(q – 1)((2pqA0 – 2A0) cosh(ξ ) + (i – sinh(ξ ))(p – 1))

2(pq – 1)(p – 1) cosh(ξ )
,

(53)

and

U2(ξ ) =
(2pqA0 – 2A0) sinh(ξ ) – (cosh(ξ ) – 1)(p – 1)

2(pq – 1) sinh(ξ )
,

V2(ξ ) =
(q – 1)(A0(pq – 1) sinh(ξ ) – 1/2(cosh(ξ ) – 1)(p – 1))

(pq – 1)(p – 1) sinh(ξ )
.

(54)

Consequently, we get the solution of Eq. (14) as

u4(x, t) =
(2pqA0 – 2A0) cosh(ξ ) + (i – sinh(ξ ))(p – 1)

2(pq – 1) cosh(ξ )
,

v4(x, t) =
(q – 1)((2pqA0 – 2A0) cosh(ξ ) + (i – sinh(ξ ))(p – 1))

2(pq – 1)(p – 1) cosh(ξ )
,

(55)
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Figure 10 Dynamic behavior of solution u5(x, t) (left) and v5(x, t) (right) given by (56) for p = 0.2, q = 0.2,
A0 = 1, and α = 0.8

and

u5(x, t) =
(2pqA0 – 2A0) sinh(ξ ) – (cosh(ξ ) – 1)(p – 1)

2(pq – 1) sinh(ξ )
,

v5(x, t) =
(q – 1)(A0(pq – 1) sinh(ξ ) – 1/2(cosh(ξ ) – 1)(p – 1))

(pq – 1)(p – 1) sinh(ξ )
,

(56)

where ξ = 1
�(α) (xα + 2A0(pq–1)

p–1 tα).
Figure 10 depicts the dynamic behavior of solution u5(x, t), v5(x, t) presented in (56).

Set 2:

c = –
2A0(pq – 1)

p – 1
, A0 = A0, A1 =

p – 1
pq – 1

, B1 = 0,

A′
0 =

A0(q – 1)
p – 1

, A′
1 =

q – 1
pq – 1

, B′
1 = 0.

Using these values, the following solution for (16) is obtained:

U1(ξ ) =
A0(pq – 1) cosh(ξ ) – (p – 1) sinh(ξ )

(pq – 1) cosh(ξ )
,

V1(ξ ) =
(A0(pq – 1) cosh(ξ ) – (p – 1) sinh(ξ ))(q – 1)

(pq – 1)(p – 1) cosh(ξ )
,

(57)

and

U2(ξ ) =
A0(pq – 1) sinh(ξ ) – cosh(ξ )(p – 1)

(pq – 1) sinh(ξ )
,

V2(ξ ) =
(q – 1)(A0(pq – 1) sinh(ξ ) – cosh(ξ )(p – 1))

(pq – 1)(p – 1) sinh(ξ )
.

(58)

Consequently, we get the solution of Eq. (14) as

u6(x, t) =
A0(pq – 1) cosh(ξ ) – (p – 1) sinh(ξ )

(pq – 1) cosh(ξ )
,

v6(x, t) =
(A0(pq – 1) cosh(ξ ) – (p – 1) sinh(ξ ))(q – 1)

(pq – 1)(p – 1) cosh(ξ )
,

(59)
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and

u7(x, t) =
A0(pq – 1) sinh(ξ ) – cosh(ξ )(p – 1)

(pq – 1) sinh(ξ )
,

v7(x, t) =
(q – 1)(A0(pq – 1) sinh(ξ ) – cosh(ξ )(p – 1))

(pq – 1)(p – 1) sinh(ξ )
,

(60)

where ξ = 1
�(α) (xα + 2A0(pq–1)

p–1 tα).

Set 3:

c = –
2A0(pq – 1)

p – 1
, A0 = A0, A1 =

p – 1
2pq – 2

, B1 =
–p + 1
2pq – 2

,

A′
0 =

A0(q – 1)
p – 1

, A′
1 =

q – 1
2pq – 2

, B′
1 =

–q + 1
2pq – 2

.

Using these values, the following solution for (16) is obtained:

U1(ξ ) =
(2pqA0 – 2A0) cosh(ξ ) – (i + sinh(ξ ))(p – 1)

2(pq – 1) cosh(ξ )
,

V1(ξ ) = –
(q – 1)((–2pqA0 + 2A0) cosh(ξ ) + (i + sinh(ξ ))(p – 1))

2(pq – 1)(p – 1) cosh(ξ )
,

(61)

and

U2(ξ ) =
(2pqA0 – 2A0) sinh(ξ ) – (cosh(ξ ) + 1)(p – 1)

2(pq – 1) sinh(ξ )
,

V2(ξ ) =
(A0(pq – 1) sinh(ξ ) – 1/2(cosh(ξ ) + 1)(p – 1))(q – 1)

(pq – 1)(p – 1) sinh(ξ )
.

(62)

Consequently, we get the solution of Eq. (14) as

u8(x, t) =
(2pqA0 – 2A0) cosh(ξ ) – (i + sinh(ξ ))(p – 1)

2(pq – 1) cosh(ξ )
,

v8(x, t) = –
(q – 1)((–2pqA0 + 2A0) cosh(ξ ) + (i + sinh(ξ ))(p – 1))

2(pq – 1)(p – 1) cosh(ξ )
,

(63)

and

u9(x, t) =
(2pqA0 – 2A0) sinh(ξ ) – (cosh(ξ ) + 1)(p – 1)

2(pq – 1) sinh(ξ )
,

v9(x, t) =
(A0(pq – 1) sinh(ξ ) – 1/2(cosh(ξ ) + 1)(p – 1))(q – 1)

(pq – 1)(p – 1) sinh(ξ )
,

(64)

where ξ = 1
�(α) (xα + 2A0(pq–1)

p–1 tα).
Figure 11 depicts the dynamic behavior of solution u9(x, t), v9(x, t) presented in (64).
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Figure 11 Dynamic behavior of solution u9(x, t) (left) and v9(x, t) (right) given by (56) for p = 0.2, q = 0.1,
A0 = 1, and α = 0.6

3.3 The space-time conformable Fokas equation
Consider the space-time conformable Fokas equation [88]

4
∂2αu

∂tα∂xα
1

–
∂4αu

∂x3α
1 ∂xα

2
+

∂4αu
∂x3α

2 ∂xα
1

+ 12
∂αu
∂xα

1

∂αu
∂xα

2
+ 12u

∂2αu
∂xα

1 ∂xα
2

– 6
∂2αu

∂yα
1 ∂yα

2

= 0, 0 < α ≤ 1. (65)

Let us introduce the wave transformation as

u(x1, x2, y1, y2, t) = U (ξ ), ξ =
ctα

�(α)
+

k1xα
1

�(α)
+

k2xα
2

�(α)
+

l1yα
1

�(α)
+

l2yα
2

�(α)
, (66)

where c, k1, k2, l1, l2 are nonzero constants.
Utilizing Eq. (66) converts Eq. (65) into the following NODE:

4ck1U ′′ – k3
1k2U ′′′′ + k3

2k1U ′′′′ + 12k1k2
(
U ′)2 + 12k1k2UU ′′ – 6l1l2U ′′ = 0. (67)

If we apply the balance principle on the termsUU ′ andU ′′′′ in Eq. (67), we have 2M = M +2,
so M = 2.

Application of GERFM for (65)

Using Eq. (5) together with M = 2, we have

U (ξ ) = A0 + A1	(ξ ) + A2	
2(ξ ) +

B1

	(ξ )
+

B2

	2(ξ )
. (68)

Proceeding as outlined in the second section, we acquire the following sets of solutions to
Eq. (65).

Set 1: One obtains r = [–1, 3, 1, –1] and s = [1, –1, 1, –1], so Eq. (5) turns into

	(ξ ) =
cosh(ξ ) – 2 sinh(ξ )

sinh(ξ )
. (69)
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Case 1: We obtain

c =
20k3

1k2 – 20k1k2
3 – 6k1k2A0 + 3l1l2

2k1
,

A0 = A0, A1 = 4k1
2 – 4k2

2, A2 = k1
2 – k2

2, B1 = 0, B2 = 0,

k1 = k1, k2 = k2, l1 = l1, l2 = l2.

Putting values in Eqs. (68) and (69) yields the following solution:

U (ξ ) =
(–3k1

2 + 3k2
2 + A0) cosh2(ξ ) + 4k1

2 – 4k2
2 – A0

sinh2(ξ )
.

Consequently, we get the solution of Eq. (65) as

u1(x1, x2, y1, y2, t) =
(–3k1

2 + 3k2
2 + A0) cosh2(ξ ) + 4k1

2 – 4k2
2 – A0

sinh2(ξ )
, (70)

where ξ = ctα
�(α) + k1xα

1
�(α) + k2xα

2
�(α) + l1yα

1
�(α) + l2yα

2
�(α) .

Case 2: We obtain

c = –
3

√
9k2

2 + B2

(
k2

(
A0 –

10B2

27

)√
9k2

2 + B2 – 3/2l1l2

)
,

A0 = A0, A1 = 0, A2 = 0, B1 = 4/3B2, B2 = B2,

k1 = 1/3
√

9k2
2 + B2, k2 = k2, l1 = l1, l2 = l2.

Putting values in Eqs. (68) and (69) yields the following solution:

U (ξ ) = (27A0 – 9B2) cosh4(ξ ) + (–72A0 + 29B2) cosh2(ξ ) + 4B2 sinh(ξ ) cosh(ξ ) + 48A0 – 20B2

3(3 cosh2(ξ ) – 4)2
.

Consequently, we get the solution of Eq. (65) as

u2(x1, x2, y1, y2, t)

= (27A0 – 9B2) cosh4(ξ ) + (–72A0 + 29B2) cosh2(ξ ) + 4B2 sinh(ξ ) cosh(ξ ) + 48A0 – 20B2

3(3 cosh2(ξ ) – 4)2
.

(71)

Set 2: One obtains r = [1, 1, 1, –1] and s = [1, –1, 1, –1], so Eq. (5) turns into

	(ξ ) =
cosh(ξ )
sinh(ξ )

. (72)

Case 1: We obtain

c =
–4k3

1k2 + 4k1k2
3 – 6k1k2A0 + 3l1l2

2k1
,
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A0 = A0, A1 = 0, A2 = 0, B1 = 0, B2 = k1
2 – k2

2,

k1 = k1, k2 = k2, l1 = l1, l2 = l2.

Putting values in Eqs. (68) and (69) yields the following solution:

U (ξ ) =
(k1

2 – k2
2 + A0) cosh2(ξ ) – k1

2 + k2
2

cosh2(ξ )
.

Consequently, we get the solution of Eq. (65) as

u3(x1, x2, y1, y2, t) =
(k1

2 – k2
2 + A0) cosh2(ξ ) – k1

2 + k2
2

cosh2(ξ )
. (73)

Case 2: We obtain

c =
–4k3

1k2 + 4k1k2
3 – 6k1k2A0 + 3l1l2

2k1
,

A0 = A0, A1 = 0, A2 = k1
2 – k2

2, B1 = 0, B2 = k1
2 – k2

2,

k1 = k1, k2 = k2, l1 = l1, l2 = l2.

Putting values in Eqs. (68) and (69) yields the following solution:

U (ξ ) =
(2k1

2 – 2k2
2 + A0) cosh4(ξ ) + (–2k1

2 + 2k2
2 – A0) cosh2(ξ ) + k1

2 – k2
2

sinh2(ξ ) cosh2(ξ )
.

Consequently, we get the solution of Eq. (65) as

u4(x1, x2, y1, y2, t)

=
(2k1

2 – 2k2
2 + A0) cosh4(ξ ) + (–2k1

2 + 2k2
2 – A0) cosh2(ξ ) + k1

2 – k2
2

sinh2(ξ ) cosh2(ξ )
. (74)

Set 2: One obtains r = [1, 1, 1, –1] and s = [1, –1, 1, –1], so Eq. (5) turns into

	(ξ ) =
cosh(ξ )
sinh(ξ )

. (75)

Case 1: We obtain

c =
–4k3

1k2 + 4k1k2
3 – 6k1k2A0 + 3l1l2

2k1
,

A0 = A0, A1 = 0, A2 = 0, B1 = 0, B2 = k1
2 – k2

2,

k1 = k1, k2 = k2, l1 = l1, l2 = l2.

Putting values in Eqs. (68) and (69) yields the following solution:

U (ξ ) =
(k1

2 – k2
2 + A0) cosh2(ξ ) – k1

2 + k2
2

cosh2(ξ )
.
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Consequently, we get the solution of Eq. (65) as

u5(x1, x2, y1, y2, t) =
(k1

2 – k2
2 + A0) cosh2(ξ ) – k1

2 + k2
2

cosh2(ξ )
. (76)

Set 3: One obtains r = [–1, 0, 1, 1] and s = [0, 0, 1, 1], so Eq. (5) turns into

	(ξ ) = –
1

1 + eξ
. (77)

We obtain

c =
k3

1k2 – k1k3
2 – 12k1k2A0 + 6l1l2

4k1
,

A0 = A0, A1 = k1
2 – k2

2, A2 = k1
2 – k2

2, B1 = 0, B2 = 0,

k1 = k1, k2 = k2, l1 = l1, l2 = l2.

Putting values in Eqs. (68) and (77) yields the following solution:

U (ξ ) =
e2ξ A0 + (–k1

2 + k2
2 + 2A0)eξ + A0

(1 + eξ )2 .

Consequently, we get the solution of Eq. (65) as

u6(x1, x2, y1, y2, t) =
e2ξ A0 + (–k1

2 + k2
2 + 2A0)eξ + A0

(1 + eξ )2 . (78)

Set 4: One obtains r = [–3, –2, 1, 1] and s = [0, 1, 0, 1], so Eq. (5) turns into

	(ξ ) =
–3 – 2eξ

1 + eξ
. (79)

We obtain

c = –3
1

√
36k2

2 + B2

(
k2

(
A0 –

73B2

432

)√
36k2

2 + B2 – 3l1l2

)
,

A0 = A0, A1 = 0, A2 = 0, B1 = 5/6B2, B2 = B2,

k1 = 1/6
√

36k2
2 + B2, k2 = k2, l1 = l1, l2 = l2.

Putting values in Eqs. (68) and (79) yields the following solution:

U (ξ ) =
(24A0 – 4B2)e2ξ + (72A0 – 13B2)eξ + 54A0 – 9B2

6(3 + 2eξ )2 .

Consequently, we get the solution of Eq. (65) as

u7(x1, x2, y1, y2, t) =
(24A0 – 4B2)e2ξ + (72A0 – 13B2)eξ + 54A0 – 9B2

6(3 + 2eξ )2 . (80)
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Set 5: One obtains r = [–2 – i, 2 – i, 1, –1] and s = [–i, i, –i, i], so Eq. (5) turns into

	(ξ ) =
cos(ξ ) + 2 sin(ξ )

sin(ξ )
. (81)

We obtain

c =
28k3

1k2 – 28k1k2
3 – 6k1k2A0 + 3l1l2

2k1
,

A0 = A0, A1 = –4k1
2 + 4k2

2, A2 = k1
2 – k2

2, B1 = 0, B2 = 0,

k1 = k1, k2 = k2, l1 = l1, l2 = l2.

Putting values in Eqs. (68) and (81) yields the following solution:

U (ξ ) =
(5k1

2 – 5k2
2 – A0) cos2(ξ ) – 4k1

2 + 4k2
2 + A0

sin2(ξ )
.

Consequently, we get the solution of Eq. (65) as

u8(x1, x2, y1, y2, t) =
(5k1

2 – 5k2
2 – A0) cos2(ξ ) – 4k1

2 + 4k2
2 + A0

sin2(ξ )
. (82)

Set 6: One obtains r = [1 – i, –1 – i, 1, –1] and s = [–i, i, –i, i], so Eq. (5) turns into

	(ξ ) =
cos(ξ ) + sin(ξ )

sin(ξ )
. (83)

We obtain

c =
10k3

1k2 – 10k1k2
3 – 6k1k2A0 + 3l1l2

2k1
,

A0 = A0, A1 = 0, A2 = 0, B1 = –4k1
2 + 4k2

2, B2 = 4k1
2 – 4k2

2,

k1 = k1, k2 = k2, l1 = l1, l2 = l2.

Putting values in Eqs. (68) and (83) yields the following solution:

U (ξ ) =
2 sin(ξ )(–2k1

2 + 2k2
2 + A0) cos(ξ ) + A0

2 cos(ξ ) sin(ξ ) + 1
.

Consequently, we get the solution of Eq. (65) as

u9(x1, x2, y1, y2, t) =
2 sin(ξ )(–2k1

2 + 2k2
2 + A0) cos(ξ ) + A0

2 cos(ξ ) sin(ξ ) + 1
. (84)

Set 7: One obtains r = [2, 0, 1, –1] and s = [1, 0, 1, –1], so Eq. (5) turns into

	(ξ ) =
cosh(ξ ) + sinh(ξ )

sinh(ξ )
. (85)
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We obtain

c =
2k3

1k2 – 2k1k2
3 – 6k1k2A0 + 3l1l2

2k1
,

A0 = A0, A1 = –2k1
2 + 2k2

2, A2 = k1
2 – k2

2, B1 = 0, B2 = 0,

k1 = k1, k2 = k2, l1 = l1, l2 = l2.

Putting values in Eqs. (68) and (85) yields the following solution:

U (ξ ) =
cosh2(ξ )A0 + k1

2 – k2
2 – A0

sinh2(ξ )
.

Consequently, we get the solution of Eq. (65) as

u10(x1, x2, y1, y2, t) =
cosh2(ξ )A0 + k1

2 – k2
2 – A0

sinh2(ξ )
. (86)

Set 8: One obtains r = [i, –i, 1, 1] and s = [i, –i, i, –i], so Eq. (5) turns into

	(ξ ) = –
sin(ξ )
cos(ξ )

. (87)

We obtain

c =
4k3

1k2 – 4k1k3
2 – 6k1k2A0 + 3l1l2

2k1
,

A0 = A0, A1 = 0, A2 = 0, B1 = 0, B2 = k2
1 – k2

2 ,

k1 = k1, k2 = k2, l1 = l1, l2 = l2.

Putting values in Eqs. (68) and (87) yields the following solution:

U (ξ ) =
(k1

2 – k2
2 – A0) cos2(ξ ) + A0

sin2(ξ )
.

Consequently, we get the solution of Eq. (65) as

u11(x1, x2, y1, y2, t) =
(k1

2 – k2
2 – A0) cos2(ξ ) + A0

sin2(ξ )
. (88)

Application of EShGEEM for (65)

Firstly, we assume that the solution of Eq. (67) takes the following form:

U (θ ) = A0 + B1 sinh(ξ ) + A1 cosh(ξ ) + cosh(ξ )
(
B2 sinh(ξ ) + A2 cosh(ξ )

)
. (89)

and

U1(ξ ) = A0 + iB1sech(ξ ) – A1 tanh(ξ ) – tanh(ξ )(iB2sech(ξ ) – A2 tanh(ξ )),

U2(ξ ) = A0 + B1csch(ξ ) – A1coth(ξ ) – coth(ξ )(B2csch(ξ ) – A2coth(ξ )).
(90)
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Now, the extended EShGEEM with the help of Eqs. (89)–(90) can introduce the following
new exact soliton solutions of the space-time conformable Fokas equation given by (65).

Set 1:

c = c, A0 =
–4k3

1k2 – 2ck1 + 3l1l2

6k1k2
, A1 = 0, A2 = k2

1 ,

B1 = B2 = 0, k1 = k1, k2 = k2, l1 = l1, l2 = l2.

Using these values, the following solution for (67) is obtained:

U1(ξ ) =
(2k3

1k2 – 2ck1 + 3l1l2)(cosh(ξ ))2 – 6k1
3k2

6k1k2(cosh(ξ ))2 ,

U2(ξ ) =
(2k1

3k2 – 2ck1 + 3l1l2)(cosh(ξ ))2 + 4k1
3k2 + 2ck1 – 3l1l2

6k1k2(sinh(ξ ))2 .

(91)

Consequently, we get the solution of Eq. (65) as

u12(x1, x2, y1, y2, t) =
(2k1

3k2 – 2ck1 + 3l1l2)(cosh(ξ ))2 – 6k1
3k2

6k1k2(cosh(ξ ))2 ,

u13(x1, x2, y1, y2, t) =
(2k1

3k2 – 2ck1 + 3l1l2)(cosh(ξ ))2 + 4k1
3k2 + 2ck1 – 3l1l2

6k1k2(sinh(ξ ))2 ,

(92)

where

ξ =
ctα

�(α)
+

k1xα
1

�(α)
+

k2xα
2

�(α)
+

l1yα
1

�(α)
+

l2yα
2

�(α)
.

Set 2:

c = c, A0 =
–5k1

3k2 – 4ck1 + 6l1l2

12k1k2
, A1 = 0, A2 = B2 = k2

1/2, B1 = 0,

k1 = k1, k2 = k2, l1 = l1, l2 = l2.

Using these values, the following solution for (67) is obtained:

U1(ξ ) =
(k1

3k2 – 4ck1 + 6l1l2)(cosh(ξ ))2 – 6(i sinh(ξ ) + 1)k2k1
3

12k1k2(cosh(ξ ))2 ,

U2(ξ ) =
(k1

3k2 – 4ck1 + 6l1l2) cosh(ξ ) – 512k1
3k2 – 4ck1 + 6l1l2

k1k2(cosh(ξ ) + 1)
.

(93)

Consequently, we get the solution of Eq. (65) as

u12(x1, x2, y1, y2, t) =
(k1

3k2 – 4ck1 + 6l1l2)(cosh(ξ ))2 – 6(i sinh(ξ ) + 1)k2k1
3

12k1k2(cosh(ξ ))2 ,

u13(x1, x2, y1, y2, t) =
(k1

3k2 – 4ck1 + 6l1l2) cosh(ξ ) – 512k1
3k2 – 4ck1 + 6l1l2

k1k2(cosh(ξ ) + 1)
,

(94)
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where

ξ =
ctα

�(α)
+

k1xα
1

�(α)
+

k2xα
2

�(α)
+

l1yα
1

�(α)
+

l2yα
2

�(α)
.

Set 3:

c = c, A0 =
–5k1

3k2 – 4ck1 + 6l1l2

12k1k2
, A1 = 0, A2 = –B2 = k2

1/2, B1 = 0,

k1 = k1, k2 = k2, l1 = l1, l2 = l2.

Using these values, the following solution for (67) is obtained:

U1(ξ ) =
(k3

1k2 – 4ck1 + 6l1l2)(cosh(ξ ))2 + 6(i sinh(ξ ) – 1)k2k3
1

12k1k2(cosh(ξ ))2 ,

U2(ξ ) =
(k3

1k2 – 4ck1 + 6l1l2) cosh(ξ ) + 5k3
1k2 + 4ck1 – 6l1l2

12k1k2(cosh(ξ ) – 1)
.

(95)

Consequently, we get the solution of Eq. (65) as

u14(x1, x2, y1, y2, t) =
(k3

1k2 – 4ck1 + 6l1l2)(cosh(ξ ))2 + 6(i sinh(ξ ) – 1)k2k3
1

12k1k2(cosh(ξ ))2 ,

u15(x1, x2, y1, y2, t) =
(k3

1k2 – 4ck1 + 6l1l2) cosh(ξ ) + 5k3
1k2 + 4ck1 – 6l1l2

12k1k2(cosh(ξ ) – 1)
,

(96)

where

ξ =
ctα

�(α)
+

k1xα
1

�(α)
+

k2xα
2

�(α)
+

l1yα
1

�(α)
+

l2yα
2

�(α)
.

The correctness of all the solutions obtained in the paper has been examined by placing
them directly in the main equation, and it has been found that they satisfy the main equa-
tion.

4 Conclusion
Pursuing new concepts in mathematics provides a promising framework for describing
many complex phenomena and structures in the real world. Many of these structures can-
not be described by the existing classical definitions. This is an incentive for researchers
to explore new definitions in differential calculus. In this paper, based on the generalized
exponential rational function method and the extended sinh-Gordon equation expansion
method, we have obtained several new exact solutions of the space-time conformable cou-
pled Cahn–Allen equation, coupled Burgers equation, and Fokas equation. Both schemes
are easy to implement in computer programs and take small memory. On the other hand,
they require less computational cost compared to other techniques. Numerical results
clearly indicate the reliability and efficiency of the proposed method. To the best of our
knowledge, the solutions obtained for these nonlinear equations considering the GERFM
and EShGEEM are new and have not been reported in the literature. It is important to note
that a wide range of solutions, such as exponential, triangular, dark, and light solitons, pe-
riodic solutes, for the equations considered in this paper are determined by two methods
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that have not been previously explored in previous references. Since the techniques are
direct, powerful, and efficient, they can be efficiently used to find the exact solutions of
different nonlinear differential equations in several branches of nonlinear sciences.
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