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1 Introduction

The methods of fractional calculus significantly improved the study of integer-order math-
ematical models associated with real-world problems appearing in scientific and technical
disciplines. A point of central importance for choosing fractional order derivative oper-
ators is their nonlocal nature, which accounts for the history of the associated phenom-
ena under investigation. For application details, see financial economics [1], ecology [2],
immune systems [3], HIV/AIDS [4], chaotic synchronization [5, 6], etc. Inspired by the
great popularity of the subject, many researchers turned to the further development of
this branch of mathematical analysis. In particular, fractional order boundary value prob-
lems attracted considerable attention, and the literature on the topic was enriched with a
huge number of interesting articles, for instance, see [7-12].

Fractional differential systems have also been studied by many researchers in view of
their occurrence in the mathematical modeling of several physical and engineering pro-
cesses [13—15]. One can find the details about the theoretical development of the topic in
the articles [16-26].

We introduce and study a new class of coupled systems of mixed-order three fractional
differential equations equipped with nonlocal multi-point coupled boundary conditions.
© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other

third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’'s Creative Commons licence and your intended use is not permitted by

L]
@ Sprlnger statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a

copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.


https://doi.org/10.1186/s13662-021-03440-7
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-021-03440-7&domain=pdf
http://orcid.org/0000-0001-5350-2977
mailto:bashirahmad_qau@yahoo.com

Ahmad et al. Advances in Difference Equations

In precise terms, we consider the following fully coupled system:

DY u(t) = p(t, u(t), x(t), y()),
D%, x(t) = p(t, u(D), x(2), y(t)),
D% y(8) = (8, u(®), x(£), y(©)),

(2021) 2021:278

1<7]§2)t€ [Il,b],
1<& <2,te(a,b),
2<¢ <3,telab),

u(a) = uo, u(b) = Y7, pix(ay), (1.1)
x(a)=0,  x(b)=3 ", qy(B))
yE)=0, &) =0,  yb)=Y\_ nulw),

a<éi<b<ar< <A <Pr<<Bu<y1<---<y<b,
where “DX is a Caputo fractional derivative of order x € {,£,¢}, p,, ¥ : [a,b] x R x R x
o k=1,...,1

Here we emphasize that the novelty of the present work lies in the fact that we consider a

R — R are given functions, p;, q;,7c € R, i=1,...,m,j=1,...
coupled system of three fractional differential equations of different orders on an arbitrary
domain equipped with coupled nonlocal multi-point boundary conditions. One can ob-
serve that the multi-point boundary conditions are of cyclic nature and involve different
nonlocal positions. Moreover, it is worthwhile to mention that much of the work on cou-
pled fractional systems involves two fractional differential equations on the fixed domain.
Thus our results are more general and contribute significantly to the existing literature on
the topic.

The rest of the paper is organized as follows: In Sect. 2 we recall some basic defini-
tions from fractional calculus and present an auxiliary result, which plays a pivotal role in
transforming system (1.1) into equivalent integral equations. An existence result for the
problem at hand is proved via the Leray—Schauder alternative, while the existence of a
unique solution is established via Banach’s contraction mapping principle. These results

are presented in Sect. 3. Examples are also discussed for illustration of the obtained results.

2 Preliminaries

Let us begin this section with some definitions related to our study [27].

Definition 2.1 The Riemann-Liouville fractional integral of order w € R (w > 0) for a
locally integrable real-valued function / defined on —oo < a <t < b < +o0o, denoted by
12, h, is defined by

_ -l
h(t) = Mo )/ (t=8)"""h(s)ds,

where I" denotes the Euler gamma function.

Definition 2.2 Let /1, K™ € L'[a,b] for —00 < a < t < b < +00. The Riemann-Liouville

fractional derivative D%, & of order w € (m — 1,m], m € N is defined as

2 _ - _yn-l-o
D2oh(t) = e )dtm/ (t-s) h(s) ds,
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while the Caputo fractional derivative CDZ’,,h of order w € (m — 1,m], m € N is defined as

B R (7) P

t_
CDZ)+h(t)=DZ)+|: _ ,61( 1‘61)

(t a)m 1 i|
(m —1)!

Remark 2.3 The Caputo fractional derivative of order w € (m —1,m], m € N for a contin-
uous function /4 : (0,00) — R such that 4 € C"[a, b], existing almost everywhere on [a, b],
is defined by

1 t
CDn(t) = ——— / (£ =)™ h" (s) ds
Frm-w) J,
Now we present an important result to analyze problem (1.1).

Lemma 2.4 Let 0,9,V € Cla,b] and A #0. Then the unique solution of the system

CDZ+ u(t)=p(), 1l<n<2tela,b]

CDLx(t)=p(t), 1<&<2telab),

DS.y() =y (), 2<¢<3,telabl,

u(a) = uy, u(b) =37 pixla), (2.1)
x(a)=0,  x(b)=3", qy(B))

YE)=0,  ¥E)=0,  y(b)= Yk, ruly),

a<é <& <oy < <A <Pr<-<Bu<yr<--<y<b.

is given by the formulas

)—/ (t S)nl 0(s)ds + ug + (t — a)iam/ (br(sgnl,o(s)ds

m . m aj R E—l
+ le’ilfl <ﬂ13 ;Pi(ai —a)+ 1) ) %5(5) ds

Y pilei—a) B —s)f 2 (& -s)f!
+7A(b—a) <ﬂ3‘/t; 7F(§) 1//(s)ds+a4/a NG 2 (s)ds

91

b (b5~ (8-
[ b= sy ds - AIZq,/a P s

b (3 _ E-1
—A1/ ua(s)ds

r'(§)
+Angkfy (yk—s s)ds)} +ayn(t—a), (2.2)
Eor el b )1
- [ 50 [

N G
+a5;plfa Te) (p(s)ds+a3£ T v(s)ds
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2 (& —s)f 1
+a4/ﬂ ) Y(s)ds

b -1
s [ G0as- AZq,/ B =9 5 s

I'(n) a I'(¢)

[ S

+A3k2;:rk f " (Vkr_(;))n_lﬁ(s)ds+a6}, 2.3)
0= [ G waseno [ E I a,

+by(0) / N (Ezr_(z);_l U (s)ds

/ [ S)51 §)ds + b(t Z‘b/ (ﬁ,—S)f IW

+bs(t / (b= )n 5

—bgmz / s [ P as

_b5(t);ai / K ("”F_(;)) o) ds + be(o), (2.4)

where

__ 1 Qa7 [ BY _2%
bi(t) = X (52 a+ N + (¢ )( A 1)>+(t a)”—,

_5 A
bg(t):Eli§2<—§1+a+%+(t—a)<m:8+1)>+(t—a)2%,

bt = s (s e - )+ 61 - £ ),

blt) = 5 (@t e )+ (6~ e o),

bs(0)= 5, gy (@ r @t + 6 - 8)e-a)),

bo(0) = 5wy (@ F @t + 6 - 8)e-aP),

am=E-a-E-a),  @m=G-aE-aE-H)

b M-8 - ge-p) A -b) A S g -6

s -6 §1-&
g - As Y e e = 61)’ e = oA (Xl: - Yoo v - ﬂ)),

b-a = b-a
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—b-a)b-&) + A Y1, qiE - B)

az; =

’

§1-6
—(b-a)& -b)+ Ay Z;lzl qi(Bj —&1)
ag = ’
§1-56
I i I
as=Y nlp-a),  aw=-uolb-a)y rc+ Yy rlyc—a)
k=1 k=1 k=1
an = i . (616 Zi:lii(ai -a) MO);
4o Ty ipilei-a) 1 P
BT AG-a) b-a' PN
Sy rboaarb-aPE-8) - Yenn-a) Y plei-a)
1= ) 2= )
§1-& b-a
- ;’:1 q; o 2 _
3= (az+a1(Bj— a) + (B — a)*(&1 - &),
§1-&
A =AA3—-A1(b-a). (2.5)

Proof The solution of system (2.1) can be written as

u(t) =I.p() +c1 + 2t — a), (2.6)
x(t) = L.9(0) + ¢ + calt — ), 2.7)
Y(O) = L (t) + c5 + co(t —a) + o (t — a)?, (2.8)

where¢; e R (i =1,2,...,7) are unknown constants. Using the condition u(a) = u, in (2.6)
gives ¢; = up and applying the condition x(a) = 0 in (2.7) yields c3 = 0, while making use of
the conditions y(£1) = 0 and y(&;) = 0 leads to the equations
Ly (E) + 05+ co(61 —a) + ¢ (E1 —a)” = 0, (2.9)
L&) +cs + colE2 —a) + ¢7(&, —a)* = 0. (2.10)

Using the conditions u(b) = Y/, pix(a;), x(b) = Z;il g;9(B;), and y(b) = Zi:l reu(yi) with
¢1 = up and ¢3 = 0 in (2.6)—(2.8) gives

1,p() + uo+ ea(b—a) = Y pi(I5. 0(e) + calets - @), (2.11)
i=1
L) +calb-a) =Y gLy (B) + s + co(By — a) + c7(B; — a)?), (2.12)
j=1
!
1§+$(b) tes+cgb—a)+c(b—a)= Z Tk (12+ﬁ(rk) + Uy + Co (g — a)). (2.13)

k=1

Subtracting (2.10) from (2.9), we find that

1 — _
= sl ~ %_2 (ﬂlC7 —I§+W(§1) +I§+ 1//(52)), (214)

Ce
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where a; is given in (2.5). Substituting the value of ¢ into (2.9) yields

1 — —
¢ = g, (mer6a- DL (E) - (61 - ) (6)), (2.15)

where a5 is given in (2.5). From (2.11), we have

1
C = b_ < ,,+P Zpt a+(/7 a;) Zpi(ai —a)cy - u0>~ (2.16)
=1

Substituting the values of ¢;, ¢5, and ¢4 into (2.12) and (2.13), we get the system

A167 + A264

l

! ! m
_ 1 1k — a) _ _
=Y ndl () + ) reo + Z“bk%f (Zpiliw(a» — g — l;lp(b))

k=1 k=1 i=1

tE S((sl D)LY (&) + (b - &)Ly (&) - L.y (b),

A3€7 + (b - a)c4

Zq, () + SZ’ 1:’ (62— BIE (&) + (B - E)IL V(&) - L (D).

Solving the above system together with the notation in (2.5), we obtain

1 _ — _ - —
€= {6131; V(&) + aalo Y (£) — AsL W (b) — A, Z gLV (B) - asll p(b)

j=1

1
+ A3 el D) + ae }

k=1

c7 = % {ﬂ71§+$(51) + 6181;%(52) +(b- 61)1;%([9)

+A22q] W Bj) — ao ZP; I ¢(a;)

i=1

!
— Aol p(b) + asIl p(b) — (b—a) Yy rel B(vi) + aro }
k=1

Substituting the value of ¢, into (2.16) yields

_ -1 Zglpi(l a) = 1 er:lpi(l 61) _
C2_|:b—a_as Ab—a) } (b)+;[b—a+a5 Alb-a) ("‘)}

. % {aszﬂ@l) ¢ @l P (E) — AL T (B)
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—AIZq, T (B) - AL (D)

!
+A3 Z Vk12+5(7/k)} +d11.
k=1

Inserting the value of ¢; into (2.14) and (2.15), we get

1 J—
C5:§1_52{|:§2_ﬂ+a2Aa7i|I§+¢(£l) [&HHT} (&)

+ % ((b - a)l§+ ¥ (b)

+A Z gLV (B) - as ZPié}@(%) - A21§+¢(b) +aol). p(b)
-1

i=1

l
—(b-a))_ rlyplyi) + 6110) }

k=1

. {[mm— 1]1;%(&“ [alas . 1} V() + _<(b a)l5, 7 (b)

§1-& A A A

+A Z ql, W :31 —dy 219; I ¢(a;) A21§+¢(b) + ﬂ91;]+ﬁ(b)

i=1

!
—(b-a)) iy plyi) + am) }

k=1

Finally, substituting the values of ¢;, i = 1,2,...,7, into (2.6), (2.7), and (2.8), we obtain (2.2),

(2.3), and (2.4). We can prove the converse of this lemma by direct computation. O

3 Main results
Let X = C([a, b], R) be a Banach space endowed with the norm ||x|| = sup{|x(¢)|, ¢t € [a, b]}.
Then (X x X x X, ||(&,%,%)|x) is also a Banach space equipped with the norm ||(z, %, y)||x =
lleell + llxll + Iyl 2,2,y € X.

In view of Lemma 2.4, we define an operator 7: X x X x X — X x X x X by

(u(t) x(2), y(t)) ( ( (), x(2), y(t)) Tz(u(t) x(2), y(t)) T3 (u(t) x(2), y(t)))
where

Ty (u(2), x(2), y(2))

n-1
f (e- S); o (s, 1(s), %(5), y(s)) ds + uo

-1

+(t- a){alz F( ) (s, u(s),x(s),y(s)) ds

Page 7 of 21
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% (. — g)E-1
+ sz 15l (6113 Zpl(al _ 61) + 1) j (O[LF(Z; w(s, u(s),x(s),y(s)) ds

Y pile—a) & (g — 5!
e[ T

52 (& —s)t!
' M/u o) ¥ (S ua95(9) ds

v (s, uls), x(s), y(s)) ds

b(p—s)t1
—As /a Wtﬁ (s u(s), x(s), y(s)) ds

B (B, — )51
— A Z ) ﬁ/F(Z)) S, u(s),x(s),y(s)) ds

-1
—AI/ (r(isg))go(s, u(s), x(s), y(s)) ds

l T (yx =)
+A % p(s, u(s),x(s),y(s)) ds+ayp) { +a(t—a),
3 ; '/a () 12 1

Ty (u(t), x(2), y(2))

t(r_ E-1
- / (tr(ss)) o (s, u(s),x(s), y(s)) ds

_ b (p_ g1
+(tAa){_aS/ﬂ O (594616 ds

m a; (ai—ﬂ)571
i ’ ’ ’ d
w;p « TE) ¢ (s, 1(s),x(5), y(s)) dis

& —8)¢
ra / @}é)f (5 656,19 s

2 (5 -9
+dy /ﬂ T v (s, u(s), x(s), y(s)) ds

b(p—s)t1
— A /a ) v (s, uls), x(s), y(s)) ds

[P (B =8
— A Zq]/a NG 1/f(s, u(s),x(s),y(s)) ds

b b— &-1
—AI/ (F(isg))w(s, u(s), x(s), y(s)) ds

l T (yr — )" }
+A % p(s, u(s),x(s),y(s)) ds+ag ¢,
’ kZ / O °

Ts(u(t),x(2), y(2))

~ t (t _S)g—l
_ / Ry V60,56, 5(9) ds

B (& —a)!
+ bl(t)/ T v (s, uls), x(s), y(s)) ds
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52 (& -s)t- 1
+ by(t) / NG s, u(s),x(s),y(s)) ds

(b-s)"
+ b3(2) /a T@_)I/I(S, u(s), x(s), y(s)) ds

. P(B-9)!
+hu(t) ) g ¥ (s, u(s), x(s), y(s)) ds
S ’/a r()

b g -1
+ bs(t) / b S)n p(s,u(s), x(s), y(s)) ds

— bs(t) Zrkf " (J/k " o (s, u(s), %(s), y(s)) ds

/ (b- S)é 1 s u(s), x(s), y(s)) ds

_g)5-1
— bs(t) a,/ (“‘r(? o (s, 1(5),%(s), ¥(s)) s + bo(2).

For computational convenience, let us set

1 o AL il (e — @) Y I (v — @)

Ll-F(nm{(b—a)mam(b—a)" . 2 }
5 HZ Ipil (|a13| D Ipillei—a) + 1)(0« —a)
i=1 i=1
L AU Ipil(ei - a) (b - a)t
N ’

1 Y b - a) .

N, = N 1){ N <|6l3|(‘§1 —a)t +|asg|(& —a)* + |A3|(b - a)

+1A11 ) lgil(B; —a)f) }

j-1

!
b-a
Ly= —— — bh—a) + A b
2 |A|F(n+1)!|d5|( a)’ +| 3|kX_l:|rk|(yk a)}

o1 _aEe o _ ¢
MZ_F($+1)=(b a) + Al <|ﬂs|§ |pil(@i —a)® +|A|(b- ﬂ))}
b
N, = 7|A|F(§a+ D {|6l3|(§1 —a)’ +|aal(& - a) +|A3|(b - a) +]A,| ?:1 |%‘|(ﬁj—ﬂ)z},

l

Ly = ﬁ iag(b—a)” +83 > Irel(vi —ﬂ)"}:

k=1

M3 = r(; 1){84(b—a)5+85;|a5|(ai_ﬂ)é}’
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N3 = F(§1+ D {(b —a) + 8181 —a)* +6,(& —a)
+83(b— a)f +542n:|q,-|(ﬁ,-—a)f}, (3.1)
P
where

R <|sz| +lal+ '“iT‘T' +(b-a)| 2 - 1‘) + (b—a)z%,

5= |51i52| <|a| +lel+ "TZ‘T' +(b-a) %HD +(b_a)2'|%8|',

s = wﬁ%&n('“z' +larl(b - a) + (16 - &l)(b - ),

1= e (ol + (6 0) + (6 l) 6 o),

8 = ﬁ(w tlarl(b - a) + (16~ &) (b - a)?),

bs = e l a6 =)+ (1 - &) - o).

In our first result, we establish the existence of solutions for system (1.1) by applying the
Leray—Schauder alternative [28].

Lemma 3.1 (Leray—Schauder alternative) Let J:U —> U be a completely continuous op-
erator (i.e., a map restricted to any bounded set in U is compact). Let Q(J) ={xeU :x =
nJ(x) for some 0 < n < 1}. Then either the set Q(3J) is unbounded, or J has at least one fixed
point.

Theorem 3.2 Let A #0, where A is defined by (2.5). In addition, we assume that:
(H2) pyo, ¥ :[a,b] xR x R x R — R are continuous functions and there exist real con-
stants k;, 04, 10; > 0 (i = 1,2,3) and ko > 0, g > 0, o > 0 such that, for all t € [a, D]
and u,x,y € R,
‘p(t,u,x,y)| <ko + k1|u| + ko|x| + k3|yl,

|<p(t, u,x,y)| < op + o1|u| + oz]x| + o3|,

|V (&, 1,0, 9)| < po + palul + polx| + pslyl.
Then system (1.1) has at least one solution on [a, b] provided that

(L1 +L2 +L3)k1 + (M1 +M2 +M3)O'1 + (N1 +N2 +N3)/.L1 <1,
(Ll +L2 +L3)k2 + (M1 +M2 +M3)O’2 + (N1 +N2 +N3),bL2 < 1,

(L1 + Lz + L3)k3 + (M1 +M2 +M3)O'3 + (N1 + N2 + Ng)pbg < 1, (32)

where L;, M;, N;, i =1,2,3, are given in (3.1).

Page 10 of 21
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Proof Observe that the continuity of the operator T: X x X x X — X x X x X follows
from that of the functions p, ¢, and . Next, let 2 C X x X x X be bounded such that

’p(tut)x )‘<Kl
|¢(t’ u(t)’x(t ,}/(t))| SI<2;

|1/f(t: u(t)x x(f):y(t)) | = I(S‘v V(Ll, x,y) € Q;

for positive constants Ki, K3, and Ks. Then, for any (&, x,y) € 2, we have

| Ty (u(2), %(2), (1)) |
- E(t—s)nt
“Ja T

b(p_ -1
+(b_a){|a12|/ (br(sn); |0 (s, u(s), %(s), y(s)) | ds

- 51
Z 1|p, <|a |Z|Pz o —-a +1)/ (alr(g) 5,14(5),%(5), ¥(5)) | ds

|,o(s, u(s),x(s),y(s))| ds + |up|

51
+ Zz 1|Pz|(0ll ﬂ)(| 3|/

|Al(b - a) (s, u(5), %(s), y(s)) | ds

r(; v

52 (& —s)t"
+ |a4|/ ) |1/f s, u(s) x(s), ¥(s) )|ds

b -1
+|A3|/ (b—s)* ’1//514(3 ), x(s) y(s)‘ds

I'(n)

+|A1|Z| |/ ﬁ’r(? | (s, u(s), x(s), y()) | ds
b— 51

+ A1) % o (s, u(s), x(s), y(s)) | ds

Z T (yx = s)"!
+ 1431 ) Il | (s, u(s), 2(s), y(5)) | ds + |a I)} +lan (- a)
3 2 /a () 12 11

< luol + a1 (b —a) + {F( ! D {(b—ﬂ)" +lan|(b—a)™!
s |A3| 31 Ipil( _|Z)|Zk=1 7y — a)” ”IIpII

1 " m
* {m{; |pil <121: lpilla; — a) + 1) (o; — a)f

m X . — §
AL pil(ei —a)(b - a) ”nwn
IN

. { 1 { Yo pila; — a)l

I +1) |A| <|“3|(§1 —a)® +lay|(5 - a)
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+Mﬂw—m4+mu§:mm@—af)}hwn

j=1

<l|ug| + |an |(b - (1) + L1 K + MKy + N1 K3,
which implies that
” Tl(u,x,y) ”X < |M0| + |6111|(b - 61) + L11<1 + M11<2 + N1[<3.

In a similar way, we can find that

b—
| o9, < W + Lok + MoKy + NoKG

and

|Rmewns/(t

 To |¢(s, (s), x(s), y(s))|ds

&1 ( )
+ tfg}iﬁ]{h(t)} /a SIF(‘Z) |1//(S, u(s),x(s),y(g)) | ds

& (& — )4“—1
+tI€I}2§]{bz(t)}/a %W/(s, u(s), x(s), y(s)) | ds

b— -1
+ max {b3(t) /( 9° |V (s, (), (), ¥(5)) | s

tela,b)

3 _1
+ max b4(t Z| ,|/ (ﬂlr(; v (s, u(S),x(s),y(S))|ds

tela,b)

(b—s)""!
+ max {b5(0)} /a TS??) |0 (s, (), %(5), 5()) | ds

! Yk ( _ )11—1
+tr€r}2)b(}{b3(t)}k2=;lrk|/; %‘p(s,u(s),x(s),y(smds

—q)é-
+ max {b4(t)} i

tela,b) . ')
m o _ )E 1
T
+ max {b6(0)}

{bs(2)
" mas (650} )_Jp
< 86 + Lgl(l + Mg[(z + Ng[(g,

o |e(s,u(s), x(s), y(s)) | ds

01 (s, 14(5),x(5),¥(5)) ds

which implies that

| T5(u%,9)|| ; <86 + LaKy + M3K; + N3Ks.

From the above argument, we deduce that the operator 7 is uniformly bounded, that is,

ag(b—a
HnmxwhsnM+mmw—m+L%Z7ﬂ+%

+ (L1 + L2 + Lg)l(l + (M1 +M2 + Mg)[(z + (N1 + N2 + Ng)[(g

Page 12 of 21
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Next, we show that T is equicontinuous. Let £y, £, € [a, b] with ; < £,. Then we have

| Ty ((t2), 2(82), y(t2)) — T (u(t1), 2(t1), y(12)) |

sr(nil)[z(tz—tl)ﬂlt;’ —t’fl]+(t2—t1>|an|+{ t(z 1){(|a12|<b )"
| AL Wil — @) Ty Il (v = @) ” %
IAl(b—a)

+{ th-t {Z?”l il O 1pil(ei — a) + 1)(; — a)®

TE+1) IAI(b—a)

1A 7, pil(i — a)(b - a)f
* AG-a) ”K2
; ! e { RV <|a3|<sl —a)f + laal(62 - @ +1As(b - )

A1) g8y —a)f) } }1@

j=1

Analogously,we can obtain

|To (u(t2), %(82), y(2)) = T (1), 2(81), y(t1)) |

5F(;<il)[2(t2—tl)é+|t§—tf|] +(t tl)% tzgtl[r(,,il){'“&—’l(b_a)n
+ 143 i Il (e —a)"} }Kl
[
A?(; ){' 5|Z|Pz a;—a) +]A1|(b - a)“?}K2
mﬁi(ﬁ{mausl O + |al(Es - a)f +|As](b— )

+ 1Ay Z (8 —a)f}Kg,

and

| T5(52), %(t2), y(t2)) — Tu(tr), 2(t1), y(11))|
K3

< s 1)[2(t2 t)* + 65 -]
laiaiol
He ) g

(82 — t1)|asl !
A& - &DD(r + 1) '“9'(b—ﬂ)"+(b—a>;|rk|(yk—a)"}1<l
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(t2 — t1)lasl a
+ [Asl(b - a)* +las] ) Ipilei — a)® 1K,
|Al(& - &) (E +1) 21: o

aay aag
—+1

A & —a)

—1‘(‘51—61){ +

N (-t
(1&1-&DI'(¢ +1)

A n
+ %(b—a)f + % ;ql'(ﬁj—a)f}lﬁ + {(t% —tf) —2g(t2_t1)}{%

{ I
+ AT+ D) <|ﬂ9|(b—ﬂ)n + (b—ﬂ)z 7kl vk —ﬂ)"> }Kl

k=1

1 e .
+ |A|F(g+1)(IA2|(b a) +|a9|;p,(al g)>}1(2
+ m(laﬂ(gl—ﬂ);+|(l8|($2_a)f+(b_ﬂ)§+1

+14a] ) g8 —a)f) }Ks}-

j-1

The above inequalities are independent of , x, y and tend to zero as ¢; — t,. This shows
that the operator T'(u, x, y) is equicontinuous. In consequence, we deduce that the operator
T (u,x,y) is completely continuous.

Finally, we consider the set P = {(it,%,y) € X x X x X : (,x,9) =vT(1,%,9),0 <v <1}
and show that it is bounded.

Let (u,x,y) € P with (u,x,y) = vT(u,x,). For any t € [a, b], we have u(t) = vT1(u,x,y)(¢),
x(t) = vTo(u,x,9)(t), y(t) = vT3(u,x,y)(t). Then, by (H,), we have

|lu(t)| < |uol + lar1|(b — a) + Ly (ko + kilul + ks |x| + k3|y|)
+ M (00 + 01|ul + 02lx] + 03]y])
+ N (po + puaul + paolx| + pslyl)
= luo| + |a11|(b —a) + Liko + M1oo + Nipwo + (Liky + Myor + Nyjur)|uly
+(Liky + Myo + Nijo)lx| + (Liks + Myos + Nijus)|yl,

_ lagl(b-a)

’x(t)’ < Al + Loko + Maog + Nopug + (Laky + Maop + Noju)|ul

+ (Loks + Myoy + Nojug)|x|
+ (Loks + Myos + Nopus)lyl,

and

9(8)| < 86 + Lsko + Ms00 + Napuo + (Lsky + Mzoy + Naju)|ul
+ (Lzky + M309 + N3juo)|x]|

+ (L3ks + M303 + N3ji3)|yl.

Page 14 of 21
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It follows from the foregoing arguments that

llell < luol + |a1n1|(b — a) + Liko + Moo + Nijwo + (Liky + Myoy + Nypy)lu|

+ (Liky + Myoy + Nipo) x|l + (Liks + Mios + Niws)lyll,

las|(b — a)
[lxll < A + Lyko + Maog + Nojuo + (Laki + Myor + Nojur) | ul|

+ (Laky + Moy + Nopo)llx|| + (Laks + Maos + Nows) |1yl
llyll <86 + Lsko + M309 + N3pig + (Lzky + M3or + Npur) ||ul]
+ (Lzka + M3op + N3 o) |1x||

+ (Lsks + M3os + Naus)|yll.
Adding the above three inequalities, we have

llaell + flll + NIyl

ag|(b—a
<luol + |lanl(b-a)+ % + 86+ (L1 + Lo + La)ko + (M1 + My + M3)og

+ (N1 + Ny + N3)po
+[(Ly + Ly + La)ky + (My + My + M3)or + (Ny + Ny + Na)pu | [lu]
+[(Ly + Ly + La)ky + (My + My + M3)o3 + (N + Ny + Na) o | |1

+[(Ly + Ly + La)ks + (M1 + My + M3)os + (N1 + Ny + N3)us] |l ll,
which implies that

|Gl

|las| (b — a)

1
< — | luol +lanl(b-a) +
M0|: 0 11 Al

+ 86 + (L1 +L2 +L3)k() + (M1 +M2 +M3)O'()

+ (N1 + N +N3)M0i|;

where My = min{l — [(Ly + Ly + L3)k; + (M1 + My + M3)o; + (N1 + Ny + N3)w;l,i =1,2,3}.
Hence the set P is bounded. Thus, by the Leray—Schauder alternative, we deduce that the
operator T has at least one fixed point, which implies that problem (1.1) has at least one
solution on [a, b]. This completes the proof. O

Our next existence and uniqueness result is based on the contraction mapping principle
due to Banach.

Theorem 3.3 Let A #0, where A is defined by (2.5). In addition, we assume that:
(H2) pyo, ¥ :[a,b] x R x R x R — R are continuous functions and there exist positive
constants l, by, and ls such that, for all t € [a,b] and u;,x;,y; € R, i =1,2,3, we
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have

|o(t %1, %2,%3) = p(&,y1,92,73)| < L (1%1 = y1| + %2 = ya| + I3 = y3]),
ot %1,%2,%3) = @&, 51,72, ¥3)| < ba(I%1 = y1] + %2 = y2| + |x3 — 3]),

|V (&, 21, %2,%3) = Y (&, 51,72, ¥3)| < I3 (1%1 = y1] + %2 — y2| + x5 — y3]).
If
(L1 + Ly + L3)y + (My + My + Ms)ly + (N7 + Ny + N3)ls < 1, (3.3)
where L;, M;, N; are given in (3.1), then system (1.1) has a unique solution on |a, b].

Proof Define sup,.(,, p(£,0,0,0) = Qi < 00, SuUp,(;9(£0,0,00 = Q2 < o009,
SUP,c(4p ¥ (£,0,0,0) = Q3 < 00, and r > 0 such that

ol + (b= a)la | + 4B + 8 + E

1- (Ll +L2 +L3)ll - (M1 +M2 +M3)lz - (Nl +N2 +N3)13’

r>

where E = (L1 +L2 + Lg)Ql + (M1 +M2 +M3)Q2 + (N1 +N2 +N3)Q3.
In the first step, we show that 7B, C B,, where B, = {(4,x,y) € X x X x X : ||(st, %, y)|| < r}.
By assumption (H>), for (u,x,y) € B,, t € [a, b], we have

(2, u(t), x(2), y(0)| < | o(& u(®),x(2), 5(t)) - p(£,0,0,0)|
< L(lul + [x@)| + [y®)]) + Q
< L (llell + 1%l + MIy11) + Q1 < hr + Qu. (34)

Similarly, we can get

’(p(t, u(t),x(t),y(t))| < ‘(p(t, u(t),x(t),y(t)) -¢(t,0,0, O)|
< bL(jul + |x@)] + |y@®)]) + Q2
< lz(||M|| + %l + 1yll) + Q2 < lar + Qa, (3.5)

and

| (&, u(0),x(8), y(8)) | < (Il + %]+ 1Iyll) + Qs < lsr + Qs. (3.6)

Using (3.4), (3.5), and (3.6), we obtain

1720, 9)(8)| = lato] + lans (b — ) + { {(b—a)" +lanl(b—a)™

'n+1)

. A3 22 Ipil (e —|2)|Zi=1 7| (vi — a)" ””p“

1 " m
" {m {; |l 121: pil(i — a) + 1)(a; — a)®
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AL il -ab-at ]
N

I +1) |Al

+ [ 1 {Z":l (i <|“3|(Sl —a)’ +|a|(§ - a)

+1A3l(b-a)* + 1411 ) Iqjl(ﬂj—a){> }}IIWII

-1
< luol +la11|(b—a) + Li(lir + Q) + M1(lpr + Qo) + N1(l37 + Q3)

< luo| +la11l(b—a) + (L1ly + Myly + Nil3)r + L1Qy + M1Qz + N1 Qs,
which, on taking the norm for ¢ € [a, ], yields
| T2, %,9) | < luol + lar1|(b — @) + (Lyly + Myly + Nyls)r + Ly Qy + M1 Qo + N1 Qs.

Likewise, we can find that

| To,x,9) | < W + (Laly + Maly + Nol3)r + LyQ1 + M Qy + N2 Q3
and

| T5(u%,9)|| , <86 + (Ll + Msly + N3ls)r + L3Qq + M3Q, + N3Qs.
Consequently,

| 7691

las| (b — a)

<luol + |anl(b-a)+
[A]

+ 86 + [(L1 + L2 + Lg)ll + (M1 +M2 + Mg)lz

+ (N1 +N2 +N3)13]r + (L1 +L2 +L3)Q1 + (M1 +M2 +M3)Q2
+ (N1 + Ny +N3)Qs <.

Now, for (u1,%1,y1), (42, %2,¥2) € X x X x X and for any ¢ € [a, b], we get

| T (242,52, y2)(£) = T (1,1, 91)(2)|

- { . (n1+ . {(b )+ |ass) (b - )"
, sl X2 Ipil (i - a) Sl —a)? ”
A

x Iy ([l — wa |l + 1o — 21| + lly2 = y1l)
1 m m
* {m{;lpd(; lpilla; — a) + 1)(%_4)5

A Y7 Ipil(ey — a)(b - a)®
NUEDDEY ||A| b (s = ]l + 2 = 21 + 2 = 31




Ahmad et al. Advances in Difference Equations (2021) 2021:278 Page 18 of 21

+{ 1 {ZZI il — a)

re¢+1) N (|43|('§;—1 —ﬂ){ + |aq| (52 _a){

+]As|(b - a)® +]Ai| Z'%Kﬁj‘“){) } }ls(HMz —up |l + w2 = x1 ]+ ly2 = 31l)

j=1

< (Lily + Myly + Nuls) (llug — w || + llea =211l + lly2 = 911,
which implies that

| Ty (w2, %2, ) = Ta (g, 20,91 ||
< (L1l + Myl + Nubs) (Jluz — g + |||l — %11 + [ly2 = 31 l). (3.7)

Similarly, we find that

” TZ(MerZryZ) - TZ(ulrxlryl) ”X
< (Lol + Maly + Nol3)(Jlu — ua || + [l — 11| + [ly2 = y11l) (3.8)

and

” T3(u2,%2,y2) — T3(u1,%1,1) ||X
< (Ll + M3l + N3ls)(|luz — || + |2 = %11 + [ly2 = 31 l). (3.9)

It follows from (3.7), (3.8), and (3.9) that

|| T(M2)x2;y2) - T(ulixliyl) HX
< [(L1 + Ly + Lg)ll + (M1 + M, +M3)12 + (N1 + N, +N3)13]

x (e = wal| + [l = 1 || + [ly2 = y1ll).

The above inequality together with (3.3) implies that 7T is a contraction. Hence it follows
by Banach’s fixed point theorem that there exists a unique fixed point for the operator
T, which corresponds to a unique solution of problem (1.1) on [a, b]. The proof is com-
pleted. d

4 Examples
Let us consider the following mixed-type coupled fractional differential system:

D2 u(®) = plt, u(®),x(0)y(®), te[1,2],
DEx(®) = plt,ul®) (0, 5(0),  te[1,2),
DLx(0) = v (6, u®),x0,50),  te (1,2,

u(1) =1/400,  u(2)= 3%x(1),

(1) =0,  x(2)=37, g8 ),

ydh =0, w8 =0,  yb) =i, reulv).
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Here, n =3/4, & =7/4,¢=5/2,a=1,b=2,u90=1/400, m =1, n =2, =2, p; = 1/20,
q1 = 1/100, g = 1/50, r, = 1/1000, r5 = 1/500, oy = 13/10, By = 7/5, B> = 3/2, y1 = 8/5,
y2 = 17/10. With the given data, it is found that L; ~ 0.75223, L, =~ eq1397 x 1075, Ly ~
5.0146 x 1073, M; >~ 4.0414 x 1072, M, ~ 1.2435, M3 =~ 4.8058 x 107>, Nj =~ 1.8944 x 1073,
N, ~3.0567 x 1073, N3 >~ 1.0942.

(1) In order to illustrate Theorem 3.2, we take

5 1 et e’

t,u,x, =e"t+—uc0sx+—xsin + —9yYCcos u,
p( ¥) g 3 Yy

et 1 1
ot u,%,y) =tV2 + 3+ —utan ' x + ———x + —ysinuy, (4.2)
30 Vag+ 2 4
e—t —t 1 e—t
LU,x,y)= —+ —U+ ——X+ —)COSX.
Vibwmy) =15+ Ut Y

It is easy to check that condition (H) is satisfied with ko = 1/€%, k; = 1/8, ko = 1/(3e), k3 =
1/(4e), 09 = 24/7, 01 = 1/(6e), 05 = 1/7, 03 = 1/4, 1o = 1/(10e), 111 = 1/(3e), py = 1/5, 3 =
1/(4e). Furthermore,

(Ll +L2 +L3)k1 + (M1 +M2 +M3)O’1 + (N1 +N2 +N3)pL1 ~(0.30801 < 1,
(L1 + Lz + L3)k2 + (M1 + Mz +M3)0'2 + (Nl + N2 + Ng)pLz ~ 0.49596 < 1,
(L1 + Lz + L3)k3 + (M1 +M2 +M3)O’3 + (N1 + N2 + Ng)/,Lg ~(0.49161 < 1.
Clearly, the hypotheses of Theorem 3.2 are satisfied, and hence the conclusion of Theo-

rem 3.2 applies to problem (4.1) with p, ¢, ¥ given by (4.2).
(2) In order to illustrate Theorem 3.3, we take

—t
e
ot u,x,y) = COS U + COS L,
V3 + 12
1
ot u,x,y) = A (sinu + |x[) +e™, (4.3)
e*[

Yt u,x,u) = = siny + tan"! ¢,

which clearly satisfies condition (H,) with /; = 1/(2e), [, = 1/6, and /3 = 1/(3¢). Moreover,
(L1 + Ly + Lg)ly + (M7 + My + Ms)lp + (N1 + Ny + N3)l3 >~ 0.49596 < 1. Thus the hypothesis
of Theorem 3.3 holds true, and consequently there exists a unique solution for problem
(4.1) on [1,2] with p, ¢, ¥ given by (4.3).

5 Conclusions

This paper studies a tripled system of nonlinear fractional differential equations of differ-
ent orders on an arbitrary domain complemented with the multi-point boundary condi-
tions of cyclic nature involving different nonlocal positions. Applying the standard fixed
point theorems, we have proved the existence and uniqueness results for the given prob-
lem, which are well illustrated with the aid of examples. By taking all p; =0,i=1,...,m,
q;=0,j=1,...,and ry =0, k= 1,...,/, we obtain the new results for the given tripled sys-
tem of nonlinear fractional differential equations equipped with the conditions: u(a) = uy,
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u(b) =0, x(a) = 0, x(b) =0, y(&) =0, y(&) = 0, y(b) = 0. To the best of our knowledge, it
is the first paper dealing with a nonlocal multi-point boundary value problem involving a
tripled system of nonlinear fractional differential equations of different orders on an arbi-

trary domain.
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