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Abstract
Symmetric operators have benefited in different fields not only in mathematics but
also in other sciences. They appeared in the studies of boundary value problems and
spectral theory. In this note, we present a new symmetric differential operator
associated with a special class of meromorphically multivalent functions in the
punctured unit disk. This study explores some of its geometric properties. We
consider a new class of analytic functions employing the suggested symmetric
differential operator.
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1 Introduction
The study of the operator is narrowly connected with problems in the theory of functions.
Various operators that were studied are operators on the space of holomorphic functions.
For instance, Beurling’s theorem defines the invariant subspaces of bounded holomorphic
functions on the open unit disk. Beurling deduced the idea as multiplication of the inde-
pendent variable on the Hardy space. The realization in studying multiplication operators
is seemed in Toeplitz operators, specifically in the Bergman space of holomorphic func-
tions. The geometric function theory is likewise ironic covering a long list of operators,
counting differential, integral, and convolution operators. Limited symmetric operators
are studied in this field. Newly, Ibrahim and Darus (see [1] and for applications see [2–5])
offered new symmetric differential, integral, and linear symmetric operators for a class of
normalized functions in the open unit disk.

In this note, we proceed to consider a differential symmetric operator (DSO) associated
with a class of meromorphically multivalent functions in the punctured unit disk. Conse-
quently, we suggest a new class of analytic functions based on DSO to study it in view of
the geometric function theory. Moreover, we investigate the real case of a formula con-
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taining the DSO. We show that this operator is a solution of a type of Sturm–Liouville
equation. Some examples are illustrated in the sequel.

2 Construction
In this paper, we construct a new DSO connected with the following class of multivalent
meromorphic functions �k(℘) consisting of functions ϕ with the power series expansion

ϕ(z) = z–℘ +
∞∑

n=k

ϕnzn–℘ , z ∈ ∪, (2.1)

where k ∈ N = {1, 2, 3, . . .} and n – ℘ ∈ N. Recall that the functions ϕ of the form (2.1) are
called meromorphic with a pole at z = 0 so that ϕ(z) – z–℘ is analytic in ∪ (see Komatu [6]
or Hayman [7]). We then concentrate on a subclass of �k(℘) formulated by a subordina-
tion and explore inclusion properties and sufficient inclusion conditions for this class and
check its closure property under convolution or Hadamard product.

2.1 Differential symmetric operator (DSO)
In this place, we state a few definitions and a lemma that we shall need in the next section.
First, we define a conformable differential operator for the class of meromorphic functions
�k(℘) defined by (2.1).

Definition 2.1 For functions ϕ ∈ �k(℘), define the symmetric differential operator as
follows:

�0ϕ(z) = ϕ(z) = z–℘ +
∞∑

n=k

ϕnzn–℘ ,

�αϕ(z) =
(

α

–℘

)(
zϕ′(z)

)
+

(
(1 – α)(–1)℘+1

–℘

)(
zϕ′(–z)

)

=
(

α

–℘

)(
(–℘)z–℘ +

∞∑

n=k

(n – ℘)ϕnzn–℘

)
+

(
(1 – α)(–1)℘+1

–℘

)

×
(

(–℘)(–1)–℘–1z–℘ +
∞∑

n=k

(n – ℘)ϕn(–1)n–℘–1zn–℘

)

= z–℘ +
∞∑

n=k

(n – ℘)
(

α + (1 – α)(–1)n

–℘

)
ϕnzn–℘ ,

�2αϕ(z) = �αϕ(z)
(
�αϕ(z)

)

= z–℘ +
∞∑

n=k

(n – ℘)2
(

α + (1 – α)(–1)n

–℘

)2

ϕnzn–℘ ,

...

�mαϕ(z) = �αϕ(z)
(
�(m–1)αϕ(z)

)

= z–℘ +
∞∑

n=k

(n – ℘)m
(

α + (1 – α)(–1)n

–℘

)m

ϕnzn–℘ ,

(2.2)

where α ∈ [0, 1], ℘ ∈N, m ∈N∪{0}, z ∈ ∪.
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Clearly, �mαϕ(z) ∈ �k(℘) as well as, for two functions ϕ and ψ ∈ �k(℘), we have

�α
[
Aϕ(z) + Bψ(z)

]

=
(

α

–℘

)(
z
[
Aϕ(z) + Bψ(z)

]′) +
(

(1 – α)(–1)℘+1

–℘

)(
z
[
Aϕ(–z) + Bψ(–z)

]′)

= A
((

α

–℘

)(
zϕ′(z)

)
+

(
(1 – α)(–1)℘+1

–℘

)(
zϕ′(–z)

))

+ B
((

α

–℘

)(
zψ ′(z)

)
+

(
(1 – α)(–1)℘+1

–℘

)(
zψ ′(–z)

))

= A�αϕ(z) + B�αψ(z); A, B ∈R.

So, in general, we have the following proposition.

Proposition 2.2 (Semigroup property) The class of DSO constructed by �mα has the semi-
group property since, for ϕ and ψ in �k(℘), we obtain

�mν
[
Aϕ(z) + Bψ(z)

]
= A�mαf (z) + B�mαg(z).

We will need the following subordination definition for our class of meromorphic func-
tions. For functions ϕ and ψ in �k(℘), we call that ϕ is subordinate to ψ , denoted by ϕ ≺ ψ ,
if there is a Schwarz function 	 with 	 (0) = 0 and |	 (z)|≤|z| < 1 so that ϕ(z) = ψ(	 (z))
in ∪ (see [8] or [9]).

Definition 2.3 For –1≤ν < μ≤1 and ς < 0, a function ϕ ∈ �k(℘) is said to be in the class
�α

k (μ,ν,ς ,℘) if it achieves the subordination condition

(1 – ς )z℘
[
�mαϕ(z)

]
–

(
ς

℘

)
z1+℘

[
�mαϕ(z)

]′ ≺ Jμ,ν(z) (2.3)

(
Jμ,ν(z) :=

1 + μz
1 + νz

, z ∈ ∪
)

.

The class of functions Jμ,ν(ρ(z)) := 1+μρ(z)
1+νρ(z) and, as a special case, the functions of the

form Jμ,ν(z) = 1+μz
1+νz are of particular importance since Jμ,ν(ρ(z)) is the class of Caratheodory

functions of order 1–μ

1–ν
, that is, �{Jμ,ν(ρ(z))} > 1–μ

1–ν
(see Janowski [10] or Jahangiri et al.

[11]).
To prove our outcomes in the next section, we need the following lemmas which are due

to Miller and Mocanu [9].

Lemma 2.4 Suppose that f1(z) is analytic in ∪ and f2(z) is convex univalent in ∪ such
that f1(0) = f2(0). If f1(z) + (1/γ )f ′

1(z) ≺ f2(z) for a nonzero complex constant number γ with
�(γ ) ≥ 0, then f1(z) ≺ f2(z).

Lemma 2.5 For a ∈ C and positive integer n, let H[a, n] = {h : h(z) = a + anzn + an+1zn+1 +
· · · }. If c ∈ R, then �(h(z) + czh′(z)) > 0 
⇒ �(h(z)) > 0. Moreover, if c > 0 and h ∈ H[1, n],
then there are constants λ1 > 0 and λ2 > 0 such that the inequality

h(z) + czh′(z) ≺
[

1 + z
1 – z

]λ1
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implies

h(z) ≺
[

1 + z
1 – z

]λ2

.

3 Main results
First we prove an inclusion theorem for the class �α

k (μ,ν,ς ,℘).

3.1 Inclusion properties
Theorem 3.1 Let ϕ ∈ �k(℘). If ς2 < ς1 < 0, then

�α
k (μ,ν,ς2,℘) ⊂ �α

k (μ,ν,ς1,℘).

Proof Let ϕ ∈ �α
k (μ,ν,ς2,℘). Define a function φ(z) = z℘[�mαϕ(z)], which is analytic in ∪

with φ(0) = 1. A calculation yields

(1 – ς2)z℘
[
�mαϕ(z)

]
–

(
ς2

℘

)
z1+℘

[
�mαϕ(z)

]′ = φ(z) –
ς2

℘

(
zφ′(z)

)
.

Consequently, we get the inequality

φ(z) –
ς2

℘

(
zφ′(z)

) ≺ μz + 1
νz + 1

.

Applying Lemma 2.4 with γ := – ς2
℘

> 0 gives

φ(z) ≺ μz + 1
νz + 1

, z ∈ ∪.

Since 0 < ς1/ς2 < 1 and since Jμ,ν(z) is convex univalent in ∪, we arrive at the inequality

(1 – ς1)z℘
[
�mαϕ(z)

]
–

(
ς1

℘

)
z1+℘

[
�mαϕ(z)

]′

= (1 – ς1)φ(z) –
(

ς1

℘

)(
zφ′(z) – ℘φ(z)

)
+

(
ς1

ς2
φ(z) –

ς1

ς2
φ(z)

)

=
ς1

ς2

(
(1 – ς2)φ(z) –

(
ς2

℘

)(
zφ′(z) – ℘φ(z)

))
+

(
1 –

ς1

ς2

)
φ(z)

=
ς1

ς2

(
(1 – ς2)z℘

[
�mαϕ(z)

]
–

(
ς2

℘

)
z1+℘

[
�mαϕ(z)

]′
)

+
(

1 –
ς1

ς2

)
φ(z)

≺ Jμ,ν(z).

Hence, by Definition 2.3, we conclude that ϕ ∈ �α
k (μ,ν,ς1,℘). �

3.2 Geometric properties
Next, we show a sufficient inclusion condition for the class �α

k (μ,ν,ς ,℘).

Theorem 3.2 Let ϕ ∈ �k(℘) and

�(z) := (1 – ς )z℘
[
�mαϕ(z)

]
–

(
ς

℘

)
z1+℘

[
�mαϕ(z)

]′.
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Then �(z) ≺ Jμ,ν(z) if one of the following inequalities occurs:
• 1 + ε(z�′(z)) ≺ √

z + 1, ε ≥ max{ε0, ε1}, where

ε0 =
0.452ν + 0.452

μ – ν
, ν + 1 �= 0,μ – ν �= 0;

and

ε1 =
–0.631(ν – 1)

(μ – ν)
, ν – 1 �= 0,μ – ν �= 0.

• 1 + ε(z �′(z)
�(z) ) ≺ √

z + 1, ε ≥ max{|ε2|, |ε3|}, where

ε2 =
0.6i

2πn – i log( μ–1
ν–1 )

,

(
log

(
μ – 1
ν – 1

)
+ 2iπn �= 0,μ �= 1,ν �= 1

)
;

and

ε3 =
0.452i

2πn – i log( ν+1
μ+1 )

,

(
ν + 1 �= 0,μ + 1 �= 0, log

(
ν + 1
μ + 1

)
+ 2πni �= 0

)
.

• 1 + ε(z �′(z)
�2(z) ) ≺ √

z + 1, ε ≥ max{ε4, ε5}, where

ε4 =
0.452(μ + 1)

(μ – ν)
, ν + 1 �= 0,μ �= ν;

ε5 =
0.6(ν – 1)

(μ – ν)
, ν – 1 �= 0μ �= ν.

Proof Case I: 1 + ε(z�′(z)) ≺ √
z + 1.

Define a function �ε : ∪ →C formulating by

�ε(z) = 1 +
2
ε

(√
z + 1 – log(1 +

√
z + 1) – 1 + log(2)

)
.

Clearly, �ε(z) is analytic in ∪ satisfying �ε(0) = 1, and it is a solution of the differential
equation

1 + ε
(
z�′

ε(z)
)

=
√

z + 1. (3.1)

Thus, we obtain T(z) := ε(z�′
ε(z)) =

√
z + 1 – 1 is starlike in ∪. So, for

F(z) := T(z) + 1,

we have

�
(

zT′(z)
T(z)

)
= �

(
zF′(z)
W(z)

)
> 0.
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Thus, by Lemma 2.4, it yields

1 + ε
(
z�′(z)

) ≺ 1 + εz�′
ε(z) ⇒ �(z) ≺ �ε(z).

To complete this argument, we must prove that �ε(z) ≺ Jμ,ν(z). Evidently, the function
�ε(z) is increasing in the interval (–1, 1) that satisfies the inequality

�ε(–1) ≤ �ε(1).

Since

1 – μ

1 – ν
≤ �ε(–1) ≤ �ε(1) ≤ 1 + μ

1 + ν
,

where ε ≥ max{ε0, ε1},

ε0 =
0.452ν + 0.452

μ – ν
, ν + 1 �= 0,μ – ν �= 0

and

ε1 =
–0.631(ν – 1)

(μ – ν)
, ν – 1 �= 0,μ – ν �= 0,

then we get the conclusion

�(z) ≺ �ε(z) ≺ Jμ,ν(z) ⇒ �(z) ≺ Jμ,ν(z).

Case II: 1 + ε( z�′(z)
�(z) ) ≺ √

z + 1.
Define a function �ε : ∪ →C formulating by the structure

�ε(z) = exp

(
2
ε

(√
z + 1 – log(1 +

√
z + 1) – 1 + log(2)

))
.

Obviously, �ε(z) is analytic in ∪ having �ε(0) = 1, and it is a solution of the differential
equation

1 + ε

(
z�′

ε(z)
�ε(z)

)
=

√
z + 1, z ∈ ∪. (3.2)

By assuming T(z) =
√

z + 1 – 1, which is starlike in ∪ and F(z) = T(z) + 1, we obtain

�
(

zT′(z)
T(z)

)
= �

(
zF′(z)
T(z)

)
> 0.

Then again, by virtue of Lemma 2.4, we have

1 + ε

(
z�′(z)
�(z)

)
≺ 1 + ε

(
z�′

ε(z)
�ε(z)

)
⇒ �(z) ≺ �ε(z).
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Consequently,

1 – μ

1 – ν
≤ �ε(–1) ≤ �ε(1) ≤ 1 + μ

1 + ν

whenever ε ≥ max{|ε2|, |ε3|}, where

ε2 =
0.6i

2πn – i log( μ–1
ν–1 )

(
log

(
μ – 1
ν – 1

)
+ 2iπn �= 0,μ �= 1,ν �= 1

)

and

ε3 =
0.452i

2πn – i log( ν+1
μ+1 )

.

This introduces the subordination conclusions

�(z) ≺ �ε(z) ≺ Jμ,ν(z) ⇒ �(z) ≺ Jμ,ν(z).

Case III: 1 + ε( z�′(z)
�2(z) ) ≺ √

z + 1.
Define a function ðε : ∪ →C by the formula

ðε(z) =
1

(1 – 2
ε
(
√

z + 1 – log(1 +
√

z + 1) – 1 + log(2)))
.

Clearly, ðε(z) is analytic in U achieving ðε(0) = 1, and it is the result of the differential
equation

1 + ε

(
zð′

ε(z)
ðε(z)

)
=

√
z + 1. (3.3)

By employing the function T(z) =
√

z + 1 – 1, which is starlike in ∪ and F(z) = T(z) + 1, we
obtain

�
(

zT′(z)
T(z)

)
= �

(
zF′(z)
T(z)

)
> 0.

Hence, Lemma 2.4 implies

1 + ε

(
z�′(z)
�2(z)

)
≺ 1 + ε

(
zð′

ε(z)
ð2

ε(z)

)
⇒ �(z) ≺ ðε(z).

Accordingly, we have

1 – μ

1 – ν
≤ ðε(–1) ≤ ðε(1) ≤ 1 + μ

1 + ν
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whenever ε ≥ max{ε4, ε5}, where

ε4 =
0.452(μ + 1)

(μ – ν)
, ν + 1 �= 0,μ �= ν;

ε5 =
0.6(ν – 1)

(μ – ν)
, ν – 1 �= 0μ �= ν.

This implies the subordination

�(z) ≺ ðε(z) ≺ Jμ,ν(z) ⇒ �(z) ≺ Jμ,ν(z).

As a conclusion, we have

(1 – ς )z℘
[
�mαϕ(z)

]
–

(
ς

℘

)
z1+℘

[
�mαϕ(z)

]′ ≺ Jμ,ν(z)

for all ς < 0 and ℘ ∈N. Consequently, ϕ ∈ �α
k (μ,ν,ς ,℘). �

Theorem 3.3 Let

�(z) = (1 – ς )z℘
[
�mαϕ(z)

]
–

(
ς

℘

)
z1+℘

[
�mαϕ(z)

]′.

Then

�1(1 + ℘)z℘�mαϕ(z) +
[
�1 – �2(1 + ℘) – �2

]
z1+℘

(
�mαϕ(z)

)′ – �2z2+℘
(
�mαϕ(z)

)′′

≺
(

1 + z
1 – z

)λ1

⇒ �(z) ≺
(

1 + z
1 – z

)λ2

(
λ1 > 0,λ2 > 0,�1 = 1 – ς ,�2 =

ς

℘
,℘ < 0

)
.

Proof A calculation implies that

�(z) + z�′(z) = (1 – ς )z℘
[
�mαϕ(z)

]
–

(
ς

℘

)
z1+℘

[
�mαϕ(z)

]′

+ z
(

(1 – ς )z℘
[
�mαϕ(z)

]
–

(
ς

℘

)
z1+℘

[
�mαϕ(z)

]′
)′

= �1(1 + ℘)z℘�mαϕ(z) +
[
�1 – �2(1 + ℘) – �2

]
z1+℘

(
�mαϕ(z)

)′

– �2z2+℘
(
�mαϕ(z)

)′′

≺
(

1 + z
1 – z

)λ1

.

Then, in view of Lemma 2.5 with c = 1, we obtain �(z) ≺ ( 1+z
1–z )λ2 . �

Note that when λ1 = λ2 = 1, then we have the following result.



Ibrahim and Aldawish Advances in Difference Equations        (2021) 2021:281 Page 9 of 16

Corollary 3.4 For �(z) in Theorem 3.3, if the subordination

�1(1 + ℘)z℘�mαϕ(z) +
[
�1 – �2(1 + ℘) – �2

]
z1+℘

(
�mαϕ(z)

)′ – �2z2+℘
(
�mαϕ(z)

)′′

≺
(

1 + z
1 – z

)
,

(
�1 = 1 – ς ,�2 =

ς

℘
,℘ < 0

)

holds, then ϕ ∈ �α
k (1, –1,ς ,℘).

Proof Let λ1 = λ2 = 1 in Theorem 3.3, then this implies that �(z) ≺ ( 1+z
1–z ); consequently,

we have ϕ ∈ �α
k (1, –1,ς ,℘). �

Finally, we prove a convolution condition for the class �ν
k (μ,ν,ς ,℘).

Definition 3.5 The Hadamard product or convolution of two power series

ϕ(z) = z–℘ +
∞∑

n=k

ϕnzn–℘

and

ψ(z) = z–℘ +
∞∑

n=k

ψnzn–℘

in �k(℘) is denoted by

(ϕ ∗ ψ)(z) = ϕ(z) ∗ ψ(z)

= z–℘ +
∞∑

n=k

ϕnψnzn–℘ .

Theorem 3.6 Let ϕ ∈ �α
k (μ,ν,ς ,℘) and f ∈ �k(℘). Then ϕ ∗ f ∈ �α

k (μ,ν,ς ,℘) if

�(
z℘�mαf (z)

)
>

1
2

. (3.4)

Proof By the properties of the Hadamard product, we indicate that

(1 – ς )z℘
[
�mα(ϕ ∗ f )(z)

]
–

(
ς

℘

)
z1+℘

[
�mα(ϕ ∗ f )(z)

]′

= (1 – ς )
(
z℘

[
�mαϕ(z)

] ∗ z℘
[
�mαf (z)

])

–
(

ς

℘

)(
z1+℘

[
�mαf (z)

]′ ∗ (
z℘

[
�mαf (z)

]))

=
(

(1 – ς )z℘
[
�mαϕ(z)

]
–

(
ς

℘

)
z1+℘

[
�mαf (z)

]′
)

∗ (
z℘�mαf (z)

)

= �(z) ∗ (
z℘�mαf (z)

)
,
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where �(z) ≺ Jμ,ν(z). Given condition (3.4) yields that (z℘�mαf (z)) has the Herglotz inte-
gral formula (e.g. see [12])

(
z℘�mαf (z)

)
=

∫

|χ |=1

dσ (χ )
1 – χz

,

where dσ presents the probability measure on the unit circle |χ | = 1 and

∫

|χ |=1
dσ (χ ) = 1.

Since Jμ,ν(z) is convex in ∪, we have

(1 – ς )z℘
[
�mα(ϕ ∗ f )(z)

]
–

(
ς

℘

)
z1+℘

[
�mα(ϕ ∗ f )(z)

]′

= �(z) ∗ (
z℘�mαf (z)

)

=
∫

|χ |=1
�(χz) dσ (χ )

≺ Jμ,ν(z).

Hence, ϕ ∗ f ∈ �α
k (μ,ν,ς ,℘). �

We have the following geometric results.

Theorem 3.7 For the function ϕ ∈ �k(℘), define a functional

�(z) = (1 – ς )z℘
[
�mαϕ(z)

]
–

(
ς

℘

)
z1+℘

[
�mαϕ(z)

]′, ς < 0

= 1 +
∞∑

n=1

φnzn, z ∈ ∪.

Then

�(
�(z)

)
> 0 ⇒ |φn| ≤ 2

∫ 2π

0

∣∣e–inθ
∣∣dυ(θ ),

where dυ is a probability measure. Moreover,

�(
ei	 �(z)

)
> 0 ⇒ �(z) ∈ C,

where C is the class of analytic convex in ∪.

Proof For the first part of the theorem, we suppose that

�(
�(z)

)
= �

(
1 +

∞∑

n=1

φnzn

)
> 0.
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Then, by the Carathéodory positivist theorem for holomorphic functions, we have

|φn| ≤ 2
∫ 2π

0

∣∣e–inθ
∣∣dυ(θ ),

where dυ is a probability measure. Lastly, if

�(
ei��(z)

)
> 0, z ∈ ∪,� ∈R,

then in view of [13]-Theorem 1.6(P22) and for some real numbers �, we get

�(z) ≈ μz + 1
νz + 1

, z ∈ ∪.

But μz+1
νz+1 is convex in ∪, then by the majority concept, we obtain that �(z) ∈ C . �

Theorem 3.7 implies the sufficient conditions to a function ϕ ∈ �k(℘) to be in
�α

k (μ,ν,ς ,℘).

Theorem 3.8 For the function ϕ ∈ �k(℘), define a functional �(z) := z℘+1�mαϕ(z), z ∈ ∪.
If the subordination

�(z) ≺ z
(1 + z)2

holds, then �(z) ∈ S
∗ (the class of starlike analytic functions) and

(∫ z

0

√
�(ζ )
ζ

dζ

)2

≺ (
2 tan–1 √

z
)2

such that

–
π

2
< –2 tan–1 √

r ≤ �
(∫ z

0

√
�(ζ )
ζ

dζ

)
< 2 tan–1 √

r ≤ π

2
.

Proof Let �(z) = z℘+1�mαϕ(z), z ∈ ∪. Then

�(z) = z +
∞∑

n=2

bnzn, z ∈ ∪

is analytic in the open unit disk. Obviously,

B(z) :=
(
2 tan–1 √

z
)2

= 4z – 8
z2

3
+

92z3

45
+ O

(
z4).

Since the function (see [9]-P177)

p(z) =
z

(1 + z)2

= z – 2z2 + 3z3 – 4z4 + 5z5 + O
(
z6) ∈ S

∗, z ∈ ∪,
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then by the majority concept, we have �(z) ∈ S
∗. The second and third assertions are veri-

fied by [9]-Corollary 3.6a.1. �

Similarly, we have the next result.

Theorem 3.9 Assume that ϕ ∈ �k(℘) and a functional �(z) = z℘+1�mαϕ(z), z ∈ ∪. If the
subordination

�(z) ≺ z
(1 + z)2

holds, then �(z) ∈ S
∗ (the class of starlike analytic functions) and

(∫ z

0

√
�(ζ )
ζ

dζ

)2

≺ (
2 cot–1 √

1/z
)2

such that

–
π

2
< –2 cot–1 √

1/r ≤ �
(∫ z

0

√
�(ζ )
ζ

dζ

)
< 2 cot–1 √

1/r ≤ π

2
.

3.3 Real cases
From the proof of Theorem 3.3, we indicate the real construction as follows:

�(
�(z) + z�′(z)

)
= �(

�1(1 + ℘)z℘�mαϕ(z) +
[
�1 – �2(1 + ℘) – �2

]
z1+℘

(
�mαϕ(z)

)′

– �2z2+℘
(
�mαϕ(z)

)′′)

= �1(1 + ℘)xy +
(

(1 + ℘)(2�1 – 1) – 1
℘

)
x1–℘y′ –

(
1 – �1

℘

)
x1–2℘y′′,

where �(z℘) := x, �1 = 1 – ς > 0, �2 = (1 – �1)/℘ and �(�mαϕ(z)) := y(x). By approximate
�1 → 2, we have

�(
�(z) + z�′(z)

)
= 2(1 + ℘)xy +

(
3(1 + ℘) – 1

℘

)
x1–℘y′ +

(
1
℘

)
x1–2℘y′′,

then the real solution of �(�(z) + z�′(z)) = 0 is equivalent to the solution of

2(1 + ℘)xy +
(

3(1 + ℘) – 1
℘

)
x1–℘y′ +

(
1
℘

)
x1–2℘y′′ = 0. (3.5)

The exact and the approximate solutions of Eq. (3.5) are formulated in the next result.

Theorem 3.10 Consider Eq. (3.5). Then the exact solution is formulated as a linear com-
bination of a confluent hypergeometric function with the Laguerre polynomials

y(x) = 2℘/(2℘+2)e–2x℘+1(
x℘+1)℘/(2℘+2)x–℘/2

×
{

c1U
(

2℘

℘ + 2
,

℘

℘ + 1
,
℘ + 2x℘+1

℘ + 1

)
+ c2L(–1/(℘+1))

(–2℘/(℘+2)

(
(℘ + 2)x℘+1

(℘ + 1)

)} (3.6)
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and an approximate solution

y(x) ≈ 2℘/(2℘+2)(2.718)–2x1+℘ (
x℘+1)℘/(2℘+2)x–℘/2

×
{

c1U
(

2℘

℘ + 2
,

℘

℘ + 1
,
℘ + 2x℘+1

℘ + 1

)
+ c2L(–1/(℘+1))

(–2℘/(℘+2)

(
(℘ + 2)x℘+1

(℘ + 1)

)}
,

(3.7)

where U is the confluent hypergeometric function of the second type and L is the Laguerre
polynomial.

Proof Equation (3.5) indicates the structure of the Sturm–Liouville equation. Thus we
obtain the conclusion

d
dx

(
e((2+3℘)x1+℘ )/(1+℘))y′(x)

)
+ 2e((2+3℘)x1+℘ )/(1+℘))℘(1 + ℘)x2℘y(x) = 0 (3.8)

with the exact and the approximated solutions in (3.6) and (3.7) respectively. �

Example 3.11 Let ℘ = 1, then Eq. (3.6) becomes the Sturm–Liouville equation

d
dx

(
e(5x2)/2y′(x)

)
+ 4e(5x2)/2x2y(x) = 0, (3.9)

with the solution (see Fig. 1)

y(x) = e–2x2
{

c1H–4/3

(√
3
2

x
)

+ c21F1

(
2
3

;
1
2

;
3x2

2

)}
,

where Hn(χ ) is the Hermite polynomial and 1F1 is the hypergeometric function. It is clear
that solution (3.9) is defined at the boundary of ∪ (see Fig. 1-left column). That is, the
functional �(�mαϕ(z)) ≈ y(x), x → 1. Now, by letting y(0) = 1, this implies the solution
(see Fig. 1-right column)

y(x) =
e–2x2

4�( 7
6 )

{
4c1�

(
7
6

)
H–4/3

(√
3
2

x
)

–
(

22/3√πc1 – 4�

(
7
6

))
1F1

(
2
3

;
1
2

;
3x2

2

)}
.

Figure 1 The solution of (3.9) for ℘ = 1
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Figure 2 The solution of (3.10) for ℘ = 2

Example 3.12 Let ℘ = 2, then Eq. (3.6) becomes the Sturm–Liouville equation

d
dx

(
e(8x3)/3y′(x)

)
+ 12e(8x3)/3x4y(x) = 0, (3.10)

with the solution approximating the boundary of ∪ (see Fig. 2-first row)

y(x) = c1e–(2x3)/3x +
22/3c2e(–(2x3)/3(x3)1/3�( –1

3 , 4x3

3 )
31/3 .

Moreover, the solution, when y(0) = 1, is given by the formula (see Fig. 2-second row)

y(x) =
1
9

e–(2x3)/3
(

c1x + 62/3(x3)1/3
�

(
–1
3

,
4x3

3

))
.

Proposition 3.13 If

�(
�(z) + z�′(z)

)
> 0, z ∈ U , (3.11)

then the equation

2(1 + ℘)xy +
(

3(1 + ℘) – 1
℘

)
x1–℘y′ +

(
1
℘

)
x1–2℘y′′ = k, k > 0 (3.12)

admits a positive solution.

Proof By condition (3.11) and Lemma 2.5 (the first part), we obtain that �(�) > 0. This
leads to

�(
�mαϕ(z)

)
= y(x), ς → 0.

Hence, Eq. (3.12) has a positive solution. �
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4 Conclusion
From what has been presented above, it is apparent that we formulated a new differen-
tial symmetric operator (DSO) associated with a class of meromorphically multivalent
functions. We presented some outcomes covering the geometric studies of the suggested
operator joining the Janowski function in the open unit disk. Our consequences indicated,
under some conditions, that the proposed operator converges to the Janowski function.
Moreover, we discussed the functional �(z) + z�′(z) and the solution for real cases when
℘ = 1 and ℘ = 2

�(
�(z) + z�′(z)

)
= 0.

We discovered that the real cases are converging to the Sturm–Liouville equation, and the
solutions are found to be a combination of special functions. We presented the condition
that gives (Theorem 3.3)

�(z) ≺
(

1 + z
1 – z

)λ2

for λ2 > 0.
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