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Abstract
In this article, we introduce two notions of interpolative F-contractions with shrink
map and F-contractions with shrink map. We also study the existence of E-fixed points
by using these notations on a metric space endowed with a binary relation. As an
application and consequence of the main results, we also get some other interesting
results like a common fixed point result, an E-fixed point result on a metric space
equipped with graph, and an existence theorem for a solution of integral equations.
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1 Introduction and preliminaries
The concept of interpolative Kannan contraction mapping was derived by Karapınar [1]
to redefine the famous Kannan contraction mapping in the following way: A mapping
V : (K , dK ) → (K , dK ) is an interpolative Kannan contraction [1] if

dK (Vk, Vl) ≤ γ
[
dK (k, Vk)

]τ1[dK (l, Vl)
]1–τ1

for all k, l ∈ K with k �= Vk, where γ ∈ [0, 1) and τ1 ∈ (0, 1).
After that, Karapınar, Agarwal, and Aydi [2] refined the above inequality as

dK (Vk, Vl) ≤ γ
[
dK (k, Vk)

]τ1[dK (l, Vl)
]1–τ1

for all k, l ∈ K\Fix(V ), where γ ∈ [0, 1), τ1 ∈ (0, 1) and Fix(V ) = {k ∈ K : Vk = k}.
This concept of interpolative contraction provides a new dimension of study whether

existing contraction inequalities can be redefined in this way or not. This concept of Kara-
pınar [1] provoked research in this field, and within a short duration we have seen many
new studies related to this topic. For example, Gaba and Karapınar [3] modified the inter-
polative Kannan contraction by using different exponential values instead of 1 – τ1, which
were independent of τ1. Karapınar et al. [4] redefined the Hardy–Rogers type contrac-
tion by the interpolative Hardy–Rogers type contraction. Reich–Rus–Ćirić type contrac-
tions were extended to interpolative Reich–Rus–Ćirić type contractions by Karapınar et
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al. [2] and Aydi et al. [5]. Karapınar [6] also studied interpolative contractions based on
simulation functions. Mohammadi et al. [7] studied interpolative Ćirić–Reich–Rus type
contractions in the sense of Wardowski [8]. Altun and Tasdemir [9] presented the study
of best proximity points using interpolative proximal contraction inequalities. Along with
the aforementioned studies, many other interesting studies on fixed point theory are avail-
able in [10–23]; they help readers to verify the existence of fixed points for self-mappings
and best proximity points for nonself mappings.

Jleli et al. [23] introduced the concept of E-fixed point (also called φ-fixed point), which
states that, for maps V : K → K and E : K → [0,∞), a point k ∈ K is called E-fixed point
of V : K → K if V (k) = k and E(k) = 0, and proved the existence of such points by using a
single inequality involving both maps V and E. It is important to note that Jleli et al. [23]
used the lower semicontinuity of E. This use of the lower semicontinuity of E by Jleli et al.
[23] arises the question whether the condition of lower semicontinuity of E can be left and
some other technique be adopted. In this research article, we try to investigate the results
by applying the following conditions to the aforementioned study by Jleli et al. [23].

(I) If the condition of lower semicontinuity is not applied to E.
(II) And if two different inequalities are used for V and E instead of a single inequality

as used by Jleli et al. [23].
As an application and consequence of the main results, we get some other interesting
results like a common fixed point result, an E-fixed point result on a metric space equipped
with graph, and an existence theorem for a solution of integral equations.

In the next section, we use the family of functions given by Wardowski [8]. � is a set of
functions F : (0,∞) →R with the following properties:

(F1) k1 < k2 ⇔ F(k1) < F(k2) ∀k1, k2 ∈ (0,∞);
(F2) for each {kn : kn > 0}, we get limn→∞ kn = 0 if and only if limn→∞ F(kn) = –∞;
(F3) there exists t ∈ (0, 1) with limk→0+ (k)tF(k) = 0.

2 Main results
In this section we assume that (K , dK ) is a metric space equipped with a binary relation RB

and V : K → K , E : K → [0,∞) are two maps. The set of all natural numbers is represented
by N, and the set of all whole numbers is represented by W.

Definition 2.1 A map V is called interpolative F-contraction with E shrink if the follow-
ing inequalities exist:

� + F
(
dK (Vk, Vz)

) ≤ τ1F
(
dK (k, z)

)
+ τ2F

(
dK (k, Vk)

)
+ τ3F

(
dK (z, Vz)

)
(2.1)

for each k, z ∈ K with kRBz and

min
{

dK (Vk, Vz), dK (k, Vk), dK (z, Vz)
}

> 0,

where F ∈ �, � > 0 and τ1, τ2, τ3 ∈ (0, 1) with τ1 + τ2 + τ3 = 1;
for each k ∈ K , we have

E(Vk) ≤ λE(k), (2.2)

where λ ∈ [0, 1).
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Note that (K , dK ) equipped with a binary relation RB is called complete in the sense of
RB if, for each sequence {kn} in K with limn,m→∞ dK (kn, km) = 0 and knRBkn+1 ∀n ∈ N, we
have kb ∈ K with limn→∞ dK (kn, kb) = 0 and knRBkb ∀n ≥ n0 (for some n0 ∈N).

Now we are in a position to state and prove the first result.

Theorem 2.2 Consider V to be an interpolative F-contraction with E shrink on a metric
space (K , dK ) equipped with a binary relation RB. Also, consider that

(a) there exist k0 ∈ K and k1 = Vk0 such that k0RBk1;
(b) if k, l ∈ K with kRBl, then VkRBVl, that is, V is RB-preserving;
(c) (K , dK ) is complete in the sense of RB;
(d) either V is continuous or F is continuous.

Then there exists a point b ∈ K with Vb = b and Eb = 0.

Proof The existence of axiom (a) implies k0 ∈ K and k1 = Vk0 such that k0RBk1. Then, by
repeated application of axiom (b), we say that V nk0RBV n+1k0 ∀n ∈ N. Consider kn = V nk0

∀n ∈W, then knRBkn+1 ∀n ∈W. Suppose that

min
{

dK (Vkn0 , Vkn0+1), dK (kn0 , Vkn0 ), dK (kn0+1, Vkn0+1)
}

= 0 for some n0 ∈W,

then either kn0 or kn0+1 is a fixed point of V . Say, it is kn0 ; by (2.2), we obtain E(kn0 ) =
E(Vkn0 ) ≤ λE(kn0 ), that is, E(kn0 ) = 0. Hence, the conclusion is proved. Now assume that

min
{

dK (Vkn, Vkn+1), dK (kn, Vkn), dK (kn+1, Vkn+1)
}

> 0 ∀n ∈W,

then (2.1) implies

� + F
(
dK (Vkn, Vkn+1)

) ≤ τ1F
(
dK (kn, kn+1)

)
+ τ2F

(
dK (kn, Vkn)

)

+ τ3F
(
dK (kn+1, Vkn+1)

) ∀n ∈W. (2.3)

That is,

� + F
(
dK (kn+1, kn+2)

) ≤ τ1F
(
dK (kn, kn+1)

)
+ τ2F

(
dK (kn, kn+1)

)

+ τ3F
(
dK (kn+1, kn+2)

) ∀n ∈W. (2.4)

Here, we claim dK (kn+1, kn+2) < dK (kn, kn+1) for all n ∈ W. Assume in contrast that there is
n∗ ∈ W with dK (kn∗+1, kn∗+2) ≥ dK (kn∗ , kn∗+1). By keeping this fact and increasing natural
of F , (2.4) becomes

� + F
(
dK (kn∗+1, kn∗+2)

) ≤ τ1F
(
dK (kn∗ , kn∗+1)

)
+ τ2F

(
dK (kn∗ , kn∗+1)

)

+ τ3F
(
dK (kn∗+1, kn∗+2)

)

≤ τ1F
(
dK (kn∗+1, kn∗+2)

)
+ τ2F

(
dK (kn∗+1, kn∗+2)

)

+ τ3F
(
dK (kn∗+1, kn∗+2)

)

= F
(
dK (kn∗+1, kn∗+2)

)
, (2.5)
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which is not possible. Hence, the claim is true, that is, dK (kn+1, kn+2) < dK (kn, kn+1) for all
n ∈W. Hence, by (2.4), we obtain

� + F
(
dK (kn+1, kn+2)

) ≤ τ1F
(
dK (kn, kn+1)

)
+ τ2F

(
dK (kn, kn+1)

)

+ τ3F
(
dK (kn+1, kn+2)

)

≤ F
(
dK (kn, kn+1)

) ∀n ∈W. (2.6)

This gives

F
(
dK (kn+1, kn+2)

) ≤ F
(
dK (k0, k1)

)
– (n + 1)� ∀n ∈W. (2.7)

From (2.7), we get limn→∞ F(dK (kn+1, kn+2)) = –∞. This implies limn→∞ dK (kn+1, kn+2) = 0
due to (F2). Setting dK (kn+1, kn+2) = ξn+1, thus, limn→∞ ξn+1 = 0. Condition (F3) ensures
that there is t ∈ (0, 1) such that limn→∞ ξ t

n+1F(ξn+1) = 0. From (2.7), we obtain

ξ t
n+1F(ξn+1) – ξ t

n+1F(ξ0) ≤ –ξ t
n+1(n + 1)� < 0 ∀n ∈W. (2.8)

Then limn→∞ ξ t
n+1(n + 1) = 0. Thus, there exists N∗ ∈ N with ξn+1 ≤ 1

(n+1)
1
t

∀n ≥ N∗. For

every m, n ∈N with m > n, we obtain

dK (kn, km) ≤ dK (kn, kn+1) + dK (kn+1, kn+2) + · · · + dK (km–1, km)

≤
∞∑

j=n

1
j 1

t
.

Thus, limn,m→∞ dK (kn, km) = 0, since
∑∞

j=1
1

j
1
t

is convergent. Hence, we get a Cauchy {kn}
with knRBkn+1∀n ∈ W. As we have already assumed in the statement of the theorem that
(K , dK ) is complete in the sense of RB, thus, there is k∗ ∈ K with kn → k∗ and knRBk∗ for
each n > m0 (for some m0).

Suppose that V is continuous with respect to dK , and we know limn→∞ dK (kn, k∗) = 0,
thus, 0 = limn→∞ dK (Vkn, Vk∗) = limn→∞ dK (kn+1, Vk∗) = dK (k∗, Vk∗). Hence, we conclude
that Vk∗ = k∗.

Suppose that F is continuous. Here, we claim Vk∗ = k∗. Suppose, in contrast, that it is
wrong. Then we conclude that

min
{

dK (Vkn, Vk∗), dK (kn, Vkn), dK (k∗, Vk∗)
}

> 0 ∀n ≥ ma ∈N.

As knRBk∗ for each n > m0, by (2.1), we get

� + F
(
dK (Vkn, Vk∗)

) ≤ τ1F
(
dK (kn, k∗)

)
+ τ2F

(
dK (kn, Vkn)

)

+ τ3F
(
dK (k∗, Vk∗)

) ∀n > mb = max{ma, m0}. (2.9)

As limn→∞ dK (kn, k∗) = 0, limn→∞ dK (kn, kn+1) = 0, and dK (k∗, Vk∗) �= 0, thus, there is N0 ∈
N with

max
{

dK (kn, k∗), dK (kn, kn+1), dK (k∗, Vk∗)
}

= dK (k∗, Vk∗) ∀n ≥ N0.
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Using it in (2.9), we obtain

� + F
(
dK (kn+1, Vk∗)

) ≤ (τ1 + τ2 + τ3)F
(
dK (k∗, Vk∗)

) ∀n > max{mb, N0}. (2.10)

Assuming that n → ∞ and using the continuity of F in (2.10), we obtain

� + F
(
dK (k∗, Vk∗)

) ≤ (τ1 + τ2 + τ3)F
(
dK (k∗, Vk∗)

)
,

which is not possible for dK (k∗, Vk∗) �= 0, that is, a contradiction to our assumption. Hence,
the claim is true, that is, k∗ = Vk∗. Consider k = k∗ in (2.2), we get E(Vk∗) ≤ λE(k∗), that is,
(1 – λ)E(k∗) ≤ 0. Hence, E(k∗) = 0. �

Now we present the notion of F-contraction with shrink map in the following way.

Definition 2.3 A map V is called F-contraction with E shrink if the following inequalities
exist:

� + F
(
dK (Vk, Vz)

) ≤ F
(
τ1dK (k, z) + τ2dK (k, Vk) + τ3dK (z, Vz)

)
(2.11)

for each k, z ∈ K with kRBz and Vk �= Vz, where F ∈ �, � > 0 and τ1, τ2, τ3 ∈ [0, 1] with
τ1 + τ2 + τ3 = 1;

for each k ∈ K , we have

E(Vk) ≤ λE(k), (2.12)

where λ ∈ [0, 1).

Now we shall discuss the second result of this section.

Theorem 2.4 Consider V to be an F-contraction with E shrink on a metric space (K , dK )
with a binary relation RB. Also, consider that

(a) there exist k0 ∈ K and k1 = Vk0 such that k0RBk1;
(b) if k, l ∈ K with kRBl, then VkRBVl, that is, V is RB-preserving;
(c) (K , dK ) is complete in the sense of RB;
(d) either V is continuous or F is continuous.

Then there exists a point b ∈ K with Vb = b and Eb = 0.

Proof Axiom (a) says that k0 ∈ K and k1 = Vk0 satisfy k0RBk1. From axiom (b), we conclude
that V nk0RBV n+1k0 ∀n ∈ N. Letting kn = V nk0 ∀n ∈ W, we get knRBkn+1 ∀n ∈ W. Suppose
that there is some n0 ∈ W with kn0 = kn0+1 = Vkn0 , then kn0 is a fixed point of V . From
(2.12), we obtain E(kn0 ) = E(Vkn0 ) ≤ λE(kn0 ), that is, E(kn0 ) = 0. Hence, the conclusion is
proved. Now assume that dK (Vkn, Vkn+1) > 0 ∀n ∈W, then (2.11) implies

� + F
(
dK (Vkn, Vkn+1)

) ≤ F
(
τ1dK (kn, kn+1) + τ2dK (kn, Vkn)

+ τ3dK (kn+1, Vkn+1)
) ∀n ∈W. (2.13)
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That is,

� + F
(
dK (kn+1, kn+2)

) ≤ F
(
τ1dK (kn, kn+1) + τ2dK (kn, kn+1)

+ τ3dK (kn+1, kn+2)
) ∀n ∈ W. (2.14)

Here, we claim dK (kn+1, kn+2) < dK (kn, kn+1) ∀n ∈ W. Suppose, in contrast, that there is
n∗ ∈ W with dK (kn∗+1, kn∗+2) ≥ dK (kn∗ , kn∗+1). By this fact and increasing natural of F , (2.14)
becomes

� + F
(
dK (kn∗+1, kn∗+2)

) ≤ F
(
τ1dK (kn∗ , kn∗+1) + τ2dK (kn∗ , kn∗+1)

+ τ3dK (kn∗+1, kn∗+2)
)

≤ F
(
τ1dK (kn∗+1, kn∗+2) + τ2dK (kn∗+1, kn∗+2)

+ τ3dK (kn∗+1, kn∗+2)
)

= F
(
dK (kn∗+1, kn∗+2)

)
, (2.15)

which is not possible. Hence, the claim is valid, that is, dK (kn+1, kn+2) < dK (kn, kn+1) ∀n ∈W.
Hence, by (2.14), we obtain

� + F
(
dK (kn+1, kn+2)

) ≤ F
(
τ1dK (kn, kn+1) + τ2dK (kn, kn+1)

+ τ3dK (kn+1, kn+2)
)

≤ F
(
dK (kn, kn+1)

) ∀n ∈W. (2.16)

This implies

F
(
dK (kn+1, kn+2)

) ≤ F
(
dK (k0, k1)

)
– (n + 1)� ∀n ∈W. (2.17)

By (2.17), we get limn→∞ F(dK (kn+1, kn+2)) = –∞. This implies limn→∞ dK (kn+1, kn+2) = 0
from (F2). Let dK (kn+1, kn+2) = ξn+1, thus, limn→∞ ξn+1 = 0. (F3) ensures that there is t ∈
(0, 1) with limn→∞ ξ t

n+1F(ξn+1) = 0. By (2.17), we get

ξ t
n+1F(ξn+1) – ξ t

n+1F(ξ0) ≤ –ξ t
n+1(n + 1)� < 0 ∀n ∈W. (2.18)

Thus, limn→∞ ξ t
n+1(n + 1) = 0. Then there exists N∗ ∈N with ξn+1 ≤ 1

(n+1)
1
t

∀n ≥ N∗. By the
triangle inequality, for each m, n ∈N with m > n, we get

dK (kn, km) ≤ dK (kn, kn+1) + dK (kn+1, kn+2) + · · · + dK (km–1, km)

≤
∞∑

j=n

1
j 1

t
.

Thus, limn,m→∞ dK (kn, km) = 0, since
∑∞

j=1
1

j
1
t

is convergent. Hence, we obtain a Cauchy
sequence {kn} with knRBkn+1 ∀n ∈ W. As (K , dK ) is complete in the sense of RB, there is
k∗ ∈ K with kn → k∗ and knRBk∗ for each n > m0 (for some m0).

Suppose that V is continuous with respect to dK , then it is trivial that Vk∗ = k∗.
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Suppose that F is continuous. Here, we claim Vk∗ = k∗. Assume in contrast that it is
wrong. Then we have dK (Vkn, Vk∗) > 0 ∀n ≥ ma. As knRBk∗ for each n > mb = max{ma, m0},
by (2.11), we obtain

� + F
(
dK (Vkn, Vk∗)

) ≤ F
(
τ1dK (kn, k∗) + τ2dK (kn, Vkn)

+ τ3dK (k∗, Vk∗)
) ∀n > mb. (2.19)

As limn→∞ dK (kn, k∗) = 0, limn→∞ dK (kn, kn+1) = 0, and dK (k∗, Vk∗) �= 0, thus, there is N0 ∈
N with

max
{

dK (kn, k∗), dK (kn, kn+1), dK (k∗, Vk∗)
}

= dK (k∗, Vk∗) ∀n ≥ N0.

By this fact and (2.19), we get

� + F
(
dK (kn+1, Vk∗)

) ≤ F
(
(τ1 + τ2 + τ3)dK (k∗, Vk∗)

) ∀n > max{mb, N0}. (2.20)

Let n → ∞ in (2.20), by the continuity of F , we get

� + F
(
dK (k∗, Vk∗)

) ≤ F
(
(τ1 + τ2 + τ3)dK (k∗, Vk∗)

)
,

which is not possible if dK (k∗, Vk∗) �= 0, that is, a contradiction to our assumption. Hence,
the claim is true, that is, k∗ = Vk∗. Consider k = k∗ in (2.12), we get E(Vk∗) ≤ λE(k∗), that
is, (1 – λ)E(k∗) ≤ 0. Hence, E(k∗) = 0. �

3 Consequences
In this section, we list some results that are the consequences of the main results.

3.1 Common fixed point result
As a consequence of the above results, we get the following common fixed point result by
defining E(k) = dK (k, Sk) ∀k ∈ K , where S : K → K is any map.

Corollary 3.1 Consider a metric space (K , dK ) equipped with a binary relation RB, and
consider two maps V , S : K → K that satisfy the following two inequalities:

(1) either

� + F
(
dK (Vk, Vz)

) ≤ τ1F
(
dK (k, z)

)
+ τ2F

(
dK (k, Vk)

)
+ τ3F

(
dK (z, Vz)

)
(3.1)

for each k, z ∈ K with kRBz and

min
{

dK (Vk, Vz), dK (k, Vk), dK (z, Vz)
}

> 0,

where F ∈ �, � > 0 and τ1, τ2, τ3 ∈ (0, 1) with τ1 + τ2 + τ3 = 1,
or

� + F
(
dK (Vk, Vz)

) ≤ F
(
τ1dK (k, z) + τ2dK (k, Vk) + τ3dK (z, Vz)

)
(3.2)

for each k, z ∈ K with kRBz and Vk �= Vz, where F ∈ �, � > 0 and τ1, τ2, τ3 ∈ [0, 1]
with τ1 + τ2 + τ3 = 1.
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(2)

dK (Vk, SVk) ≤ λdK (k, Sk) ∀k ∈ K , (3.3)

where λ ∈ [0, 1). Also, consider that
(a) there exist k0 ∈ K and k1 = Vk0 such that k0RBk1;
(b) if k, l ∈ K with kRBl, then VkRBVl, that is, V is RB-preserving;
(c) (K , dK ) is complete in the sense of RB;
(d) either V is continuous or F is continuous.

Then there exists a point b ∈ K with Vb = b and Sb = b.

3.2 Result on a metric space equipped with graph
Suppose that G = (VE , ED) denotes a directed graph with a vertex set VE = K and an edge
set ED ⊂ K × K such that ED does not contain parallel edges but contains each loop, that
is, (k, k) ∈ ED ∀k ∈ K .

The following stated result is an explicit consequence of Theorem 2.2 and Theorem 2.4
by defining a binary relation RB on K as kRBl if (k, l) ∈ ED.

Corollary 3.2 Consider a metric space (K , dK ) equipped with the graph G. Also, consider
maps V : K → K and E : K → [0,∞) that satisfy the following two inequalities:

(1) either

� + F
(
dK (Vk, Vz)

) ≤ τ1F
(
dK (k, z)

)
+ τ2F

(
dK (k, Vk)

)
+ τ3F

(
dK (z, Vz)

)
(3.4)

for each k, z ∈ K with (k, z) ∈ ED and

min
{

dK (Vk, Vz), dK (k, Vk), dK (z, Vz)
}

> 0,

where F ∈ �, � > 0 and τ1, τ2, τ3 ∈ (0, 1) with τ1 + τ2 + τ3 = 1,
or

� + F
(
dK (Vk, Vz)

) ≤ F
(
τ1dK (k, z) + τ2dK (k, Vk) + τ3dK (z, Vz)

)
(3.5)

for each k, z ∈ K with (k, z) ∈ ED and Vk �= Vz, where F ∈ �, � > 0 and
τ1, τ2, τ3 ∈ [0, 1] with τ1 + τ2 + τ3 = 1.

(2)

E(Vk) ≤ λE(k) ∀k ∈ K , (3.6)

where λ ∈ [0, 1). Also, consider that
(a) there exist k0 ∈ K and k1 = Vk0 such that (k0, k1) ∈ ED;
(b) if k, l ∈ K with (k, l) ∈ ED, then (Vk, Vl) ∈ ED, that is, V is ED-preserving;
(c) (K , dK ) is complete in the sense of G, that is, for each sequence {kn} with

limn,m→∞ dK (kn, km) = 0 and (kn, kn+1) ∈ ED ∀n ∈ N, we have kb ∈ K with
limn→∞ dK (kn, kb) = 0 and (kn, kb) ∈ ED ∀n ≥ n0 (for some n0 ∈N);

(d) either V is continuous or F is continuous.
Then there exists a point b ∈ K with Vb = b and Eb = 0.
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3.3 Result on a metric space with a function α

The result stated below has been obtained from Theorems 2.2 and 2.4 by taking a binary
relation RB on K as kRBl if α(k, l) ≥ 1, where α : K × K → [0,∞) is a function.

Corollary 3.3 Consider a metric space (K , dK ) and a function α : K × K → [0,∞). Also,
consider the maps V : K → K and E : K → [0,∞) that satisfy the following two inequali-
ties:

(1) either

� + F
(
dK (Vk, Vz)

) ≤ τ1F
(
dK (k, z)

)
+ τ2F

(
dK (k, Vk)

)
+ τ3F

(
dK (z, Vz)

)
(3.7)

for each k, z ∈ K with α(k, z) ≥ 1 and

min
{

dK (Vk, Vz), dK (k, Vk), dK (z, Vz)
}

> 0

where F ∈ �, � > 0 and τ1, τ2, τ3 ∈ (0, 1) with τ1 + τ2 + τ3 = 1,
or

� + F
(
dK (Vk, Vz)

) ≤ F
(
τ1dK (k, z) + τ2dK (k, Vk) + τ3dK (z, Vz)

)
(3.8)

for each k, z ∈ K with α(k, z) ≥ 1 and Vk �= Vz, where F ∈ �, � > 0 and
τ1, τ2, τ3 ∈ [0, 1] with τ1 + τ2 + τ3 = 1.

(2)

E(Vk) ≤ λE(k) ∀k ∈ K , (3.9)

where λ ∈ [0, 1). Also, consider that
(a) there exist k0 ∈ K and k1 = Vk0 such that α(k0, k1) ≥ 1;
(b) if k, l ∈ K with α(k, l) ≥ 1, then α(Vk, Vl) ≥ 1, that is, V is

α-preserving/admissible;
(c) (K , dK ) is complete in the sense of α, that is, for each sequence {kn} with

limn,m→∞ dK (kn, km) = 0 and α(kn, kn+1) ≥ 1 ∀n ∈ N, we have kb ∈ K with
limn→∞ dK (kn, kb) = 0 and α(kn, kb) ≥ 1 ∀n ≥ n0 (for some n0 ∈N);

(d) either V is continuous, or F is continuous.
Then there exists a point b ∈ K with Vb = b and Eb = 0.

4 Application and examples
Consider an integral equation

k(w) = h(w) + μ

∫ f (w)

0
M

(
w, q, k(q)

)
dq, w ∈ IN = [0,∞), (4.1)

where μ is constant, h : IN → R, f : IN → R
+ = [0,∞), and M : IN × IN × R → R are

continuous functions.
Also, consider K = C(IN ,R) to be the set that contains all real-valued continuous func-

tions with the domain set IN and dK (k, l) = maxw∈IN |k(w) – l(w)| = ‖k – l‖.
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Theorem 4.1 Consider K = C(IN ,R) and consider an operator V : K → K defined by

Vk(w) = h(w) + μ

∫ f (w)

0
M

(
w, q, k(q)

)
dq, w ∈ IN = [0,∞), (4.2)

where μ is constant, h : IN → R, f : IN → R
+ = [0,∞), and M : IN × IN × R → R are

continuous functions. Also, assume that there are � > 0 and τ1, τ2, τ3 ∈ (0, 1) with τ1 + τ2 +
τ3 = 1 satisfying

∣∣M
(
w, q, k(q)

)
– M

(
w, q, l(q)

)∣∣ ≤ |k(q) – l(q)|
[�

√‖k – l‖ + τ1 + τ2

√
‖k–l‖

‖k–Vk‖ + τ3

√
‖k–l‖
‖l–Vl‖ ]2

(4.3)

for all w, q ∈ IN and for each k, l ∈ K with min{‖Vk – Vl‖,‖k – Vk‖,‖l – Vl‖} > 0; moreover,

sup
w∈IN

∫ f (w)

0
dq ≤ 1

|μ| .

Then (4.1) possesses a solution.

Proof By (4.2) and (4.3), for each k, l ∈ K with min{‖Vk – Vl‖,‖k – Vk‖,‖l – Vl‖} > 0, we
reach

∣
∣Vk(w) – Vl(w)

∣
∣ ≤ |μ|

∫ f (w)

0

∣
∣M

(
w, q, k(q)

)
– M

(
w, q, l(q)

)∣∣dq

≤ |μ|
∫ f (w)

0

|k(q) – l(q)|
[�

√‖k – l‖ + τ1 + τ2

√
‖k–l‖

‖k–Vk‖ + τ3

√
‖k–l‖
‖l–Vl‖ ]2

dq

≤ ‖k – l‖
[�

√‖k – l‖ + τ1 + τ2

√
‖k–l‖

‖k–Vk‖ + τ3

√
‖k–l‖
‖l–Vl‖ ]2

|μ|
∫ f (w)

0
dq

≤ ‖k – l‖
[�

√‖k – l‖ + τ1 + τ2

√
‖k–l‖

‖k–Vk‖ + τ3

√
‖k–l‖
‖l–Vl‖ ]2

∀w ∈ IN .

This gives

‖Vk – Vl‖ ≤ ‖k – l‖
[�

√‖k – l‖ + τ1 + τ2

√
‖k–l‖

‖k–Vk‖ + τ3

√
‖k–l‖
‖l–Vl‖ ]2

.

This implies

1√‖Vk – Vl‖ ≥
[�

√‖k – l‖ + τ1 + τ2

√
‖k–l‖

‖k–Vk‖ + τ3

√
‖k–l‖
‖l–Vl‖ ]

√‖k – l‖
= � +

τ1√‖k – l‖ +
τ2√‖k – Vk‖ +

τ3√‖l – Vl‖ .

So, we get

� –
1√‖Vk – Vl‖ ≤ –τ1√‖k – l‖ +

–τ2√‖k – Vk‖ +
–τ3√‖l – Vl‖ .
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Hence,

� + F
(
dK (Vk, Vl)

) ≤ τ1F
(
dK (k, l)

)
+ τ2F

(
dK (k, Vk)

)
+ τ3F

(
dK (l, Vl)

)
(4.4)

for each k, l ∈ K with min{dK (Vk, Vl), dK (k, Vk), dK (l, Vl)} > 0, where F(w) = –1√
w . By defin-

ing a binary relation RB on K as kRBl if (k, l) ∈ K × K and E(k) = 0 for each k ∈ K , we see
that the axioms of Theorem 2.2 become true. Hence, we say that V contains a fixed point
in K , that is, (4.1) possesses a solution. �

Illustration by examples

Example 4.2 Consider K = R and define

dK (k, l) =

⎧
⎨

⎩
0, k = l,

max{|k|, |l|} + 1, otherwise.

Define a binary relation RB on K by kRBl if k, l ∈ [0, 1]. Define V : K → K and E : K →
[0,∞) by

V (k) =

⎧
⎪⎪⎨

⎪⎪⎩

2k, K \ [0, 1],

0, k ∈ [0, 1/3],
1
9 , k ∈ (1/3, 1]

and

E(k) =

⎧
⎨

⎩
k, k ∈ [0, 1],
1
|k| , otherwise.

In this example, one can see that the axioms of Theorem 2.2 are valid by taking F(k) = ln(k)
and � = 0.001. Thus, there exists a point b ∈ K such that Vb = b and Eb = 0.

Remark 4.3 ([7, Theorem 2]) is not applicable to the above defined dK and V .

Example 4.4 Consider K = [0, 2] and define dK (k, l) = |k – l| ∀k, l ∈ K . Define a binary
relation RB on K by kRBl if k, l ∈ {0, 1/3, 2/3, 1, 2}. Define V : K → K and E : K → [0,∞) by

V (k) =
�k – 0.9�

3
∀k ∈ K

and

E(k) = �k� ∀k ∈ K .

One can verify that the axioms of Theorem 2.4 are valid by taking F(k) = ln(k) and � =
0.0001, thus there exists a point b ∈ K such that Vb = b and Eb = 0.
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Example 4.5 Consider K = [0, 2] and define dK (k, l) = |k – l| ∀k, l ∈ K . Define a binary
relation RB on K by kRBl if k, l ∈ {0, 1/3, 2/3, 1, 2}. Define V : K → K and E : K → [0,∞) by

V (k) =

⎧
⎨

⎩

�k–0.9�
3 , k ∈ {0, 1/3, 2/3, 1, 2},

�k – 0.9�, otherwise

and

E(k) = 0 ∀k ∈ K .

One can verify that the axioms of Theorem 2.4 are valid by taking F(k) = ln(k) and � =
0.0001, thus there exists a point b ∈ K such that Vb = b and Eb = 0.

Remark 4.6 Note that for the function V defined in the last example inequality (2.11) is
valid only for k, l ∈ K with kRBl.

5 Conclusion
The notions of interpolative F-contractions with shrink map and F-contractions with
shrink map have been defined and used to study the existence of E-fixed points on a met-
ric space endowed with a binary relation. As an application and consequence of the main
results, we have obtained a common fixed point result, an E-fixed point result on a metric
space with graph, and an existence theorem for a solution of integral equations.
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