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Abstract
In this paper, we study a class of nonlinear boundary value problems (BVPs) consisting
of a more general class of sequential hybrid fractional differential equations (SHFDEs)
together with a class of nonlinear boundary conditions at both end points of the
domain. The nonlinear functions involved depend explicitly on the fractional
derivatives. We study the necessary conditions required for the unique solution to the
suggested BVP under the Caratheodory conditions using the technique of measure
of noncompactness and degree theory. We also develop conditions for uniqueness
results and also on stability analysis.
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1 Introduction
The existence theory for solutions of BVPs of hybrid fractional differential equations and
SHFDEs has attracted the attention of many researchers, we refer to [1–11] and the ref-
erences therein for the recent development in this particular area of interest. In most
of these studies, BVPs with lower order fractional derivatives together with either con-
stant or linear boundary conditions are considered. However, in many situations, there
are possibilities to have nonlinear conditions at the boundary, and the differential equa-
tions may be of higher order involving functions that depend explicitly on the fractional
order derivatives. For example, in case of head flow problems, there are possibilities to
have some source or sink on both sides of the boundary (at x = 0 and x = 1) which may
be nonlinear functions and a controller at x = ζ0 (0 < ζ0 < 1). Such situation may have
importance in application point of view and also in theoretical development. The pur-
pose of this paper is to investigate existence results for BVPs involving nonlinear bound-
ary conditions at both end points, that is, we study the following class of three point
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BVPs:

cDϑ

[ cDωu(t) –
∑m

1 Iβi hi(t, u(t),Dω–1u(t))
f (t, u(t),Dω–1u(t))

]
= g

(
t, u(t), Iγ u(t)

)
, t ∈ I = [0, 1]

cDωu(0) = 0, u(0) = ψ1
(
u(ζ0)

)
, u(1) = ψ2

(
u(ζ0)

)
,

(1)

where the parameters are such that 0 < ϑ ≤ 1, 1 < ω ≤ 2, 0 < ζ0 < 1, the functions
f : I×Re ×Re →Re –{0}, hi : I×Re ×Re →Re (i = 1, 2, . . . , m), and g : I×Re ×Re →Re

satisfy the Caratheodory conditions, the boundary functions ψ1,ψ2 : Re → Re are non-
linear, and Re represents the set of real numbers. To the best of our knowledge, ex-
istence, uniqueness, and stability results have never been studied for BVP (1) previ-
ously.

Choose �0 a bounded subset of a Banach space E, where E = {u ∈ C(I) : Dω–1u ∈ C(I)},
endowed with the norm ‖u‖1 = max0≤t≤1 |u(t)|+max0≤t≤1 |Dω–1u|. We recall the following
definition [12].

2 Preliminaries
Definition 2.1 The Kuratowski measure of noncompactness 	∗∗ : S → [0,∞) of a set S ⊆
E is defined as

	∗∗(S) = inf{d > 0 : S ∈ B admits a finite cover by sets of diameter ≤ d },

where B denotes the family of all bounded subsets of E.

Recall the following definitions and propositions from [13].

Proposition 2.1 The Kuratowski measure 	∗∗ satisfies the following properties:
(i) 	∗∗(S) = 0 iff S is relatively compact;

(ii) 	∗∗ is a seminorm, i.e., 	∗∗(λ∗∗
S) = |λ∗∗|	∗∗(S), λ∗∗ ∈R, and

	∗∗(S1 + S2) ≤ 	∗∗(S1) + 	∗∗(S2);
(iii) S1 ⊂ S2 implies 	∗∗(S1) ≤ 	∗∗(S2); 	∗∗(S1 ∪ S2) = max{	∗∗(S1),	∗∗(S2)};
(iv) 	∗∗(S̄) = 	∗∗(convS) = 	∗∗(S).

Definition 2.2 Let the function T : S → E be continuous and bounded, where S ⊂ E.
Then T is 	∗∗-Lipschitz (k-set contraction) if there exists k ≥ 0 such that

	∗∗(T(�0)
) ≤ k	∗∗(�0), ∀ bounded �0 ⊂ S.

Furthermore, if k < 1, then T will be a strict 	∗∗-contraction.

Definition 2.3 T is said to be 	∗∗-condensing if

	∗∗(T(�0)
)

< 	∗∗(�0), ∀ bounded �0 ⊂ S with 	∗∗(�0) > 0.

In other words, 	∗∗(T(�0)) ≥ 	∗∗(�0) implies 	∗∗(�0) = 0.

Proposition 2.2 For 	∗∗-Lipschitz maps A,B : �0 → E with constants k and k′, respec-
tively, A + B : �0 → E is 	∗∗-Lipschitz with constant k + k′.
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Proposition 2.3 Let T : �0 → E be compact, then T is 	∗∗-Lipschitz with constant K = 0.

Proposition 2.4 If T : �0 → E satisfies Lipschitz with constant k, then T is 	∗∗-Lipschitz
with the same constant k.

The following theorem [14] will be used in the sequel.

Theorem 2.4 Let T : E→ E be a 	∗∗ condensing map and

� =
{

u ∈ E : ∃λ∗∗ ∈ [0, 1] s.t u = λ∗∗
Tu

}
.

If � is a bounded set in E, that is, there exists r > 0 such that � ⊂ Br(0), then the topological
degree

D
(
I – λ∗∗

T, Br(0), 0
)

= 1, ∀λ∗∗ ∈ [0, 1],

that is, T has a fixed point in Br(0).

Organization of the paper. This article consists of five sections. The first section explains
the importance of the article and the related literature. In the second section, we study
sufficient conditions for the existence and uniqueness of solutions to the hybrid fractional
differential equations (1). Third section is reserved for the Hyers–Ulam stability of prob-
lem (1). Section 4 explains the application of the results, and finally the conclusion of the
article is given in Sect. 5.

3 Existence criteria
This section of the article is reserved for the existence and uniqueness of solution of hybrid
problem (1) with the help of the fixed point approach. For these, we first transform the
suggested problem into an integral form of the problem.

Lemma 3.1 For integrable functions f , g , and hi on I, problem (1) has an integral repre-
sentation given by

u(t) =
∫ 1

0

( m∑
1

Kβi (s, t)hi
(
s, u(s),Dω–1u(s)

)
+ K0(s, t)�

(
s, u(s),Dω–1u(s)

))
ds

+ tψ2
(
u(ζ0)

)
+ (1 – t)ψ1

(
u(ζ0)

)
,

(2)

where �(t, u(t),Dω–1u(t)) = f (t, u(t),Dω–1u(t))Iϑg(t, u(t), Iγ u(t)), and

Kβi (s, t) =
–1

(ω + βi)

⎧⎨
⎩

t(1 – s)ω–1+βi ; t ≤ s,

t(1 – s)ω–1+βi – (t – s)ω–1+βi ; s ≤ t,
(3)

K0(s, t) =
–1

(ω)

⎧⎨
⎩

t(1 – s)ω–1; t ≤ s,

t(1 – s)ω–1 – (t – s)ω–1; s ≤ t.
(4)
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Proof Applying the ϑth integral (Iϑ ) to both sides of (1), we obtain

cDωu(t) –
m∑
1

Iβi hi
(
t, u(t),Dω–1u(t)

)
= f

(
t, u(t),Dω–1u(t)

)
Iϑg

(
t, u(t), Iγ u(t)

)
+ C1.

The initial condition cDωu(0) = 0 results in C1 = 0, and hence we obtain

cDωu(t) =
m∑
1

Iβi hi
(
t, u(t),Dω–1u(t)

)
+ f

(
t, u(t),Dω–1u(t)

)
Iϑg

(
t, u(t), Iγ u(t)

)

=
m∑
1

Iβi hi
(
t, u(t),Dω–1u(t)

)
+ �

(
t, u(t),Dω–1u(t)

)
,

(5)

where �(t, u(t),Dω–1u(t)) = f (t, u(t),Dω–1u(t))Iϑg(t, u(t), Iγ u(t)). Applying the ωth inte-
gral (Iω) on (5) and using the semigroup property of the integrals, we obtain

u(t) =
m∑
1

Iω+βi hi
(
t, u(t),Dω–1u(t)

)
+ Iω�

(
t, u(t),Dω–1u(t)

)
+ D1 + D2t. (6)

The boundary conditions u(0) = ψ1(u(ζ0)), u(1) = ψ2(u(ζ0)) respectively give D1 =
ψ1(u(ζ0)) and

D2 = ψ2
(
u(ζ0)

)
– ψ1

(
u(ζ0)

)
– Iω�

(
1, u(1),Dω–1u(1)

)
–

m∑
1

Iω+βi hi
(
1, u(1),Dω–1u(1)

)
,

where Iωψ(1, u(1),Dω–1u(1)) denotes the value of the integral Iω�(t, u(t),Dω–1u(t)) at t =
1 and Iω+βi hi(1, u(1),Dω–1u(1)) denotes the value of the integral Iω+βi hi(t, u(t),Dω–1u(t)) at
t = 1 for i = 1, 2, 3, . . . m. Hence, it follows that

u(t) =
m∑
1

Iω+βi hi
(
t, u(t),Dω–1u(t)

)
+ Iω�

(
t, u(t),Dω–1u(t)

)
+ ψ1

(
u(ζ0)

)
+ t(ψ2

(
u(ζ0)

)

– ψ1
(
u(ζ0)

)
– Iω�

(
1, u(1),Dω–1u(1)

)
–

m∑
1

Iω+βi hi
(
1, u(1),Dω–1u(1)

)

=
m∑
1

(Iω+βi hi
(
t, u(t),Dω–1u(t)

)
– tIω+βi hi

(
1, u(1),Dω–1u(1)

)

+ Iω�
(
t, u(t),Dω–1u(t)

)
– tIω�

(
1, u(1),Dω–1u(1)

)
+ tψ2

(
u(ζ0)

)
+ (1 – t)ψ1

(
u(ζ0)

)
,

which can be rewritten as

u(t) =
∫ 1

0

[ m∑
1

Kβi (s, t)hi
(
s, u(s),Dω–1u(s)

)
+ K0(s, t)�

(
s, u(s),Dω–1u(s)

)]
ds

+ (1 – t)ψ1
(
u(ζ0)

)
+ tψ2

(
u(ζ0)

)
.

(7)
�
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From (7), it follows that

Dω–1u(t) =
∫ 1

0

[ m∑
1

Gβi (s, t)hi
(
s, u(s),Dω–1u(s)

)
+ G0(s, t)�

(
s, u(s),Dω–1u(s)

)]
ds

+
t2–ω

(3 – ω)
(ψ2

(
u(ζ0)

)
– ψ1

(
u(ζ0)

)
,

(8)

where

Gβi (s, t) = Dω–1Kβi (s, t)

=
–1

(3 – ω)(ω + βi)

⎧⎨
⎩

t2–ω(1 – s)ω–1+βi ; t ≤ s,

t2–ω(1 – s)ω–1+βi – (t – s)βi ; s ≤ t,
(9)

G0(s, t) = Dω–1K0(s, t) =
–1

(3 – ω)(ω)

⎧⎨
⎩

t2–ω(1 – s)ω–1; t ≤ s,

t2–ω(1 – s)ω–1 – ω; s ≤ t.
(10)

From (3), (4), (9), and (10), it follows that

max
t∈[0,1]

∣∣Kβi (s, t)
∣∣ =

s(1 – s)ω–1+βi

(ω + βi)
≤ 1

(ω + βi)
,

max
t∈[0,1]

∣∣K0(s, t)
∣∣ =

s(1 – s)ω–1

(ω)
≤ 1

(ω)
,

max
t∈[0,1]

∣∣Gβi (s, t)
∣∣ ≤ 1

(3 – ω)(ω + βi)
,

max
t∈[0,1]

∣∣G0(s, t)
∣∣ ≤ 1

(3 – ω)(ω)
.

(11)

Define operators A,B : E = C(I,Re) → E by

A(u) =
∫ 1

0

( m∑
1

Kβi (s, t)hi
(
s, u(s),Dω–1u(s)

)
+ K0(s, t)�

(
s, u(s),Dω–1u(s)

))
ds,

B(u) = (1 – t)ψ1
(
u(ζ0)

)
+ tψ2

(
u(ζ0)

)
,

(12)

then (7) takes the form of the operator equation

u(t) = Au(t) + Bu(t) = Tu(t), t ∈ I, (13)

and fixed points of operator equation (13) are solutions of BVP (1). Now, we list the fol-
lowing hypotheses.

(H1) f : I ×Re ×Re →Re – {0}, hi : I ×Re ×Re →Re (i = 1, 2, . . . , m), and g : I ×Re ×
Re →Re satisfy the Caratheodory conditions.

(H2) There exist positive constants k1, k2 ∈ [0, 1), q ∈ (0, 1), and d1, d2, e1, e2 such that,
for u, u1, u2 ∈ E, we have

∣∣ψ1(u2) – ψ1(u1)
∣∣ ≤ k1|u2 – u1|,

∣∣ψ1(u)
∣∣ ≤ e1|u|q + e2,

∣∣ψ2(u2) – ψ2(u1)
∣∣ ≤ k2|u2 – u1|,

∣∣ψ2(u)
∣∣ ≤ d1|u|q + d2.
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(H3) There exist positive continuous functions 	∗∗,ρ : I → Re, parameters 0 < q, δ < 1,
and positive constants θi, ν , ξ such that, for u ∈ E,

∣∣hi
(
t, u(t),Dω–1u(t)

)∣∣ ≤ θi,∣∣f (t, u(t),Dω–1u(t)
)∣∣ ≤ 	∗∗(t)

(∣∣u(t)
∣∣ +

∣∣Dω–1u(t)
∣∣)δ + ξ ,

∣∣g(
t, u(t), Iγ u(t)

)∣∣ ≤ ∣∣ρ(t)
∣∣ + ν

(|u|q +
∣∣Iγ u

∣∣q).

(H4) There exist positive constants λ∗∗
i for i = 1, 2, . . . , m such that, for u, ū ∈ E and 	∗∗

0 =
maxt∈I 	∗∗(t), ρ0 = maxt∈I ρ(t),

∣∣hi
(
t, u(t),Dω–1u(t)

)
– hi

(
t, ū(t),Dω–1ū(t)

)∣∣
≤ λ∗∗

i
(|u – ū| +

∣∣Dω–1u – Dω–1ū
∣∣),

∣∣f (t, u(t),Dω–1u(t)
)

– f
(
t, ū(t),Dω–1ū(t)

)∣∣
≤ 	∗∗

0
(|u – ū| +

∣∣Dω–1u – Dω–1ū
∣∣),

∣∣g(
t, u(t),Iγ u(t)

)
– g

(
t, ū(t),Iγ ū(t)

)∣∣ ≤ ρ0|u – ū|.

Lemma 3.2 Under condition (H2), the operator B is 	∗∗-Lipschitz with constant k =
max{(1 – t + t2–ω

(3–ω) k1 + (t + t2–ω

(3–ω) )k2, t ∈ I}. Further, B satisfies the following growth con-
dition:

∥∥Bu(t)
∥∥

1 ≤ d‖u‖q
1 + e, (14)

where d = max{(t + t2–ω

(3–ω) )d1 + (1 – t + t2–ω

(3–ω) )e1, t ∈ I}, e = max{(t + t2–ω

(3–ω) )d2 + (1 – t +
t2–ω

(3–ω) )e2, t ∈ I}.

Proof For u1, u2 ∈ E such that u1 < u2, using (H2), we obtain

∣∣B(u1) – B(u2)
∣∣ ≤ (1 – t)

∣∣ψ1
(
u1(ζ0)

)
– ψ1

(
u2(ζ0)

)∣∣ + t
∣∣ψ2

(
u1(ζ0)

)
– ψ2

(
u2(ζ0)

)∣∣
≤ (1 – t)k1

∣∣u1(ζ0)) – u2(ζ0)
∣∣ + tk2

∣∣u1(ζ0)) – u2(ζ0)
∣∣

=
(
(1 – t)k1 + tk2

)∣∣u1(ζ0)) – u2(ζ0)
∣∣,

(15)

∣∣Dω–1
B(u1) – Dω–1

B(u2)
∣∣

≤ t2–ω

(3 – ω)
∣∣ψ1

(
u1(ζ0)

)
– ψ1

(
u2(ζ0)

)∣∣ +
∣∣ψ2

(
u1(ζ0)

)
– ψ2

(
u2(ζ0)

)∣∣

≤ t2–ω k1 + k2

(3 – ω)
∣∣u1(ζ0)) – u2(ζ0)

∣∣.
(16)

Hence, from (15) and (16), it follows that

‖B(u1) – B(u2)‖1 ≤ k‖u1 – u2‖ ≤ k‖u1 – u2‖1. (17)
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By Proposition 2.4, B is 	∗∗-Lipschitz with constant k. Further,

∣∣B(u)
∣∣ ≤ (1 – t)

∣∣ψ1
(
u(ζ0)

)∣∣ + t
∣∣ψ2

(
u(ζ0)

)∣∣
≤ (1 – t)

(
d1|u|q + d2

)
+ t

(
e1|u|q + e2

)
=

(
td1 + (1 – t)e1

)|u|q +
(
td2 + (1 – t)e2

)
,

(18)

∣∣Dω–1
B(u)

∣∣ ≤ t2–ω

(3 – ω)
(
∣∣ψ1

(
u(ζ0)

)∣∣ +
∣∣ψ2

(
u(ζ0)

)∣∣

≤ t2–ω

(3 – ω)
(
(d1 + e1)|u|q + (d2 + e2)

)
.

(19)

From (18) and (19), it follows that

‖B(u‖1 ≤ d‖u‖q + e ≤ d‖u‖q
1 + e. �

Lemma 3.3 Under conditions (H1) and (H3), the operator A is 	∗∗-Lipschitz with zero
constant. Further A satisfies the following growth condition:

∥∥Au(t)
∥∥ ≤ £0 + £1‖u‖δ

1 + £2‖u‖q
1 + £3‖u‖q+δ

1 , u ∈ E. (20)

Proof By (H1), the continuity of hi, � with respect to u for each fixed t ∈ I implies the
continuity of the operator A for each fixed t ∈ I . Moreover, for each u ∈ E, using (H3), we
obtain

∣∣f (t, u(t),Dω–1u(t)
)∣∣ ≤ 	∗∗(t)‖u‖δ + ξ ,

∣∣g(
t, u, Iγ u

)∣∣ ≤ ∣∣ρ(t)
∣∣ + ν

(‖u‖q +
∥∥Iγ u

∥∥q).

Hence it follows that

∣∣�(
t, u(t),Dω–1u(t)

)∣∣
=

∣∣f (t, u(t),Dω–1u(t)
)∣∣∣∣Iϑg

(
t, u, Iγ u

)∣∣
≤ 1

(ϑ + 1)

[
	∗∗

0ρ0‖u‖δ

+ 	∗∗
0ν

(
1 +

1
((γ + 1))q

)
‖u‖δ+q + ξν

(
1 +

1
((γ + 1))q

)
‖u‖q + ξρ0

]
,

(21)

where 	∗∗
0 = maxt∈I |	∗∗(t)|, ρ0 = maxt∈I |ρ(t)|. Thus A satisfies the following growth con-

dition:

∣∣Au(t)
∣∣ +

∣∣Dω–1
Au(t)

∣∣ ≤
∫ 1

0

m∑
1

(
∣∣Kβi (s, t)

∣∣ +
∣∣Gβi (s, t)

∣∣∣∣hi
(
s, u(s),Dω–1u(s)

)∣∣

+ (
∣∣K0(s, t)

∣∣ +
∣∣G0(s, t)

∣∣∣∣�(
s, u(s),Dω–1u(s)

)∣∣ds,

(22)
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which in view of (11) and (21) implies that

∣∣Au(t)
∣∣ +

∣∣Dω–1
Au(t)

∣∣

≤
(

1 +
1

(3 – ω)

)( m∑
1

‖θi‖
(ω + βi)

+
1

(ω)
∥∥�

(
s, u(s),Dω–1u(s)

)∥∥
)

≤
(

1 +
1

(3 – ω)

)
(

m∑
1

‖θi‖
(ω + βi)

+
1

(ϑ + 1)(ω)

(
	∗∗

0ρ0‖u‖δ

+ 	∗∗
0ν

(
1 +

1
((γ + 1))q

)
‖u‖δ+q + ξν

(
1 +

1
((γ + 1))q

)
‖u‖q + ξρ0

)
.

Hence, it follows that

∥∥Au(t)
∥∥

1 ≤ £0 + £1‖u‖δ + £2‖u‖q + £3‖u‖q+δ

≤ £0 + £1‖u‖δ
1 + £2‖u‖q

1 + £3‖u‖q+δ

1 , u ∈ E,
(23)

where £0 = (1+ 1
(3–ω) )(

∑m
1

‖θi‖
(ω+βi)

+ ρ0ξ

(ω)(ϑ+1) ), £1 = (1+ 1
(3–ω) ) 	∗∗

0ρ0
(ω)(ϑ+1) , £2 = νξ

(ω)(ϑ+1) (1+
1

(3–ω) )(1 + 1
((γ +1))q ), and £3 = ν	∗∗

0
(ω)(ϑ+1) (1 + 1

(3–ω) )(1 + 1
((γ +1))q ). From (23), it also follows

that A is uniformly bounded on any bounded subset �0 of E. Now, for u ∈ �0 and t1, t2 ∈ I
such that t1 < t2, consider

∣∣Au(t2) – Au(t1)
∣∣

≤
∫ 1

0

( m∑
1

∣∣Kβi (s, t2) – Kβi (s, t1)
∣∣∣∣hi

(
s, u,Dω–1u(s)

)∣∣

+
∣∣K0(s, t2) – K0(s, t1)

∣∣∣∣�(
s, u,Dω–1u(s)

)∣∣
)

ds,

(24)

∣∣Dω–1
Au(t2) – Dω–1

Au(t1)
∣∣

≤
∫ 1

0

( m∑
1

∣∣Gβi (s, t2) – Gβi (s, t1)
∣∣∣∣hi

(
s, u,Dω–1u(s)

)∣∣

+
∣∣G0(s, t2) – G0(s, t1)

∣∣∣∣�(
s, u,Dω–1u(s)

)∣∣
)

ds.

(25)

But

∣∣Kβi (s, t2) – Kβi (s, t1)
∣∣

=
1

(ω + βi)

⎧⎨
⎩

(1 – s)ω+βi–1(t2 – t1); t ≤ s,

(1 – s)ω+βi–1(t2 – t1) + (t2 – s)ω–1+βi – (t1 – s)ω–1+βi ; s ≤ t,

∣∣K0(s, t2) – K0(s, t1)
∣∣ =

1
(ω)

⎧⎨
⎩

(1 – s)ω–1(t2 – t1); t ≤ s,

(1 – s)ω–1(t2 – t1) + (t2 – s)ω–1 – (t1 – s)ω–1; s ≤ t,
∣∣Gβi (s, t2) – Gβi (s, t1)

∣∣
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=
1

ω(ω + βi)

⎧⎨
⎩

(1 – s)ω+βi–1(t2–ω
2 – t2–ω

1 ); t ≤ s,

(1 – s)ω+βi–1(t2–ω
2 – t2–ω

1 ) + (t2 – s)βi – (t1 – s)βi ; s ≤ t,

∣∣G0(s, t2) – G0(s, t1)
∣∣ =

1
(ω)(3 – ω)

⎧⎨
⎩

(1 – s)ω–1(t2–ω
2 – t2–ω

1 ); t ≤ s,

(1 – s)ω–1(t2–ω
2 – t2–ω

1 ); s ≤ t.

Hence, using the relation
∫ 1

0 a(t, s) ds =
∫ t

0 a(t, s) ds +
∫ 1

t a(t, s) ds and the notation �F(s, t) =
F(s, t2) – F(s, t2) for the difference, we obtain

∫ 1

0

∣∣�Kβi (s, t)
∣∣ds =

[(t2 – t1) + (tω+βi
2 – tω+βi

1 ) – (t2 – t)ω+βi + (t1 – t)ω+βi )]
(ω + 1 + βi)

,

∫ 1

0

∣∣�K0(s, t)
∣∣ds =

1
(ω + 1)

[
(t2 – t1) +

(
tω
2 – tω

1
)

– (t2 – t)ω + (t1 – t)ω)
]
,

∫ 1

0

∣∣�Gβi (s, t)
∣∣ds =

[(t2–ω
2 – t2–ω

1 ) + tβi+1
2 – tβi+1

1 – (t2 – t)βi+1 + (t1 – t)βi+1)]
(3 – ω)(ω + 1 + βi)

,

∫ 1

0

∣∣�G0(s, t)
∣∣ds =

1
(3 – ω)(ω + 1)

[
t2–ω
2 – t2–ω

1
]
.

(26)

Using (21), the assumption |hi(s, u,Dω–1u(s))| ≤ ‖θi‖ on �0, and (26) in (24) and (25), it
follows that

∣∣Au(t2) – Au(t1)
∣∣ → 0,

∣∣Dω–1
Au(t2) – Dω–1

Au(t1)
∣∣ → 0 as t1 → t2. (27)

Therefore A is equicontinuous, and by Arzela–Ascoli theorem A is compact. By Proposi-
tion 2.3, the operator A is 	∗∗-Lipschitz with zero constant. �

Theorem 3.1 Under assumptions (H1)–(H3), system (13) has at least one solution u ∈ E
provided that q ≤ 1 – δ, £3 < 1. Also, the set of solutions of (13) is bounded in E.

Proof By Lemma 3.2, the operator B is 	∗∗- Lipschitz for k ∈ [0, 1), and by Lemma 3.3, the
operator A is 	∗∗- Lipschitz with zero constant. It follows by Proposition 2.2 that T is 	∗∗-
Lipschitz with constant k ∈ [0, 1). Define

G =
{

u ∈ E : ∃� ∈ [0, 1] such that u = �Tu
}

.

For u ∈ G, using the growth conditions (20) and (23), we obtain

‖u‖1 ≤ �
(‖Au‖1 + ‖Bu‖1

)
≤ �

(
d‖u‖q1

1 + e + £0 + £1‖u‖δ
1 + £2‖u‖q

1 + £3‖u‖q+δ

1
)

= �
(
d‖u‖q1

1 + £1‖u‖δ
1 + £2‖u‖q

1 + £3‖u‖q+δ

1
)

+ �(e + £0).

(28)

Since q ≤ 1 – δ and £3 = ν	∗∗
0

(ω)(ϑ+1) (1 + 1
(3–ω) )(1 + 1

((γ +1))q ) < 1, it follows that the set G is
bounded. Hence, by Theorem (2.4), BVP (1) has at least one solution. �

Choose 0 < R < 1 and consider a closed bounded and convex subset B̄ = {z ∈ E : ‖z‖1 ≤
R} ⊆ E.
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Theorem 3.2 Under assumptions (H1)–(H4), system (13) has a unique solution in B̄ pro-
vided that

k +
m∑
1

λ∗∗
i(1 + 1

(3–ω) )
(ω + βi)

+
	∗∗

0(1 + 1
(3–ω) )

(ϑ + 1)ω

(
ρ0 + ν

(
1 +

1
((γ + 1))q

)
Rq + ρ0

(
	∗∗

0Rδ + ξ
))

< 1.

Proof For u ∈ B̄, using H3, we obtain

∣∣f (t, u(t),Dω–1u(t)
)∣∣ ≤ 	∗∗

0Rδ + ξ ,

∣∣Iϑg
(
t, u(t), Iγ u(t)

)∣∣ ≤ (ρ0 + ν(1 + 1
((γ +1))q )Rq)

(ϑ + 1)
.

(29)

For u1, u2 ∈ B̄, using H4, we obtain

∣∣hi
(
t, u1(t),Dω–1u1(t)

)
– hi

(
t, u2(t),Dω–1u2(t)

)∣∣ ≤ λ∗∗
i‖u1 – u2‖1,

∣∣f (t, u1(t),Dω–1u1(t)
)

– f
(
t, u2(t),Dω–1u2(t)

)∣∣ ≤ 	∗∗
0‖u1 – u2‖1,

∣∣Iϑg
(
t, u1(t), Iγ u1(t)

)
– Iϑg

(
t, u2(t), Iγ u2(t)

)∣∣ ≤ ρ0|u1 – u2|
(ϑ + 1)

≤ ρ0‖u1 – u2‖1

(ϑ + 1)
.

(30)

Further,

∣∣�(
t, u1,Dω–1u1

)
– �

(
t, u2,Dω–1u2

)∣∣
≤ ∣∣Iϑg

(
t, u1, Iγ u1

)∣∣∣∣f (t, u1,Dω–1u1
)

– f
(
t, u2,Dω–1u2

)∣∣
+

∣∣f (t, u2,Dω–1u2
)∣∣∣∣Iϑg

(
t, u1, Iγ u1

)
– Iϑg

(
t, u2(t), Iγ u2(t)

)∣∣,

which in view of (29) implies that

∣∣�(
t, u1,Dω–1u1

)
– �

(
t, u2,Dω–1u2

)∣∣

≤
( (ρ0 + ν(1 + 1

((γ +1))q )Rq)	∗∗
0

(ϑ + 1)
+

(	∗∗
0Rδ + ξ )ρ0

(ϑ + 1)

)
‖u1 – u2‖1.

(31)

Now, using definition (12), we obtain

∥∥A(u1) – A(u1)
∥∥

1

≤
∫ 1

0
(

m∑
1

|Kβi (s, t) + Gβi (s, t)
∣∣hi

(
s, u1,Dω–1u1

)
– hi

(
s, u2,Dω–1u2

)∣∣

+
(∣∣K0(s, t) + G0(s, t)

∣∣)|�(
s, u1,Dω–1u1 – �

(
s, u2,Dω–1u2|

))
ds,
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which in view of (30) and (31) implies that

∥∥A(u1) – A(u2)
∥∥

1 ≤
[ m∑

1

λ∗∗
i(1 + 1

(3–ω) )
(ω + βi)

+
(1 + 1

(3–ω) )
(ω)(ϑ + 1)

(
	∗∗

0

(
ρ0

+ ν

(
1 +

1
((γ + 1))q

)
Rq

)
+ ρ0

(
	∗∗

0Rδ + ξ
))]

‖u1 – u2‖1

= k1‖u1 – u2‖1,

(32)

where

k1 =
m∑
1

λ∗∗
i(1 + 1

(3–ω) )
(ω + βi)

+
(1 + 1

(3–ω) )
(ω)(ϑ + 1)

(
	∗∗

0

(
ρ0 + ν

(
1 +

1
((γ + 1))q

)
Rq

)
+ ρ0

(
	∗∗

0Rδ + ξ
))

.

Hence, using (17) and (32), it follows that

∥∥T(u1) – T(u2)
∥∥

1 ≤ ∥∥A(u1) – A(u2)
∥∥

1 +
∥∥B(u1) – B(u2)

∥∥
1

≤ (k + k1)‖u1 – u2‖1,
(33)

and uniqueness follows by the Banach contraction principle. �

4 Hyers–Ulam stability
In this section, we present the Hyers–Ulam stability analysis for the hybrid fractional dif-
ferential equation (1). For more related problems to the Hyers–Ulam stability, the readers
may take help from the references in [15–20] and the literature.

Definition 4.1 The fractional integral system (13) is said to be Hyers–Ulam stable if there
exists a constant ζ > 0 such that, for given ϕ > 0 and for each solution u of the inequal-
ity

∥∥u(t) – (A + B)u(t)
∥∥

1 < ϕ, (34)

there exists a solution ū(t) of the integral system (13)

ū(t) = (A + B)ū(t)

such that

∥∥u(t) – ū(t)
∥∥

1 < ϕζ .

Theorem 4.2 Under assumptions (H2) and (H4), the fractional order hybrid differential
equation (1) is Hyers–Ulam stable provided k + k1 < 1.
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Proof Let u ∈ E satisfy inequality (34) and ū ∈ E be a solution of BVP (1) satisfying the
integral system (13). Then consider

∥∥u(t) – ū(t)
∥∥

1 =
∥∥u(t) – (A + B)ū(t)

∥∥
1

≤ ∥∥u(t) – (A + B)u(t)
∥∥

1

+
∥∥(A + B)u(t) – (A + B)ū(t)

∥∥
1

< ϕ +
∥∥(A + B)u(t) – (A + B)ū(t)

∥∥
1.

(35)

Now

∥∥(A + B)u(t) – (A + B)ū(t)
∥∥

1 ≤ ∥∥Au(t) – Aū(t)
∥∥

1 +
∥∥Bu(t) – Bū(t)

∥∥
1,

which in view of H2 and H4 (that is, (17) and (32)) implies that

∥∥(A + B)u(t) – (A + B)ū(t)
∥∥

1 ≤ k1
∥∥u(t) – ū(t)

∥∥
1 + k

∥∥u(t) – ū(t)
∥∥

1. (36)

Hence, from (35), it follows that

∥∥u(t) – ū(t)
∥∥

1 < ϕ + (k1 + k)
∥∥u(t) – ū(t)

∥∥
1,

which implies that

∥∥u(t) – ū(t)
∥∥

1 < ϕζ , where ζ =
1

1 – (k1 + k)
. �

5 Application
In this section, we present an example in the application of the results we studied in the
previous sections.

Example 1 We consider

cDϑ

[ cDωu(t) –
∑m

1 Iβi hi(t, u(t),Dω–1u(t))
f (t, u(t),Dω–1u(t))

]
= g

(
t, u(t), Iγ u(t)

)
, t ∈ I = [0, 1]

cDωu(0) = 0, u(0) = ψ1
(
u(ζ0)

)
, u(1) = ψ2

(
u(ζ0)

)
,

(37)

where the parameters are such that 0 < ϑ ≤ 1, 1 < ω ≤ 2, 0 < ζ0 < 1, the functions f : I ×
Re × Re → Re – {0}, hi : I × Re × Re → Re (i = 1, 2, . . . , m), and g : I × Re × Re → Re

such that ϑ = 0.5, ω = 1.5, ζ0 = 0.5, βi = 0.5 for i = 1, 2, . . . , m. q = 0.2, δ = 0.7 and ψ1(u(t)) =
ψ2(u(t)) = 2+sin(u(t))

20 , k1 = k2 = 1
10 , hi(t, u(t), Dω–1u(t)) = 1+u(t)+Dω–1u(t)

50 = fi(t, u(t), Dω–1u(t)),
g(t, u(t), Iγ u(t)) = 1+t+u(t)Iγ u(t)

20 . It is easy to see that λ∗∗
i = 1

50 for i = 1, 2, . . . , m, ρ = 1 + t,
ν = 1

20 . And

Kβi (s, t) =
–1

(ω + βi)

⎧⎨
⎩

t(1 – s)ω–1+βi ; t ≤ s,

t(1 – s)ω–1+βi – (t – s)ω–1+βi ; s ≤ t,
(38)

K0(s, t) =
–1

(ω)

⎧⎨
⎩

t(1 – s)ω–1; t ≤ s,

t(1 – s)ω–1 – (t – s)ω–1; s ≤ t.
(39)
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It is easy to see that (H1)–(H4) are satisfied, also the inequality

k +
m∑
1

λ∗∗
i(1 + 1

(3–ω) )
(ω + βi)

+
	∗∗

0(1 + 1
(3–ω) )

(ϑ + 1)ω

(
ρ0 + ν

(
1 +

1
((γ + 1))q

)
Rq + ρ0

(
	∗∗

0Rδ + ξ
))

< 1,

holds true. Thus, problem (37) has a unique solution. For more applications of the results,
we refer the readers to the work in [21–29].

6 Conclusion
In this article, we have studied a general class of hybrid fractional differentials for the
existence, uniqueness, and Hyers–Ulam stability. We have seen that under certain as-
sumptions of (H1)–(H4), the FDEs of the kind (1) have unique solutions and they are
Hyers–Ulam stable too, subject to the inequalities given in the statements. At the end,
we also presented an example as an application of the work. We suggest the readers for
re-consideration of the suggested problem for the ABC-fractional order derivative and
others too.
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