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Abstract
In this study, we use a compartmental nonlinear deterministic mathematical model to
investigate the effect of different optimal control strategies in controlling Tuberculosis
(TB) disease transmission in the community. We employ stability theory of differential
equations to investigate the qualitative behavior of the model by obtaining the basic
reproduction number and determining the local stability conditions for the
disease-free and endemic equilibria. We consider three control strategies
representing distancing, case finding, and treatment efforts and numerically compare
the levels of exposed and infectious populations with and without control strategies.
The results suggest that combination of all controls is the best strategy to eradicate TB
disease from the community at an optimal level with minimum cost of interventions.
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1 Introduction
TB is a chronic infection of the bacteria caused by Mycobacterium TB, which was discov-
ered by Koch in 1882. Different scholars classify TB in various ways based on the symp-
toms and treatments of the disease. The medical community divides TB into two cate-
gories, pulmonary (smear-positive and smear-negative) and extra-pulmonary. Pulmonary
TB is a common form of TB that affects the lungs, whereas extra-pulmonary TB affects
other parts of the body such as pleura, lymph nodes, back, joints, urinary tract of the gen-
itor, nervous system, and abdomen [14]. A susceptible person is infected with TB when he
or she inhales the TB germs that are released into the air while the infectious person with
pulmonary TB disease coughs, sneezes, cries, or sings [6, 14]. The first stage of infection
is the latency period. At this stage an individual does not exhibit any symptoms of the dis-
ease and does not infect others. Such individual is said to be infected with latent TB. The
second stage is the time of active TB infection when a person begins to display symptoms
such as general weakness or fatigue, fever, weight loss, lack of appetite, and night sweating
and can also infect others [19].

TB is an ancient disease, which caused more suffering and death than any other in-
fectious disease and remains a significant global health issue. Even today, after advanced
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screening, diagnosis, and treatment methods have been established, one third of the
world’s population has been exposed and is infected with TB [18]. Although TB cases are
currently reducing in many developed countries, they are rising in Africa, Eastern parts
of Europe, and Asia [17]. The government of Ethiopia, in collaboration with development
partners, bilateral and multilateral organizations, and wider community, is working to-
gether to combat this deadly disease to meet the sustainable development targets by 2030
and end TB by 2035. However, according to the World Health Organization (WHO) re-
port 2019 [23], Ethiopia is among 30 high TB and TB/HIV burden countries in which 70%
of notified cases are within the age group of 15–54 years. This indicates that TB is affecting
mostly the productive working group so that it can bring back the economy of the country
which demands extensive work to decide the right control strategies.

Mathematical modeling of infectious disease is used as a powerful tool for studying the
dynamics of disease transmission and the effect of different intervention strategies to in-
form public health policy makers on the implementation of effective intervention pro-
grams to combat infections. Several researchers have built different mathematical models
to investigate the dynamics of TB disease transmission and optimal control strategies; for
example, see [5, 15, 16, 20, 21, 24, 25] and some references therein. Gao and Huang [12]
analyzed TB model that incorporates vaccination of susceptible individuals, identification
for treatment of latently infected individuals, and treatment of individuals with active TB.
Their analysis showed that the combined implementation of three controls is most effec-
tive and less expensive among different strategies. In [2] an optimal TB control model was
analyzed by considering the case detection of TB infections as optimal control parameter.
Investigating the effectiveness of optimal control by comparing the levels of exposed and
infectious populations with and without optimal control, the authors suggested that the
optimal control approach would deliver better results in terms of reducing the number of
infectives. Abouelkheir et al. [1] proposed a mathematical model for the optimal control
strategy of a drug-resistant TB by considering a treatment program. The numerical sim-
ulations of their study showed that the implementation of a treatment as a control has a
positive impact on the reduction of infectious individuals. Whang et al. [21] developed a
dynamic TB transmission model in South Korea using a modified Susceptible–Exposed–
Infectious–Recovered model with the time-dependent parameters and proposed optimal
treatment strategies. Using the data of active-TB incidence obtained from 1970 to 2009,
they estimated the parameters by the least-squares curve fitting. They considered three
control mechanisms (distancing, case finding, and case holding efforts) and used opti-
mal control programs to minimize the number of exposed and infectious individuals and
the cost of implementing the control treatment. The results showed that the most effec-
tive control factor for preventing TB transmission is a distancing control. All of the above
studies showed substantial results for TB disease transmission dynamics by taking situa-
tions in different countries into consideration. In this paper, we propose a dynamic model
for TB disease transmission in Hramaya district, Ethiopia. The model is a modified and ex-
tended version of the model presented in [9] with optimal control strategies for the control
of the TB disease.

The rest of the paper is organized as follows. In Sect. 2, we describe the basic model
formulation. In Sect. 3, we present qualitative analysis of the basic model. In Sect. 4, we
formulate and analytically study an optimal control problem using Pontryagin’s maximum
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Figure 1 Model flow diagram

principle. In Sect. 5, we present the numerical results and discussions. Finally, Sect. 6 con-
cludes the paper.

2 Model description and formulation
We formulate a mathematical model that describes the dynamics of TB infection in a pop-
ulation. The model divides individuals in the population under study into four compart-
ments according to their epidemiological status. These are the susceptible individuals (S),
who are not yet infected by the TB bacterium but with a possibility to be infected; the
exposed individuals (E), who recently infected but are not infectious; the infectious indi-
viduals (I), who have become infected with TB and are able to transmit the disease; and
the recovered individuals (R), who have recovered from the disease. We assume that the
total population N remains constant (that is, natural birth rate and death rate are equal,
and there is no emigration or immigration) and there are no TB disease-related deaths. So,
the natural birth and death rate is μ. We also assume that an individual is firstly exposed to
the disease through contacts with infectious individuals and does not become infectious
instantly. That is, after the initial infection, an individual stays in a latent period for some
time and then either becomes infectious (by developing the disease) or recovered (when
immunological defense kills the inhaled bacilli). Hence the rate at which people become
susceptible starts with rate μN . From that rate, the normal death rate of people that have
not yet been exposed to TB, μS, and the rate at which susceptibles by meeting with in-
fectious become exposed, βSI/N , are subtracted. From those exposed people, those who
die, μE, those who become infectious after being exposed, kE, and those who become re-
covered, αE, are reduced. To describe the rate at which people in the population become
infectious, from kE, the percentage of death among infectious, μI , and the percentage of
recovery from the TB infectious, γ I , are subtracted. The last equation describes the rate
at which people in the population recover from a disease; that is, individuals who do not
progress to TB infectious αE are moved from class E to the recovered class R, and the
recovered individuals γ I are also moved from class I to R. From that amount, the percent-
age of death among recovered people μR is subtracted. This model description is shown
in Fig. 1.
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Based on this model flow diagram, the dynamics of the model is given by the following
system of differential equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS
dt = μN – μS – βSI

N ,
dE
dt = βSI

N – (μ + k + α)E,
dI
dt = kE – (μ + γ )I,
dR
dt = αE + γ I – μR,

(1)

with initial conditions

S(0) = S0 ≥ 0, E(0) = E0 ≥ 0, I(0) = I0 ≥ 0 and R(0) = R0 ≥ 0. (2)

The total population N(t) = N at time t is the sum of the populations in the compart-
ments S, E, I , and R. Since the variable R does not appear in the first three equations of
model (1), it is possible to examine model (1) by studying the subsystem

⎧
⎪⎪⎨

⎪⎪⎩

dS
dt = μN – μS – βSI

N ,
dE
dt = βSI

N – (μ + k + α)E,
dI
dt = kE – (μ + γ )I,

(3)

and determining R from R = N – (S + E + I) or dR
dt = αE + γ I – μR.

3 Model analysis
Since model (1) tracks human populations, all parameters associated with it are nonneg-
ative.

3.1 Invariant region
From model (1) the addition of all the equations gives

dN
dt

=
dS
dt

+
dE
dt

+
dI
dt

+
dR
dt

= 0, (4)

which indicates that the total population N is constant. Also, since model (1) represents
interaction between individuals in the human population, it is plausible to assume that all
the state variables of the model are nonnegative for all t ≥ 0 (see the proof of Theorem 3.1).
Further, it can be shown that the region

� =
{

(S, E, I, R) ∈R
4
+ : S + E + I + R ≤ N

}
(5)

is positively invariant. Thus the solution of model (1) with initial conditions in � remains
there for t ≥ 0. Furthermore, the usual existence, uniqueness, and continuation results
hold in � for the equations of model (1) so that model (1) is well posed both mathemati-
cally and epidemiologically. So it is sufficient to study the dynamics of the basic model (1)
in �.
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3.2 Positivity of the solutions
Theorem 3.1 The solutions of model (1) with positive initial data remain positive for all
times t ≥ 0.

Proof Given that the initial data S0, E0, I0, R0 are nonnegative, it is clear from the first
equation of model (1) that

dS
dt

= μN – μS –
βSI
N

≥ –
(

μ +
βI
N

)

S,

from which we have

dS
S

≥ –
(

μ +
βI
N

)

dt.

Integrating both sides of this inequality and applying the technique of separation of vari-
ables along with initial condition yield

S(t) ≥ S0e–(μ+ βI
N )t . (6)

Also from the second equation of model (1) we have

dE
dt

=
βSI
N

– (μ + k + α)E ≥ –(μ + k + α)E,

which implies

dE
E

≥ –(μ + k + α) dt.

Integrating both sides, we have

∫ dE
E

≥ –
∫

(μ + k + α) dt.

Then solving by technique of separation of variables and applying the initial condition,
we get

E(t) ≥ E0e–(μ+k+α)t . (7)

Applying similar steps to the third and fourth equations of model (1), we obtain, respec-
tively,

I(t) ≥ I0e–(μ+γ )t (8)

and

R(t) ≥ R0e–μt . (9)

This completes the proof of the theorem. �
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Therefore the solution of model (1) is positive. Since studying model (1) is similar to
studying the reduced model (3), we focus the following discussions on model (3).

3.3 Equilibria and the basic reproduction number
The system of model (3) has two nonnegative equilibrium points called the disease-free
equilibrium (DFE), where E = I = 0, and endemic equilibrium (EE), where E �= 0 and I �= 0.
To obtain the DFE and EE points, the right-hand side of model (3) is set to zero and then
solved for the values of S, E, and I . Then the DFE point of the respective states becomes

E1 = (N , 0, 0), (10)

and the EE point becomes

E2 =
(

N
R0

,
μN(μ + γ )

βk
(R0 – 1),

μN
β

(R0 – 1)
)

. (11)

To calculate the basic reproduction number R0 of model (3), we use the method of the
next generation matrix given in [10] and obtain

R0 =
βk

(μ + k + α)(μ + γ )
. (12)

3.4 Local stability of the equilibria
For the stability analysis of the DFE and EE points, the linearization matrix (Jacobian ma-
trix) of model (3) is evaluated at each equilibrium point, and then its eigenvalues are de-
termined by solving its characteristic equation. Based on the eigenvalues, the equilibrium
points will either be stable (if all the eigenvalues of the Jacobian evaluated at the equilib-
rium point contain negative real parts) or unstable (if at least one of the eigenvalues of the
Jacobian evaluated at the equilibrium point has a positive real part).

Theorem 3.2 The DFE of model (3) is locally asymptotically stable if R0 < 1 and unstable
if R0 > 1.

Proof The Jacobian matrix of model (3) is

J(S, E, I) =

⎡

⎢
⎣

–μ – βI
N 0 – βS

N
βI
N –(μ + k + α) βS

N
0 k –(μ + γ )

⎤

⎥
⎦ . (13)

For the DFE point E1 of Eq. (10),

J(E1) =

⎡

⎢
⎣

–μ 0 –β

0 –(μ + k + α) β

0 k –(μ + γ )

⎤

⎥
⎦ . (14)

The eigenvalues of the Jacobian matrix J are the solutions of the characteristic equation

∣
∣J(E1) – λI

∣
∣ = 0, (15)
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where I is the identity matrix, that is,

∣
∣
∣
∣
∣
∣
∣

–μ – λ 0 –β

0 –(μ + k + α) – λ β

0 k –(μ + γ ) – λ

∣
∣
∣
∣
∣
∣
∣

= 0. (16)

This leads to the characteristic equation given by

λ3 + a1λ
2 + a2λ + a3 = 0, (17)

where

a1 = 3μ + k + α + γ ,

a2 = μ(2μ + k + α + γ ) + (μ + γ )(μ + k + α)(1 – R0), (18)

a3 = μ(μ + γ )(μ + k + α)(1 – R0).

Based on the Routh–Hurwitz stability criteria, without solving Eq. (17), we get that the
sufficient and necessary conditions for stability are

a1 > 0, a3 > 0, a1a2 – a3 > 0. (19)

The first inequality is clearly satisfied since all model parameters are positive, and the
second inequality a3 > 0 holds if R0 < 1. For the third condition,

a1a2 – a3 = (3μ + k + α + γ )
(
μ(2μ + k + α + γ ) + (μ + γ )(μ + k + α)(1 – R0)

)

– μ(μ + γ )(μ + k + α)(1 – R0)

= (2μ + k + α + γ )
(
μ(3μ + k + α + γ ) + (μ + γ )(μ + k + α)(1 – R0)

)
> 0.

Therefore by the Routh–Hurwitz criteria all eigenvalues of J(E1) are negative when R0 <
1, so that E1 is locally asymptotically stable. �

Theorem 3.3 The EE of model (3) is locally asymptotically stable if R0 > 1 and unstable if
R0 < 1.

Proof For the EE point E2 of Eq. (11),

J(E2) =

⎡

⎢
⎣

–μR0 0 –β

R0

μ(R0 – 1) –(μ + k + α) β

R0

0 k –(μ + γ )

⎤

⎥
⎦ . (20)

Then its characteristic equation is given by

λ3 + b1λ
2 + b2λ + b3 = 0, (21)
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Table 1 Sensitivity indices of R0 to model parameters

Parameter Sensitivity indices

μ –0.0643
β +1
k +0.84
α –0.8
γ –0.99

where

b1 = μR0 + 2μ + k + α + γ ,

b2 = μ(2μ + k + α + γ )R0, (22)

b3 = μ(μ + γ )(μ + k + α)(R0 – 1).

Clearly, b1 > 0, and if R0 > 1, then b3 > 0, and

b1b2 – b3 = (μR0 + 2μ + k + α + γ )μ(2μ + k + α + γ )R0 – μ(μ + γ )(μ + k + α)(R0 – 1)

= μR0(μR0 + 2μ + k + α + γ )(2μ + k + α + γ ) + μ
(
(μ + k + α)(μ + γ ) – βk

)

> 0.

Therefore by the Routh–Hurwitz criteria, all eigenvalues of J(E2) are negative when R0 >
1, so that E2 is locally asymptotically stable. �

3.5 Sensitivity analysis of the model parameters
In the study of biological dynamics the transmission dynamics of infectious disease model
sensitivity analysis plays an important role. Using sensitivity analysis, the role of each pa-
rameter used in the model can be investigated, and a strategy can easily be developed to
control the spread of infection in the community.

In this section, the normalized forward sensitivity index of R0 to a model parameter,
which is a ratio of the relative change in R0 to the relative change in the parameter defined
by

ϒ
R0
P =

∂R0

∂p
× P

R0
, (23)

where p represents all the model parameters (μ,β , k,α,γ ), is carried out in the sense of [3].
Using (23), the sensitivity indices of R0 with respect to the model parameters are presented
in Table 1 using the values μ = 0.015267, β = 10, k = 0.0444, α = 0.2325, and γ = 1.25 taken
from Sect. 5.

The positive sign of sensitivity index of R0 to the model parameters indicates that an
increase (or decrease) in the value of each of the parameter leads to increase (or decrease)
in R0, whereas the negative sign indicates that an increase (or decrease) in the value of
parameter leads to a corresponding decrease (or increase) in R0 of model (3). From Table 1,
β and k have the impact of expanding the disease in the community if their values are
increased, whereas μ, α, and γ have an influence of minimizing the burden of the disease
in the community as their values increase.
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4 Optimal control problem
Optimal control is the method of determining control and state trajectories for a dynamic
system over a period of time to minimize a performance index or an objective functional.

In this section, three time-dependent controls (distancing, case finding, and treatment)
are incorporated to the model of Eq. (1). The distancing control u1(t) is the effort of pre-
venting susceptible individuals from becoming infectious using strategies such as early
detection and isolation of infectious individuals, and health education campaign (preven-
tion of careless spitting, coughing, and sneezing). It is incorporated by adding a control
term that characterizes the contact between susceptible and infectious individuals so that
the rate of infection will be reduced. The case finding control u2(t) is the effort of identify-
ing TB exposed individuals through screening and put under treatment to reduce number
of individuals that may progress to TB infectious. The treatment control u3(t) is the effort
of ensuring for those that are infectious treatment and monitoring in taking their drugs
to reduce the number of individuals developing and dying of TB. Then, after incorporat-
ing the controls into the model described by Eq. (1), we get the following optimal control
model:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS
dt = μN – μS – (1 – u1) βSI

N ,
dE
dt = (1 – u1) βSI

N – (μ + k + (1 + u2)α)E,
dI
dt = kE – (μ + γ + u3)I,
dR
dt = (1 + u2)αE + (γ + u3)I – μR,

(24)

with the initial conditions of Eq. (2).
Here our purpose is finding the optimal values of u1, u2, and u3 so that the state and

control trajectories minimize the objective functional given by

J(u1, u2, u3) =
∫ tf

0

(

E + I +
B1

2
u2

1 +
B2

2
u2

2 +
B3

2
u2

3

)

dt (25)

subject to the state system (24).
In Eq. (25), tf is a fixed final time, whereas the coefficients B1, B2, and B3 are positive

weight constants, which balance the cost factors associated with control measures u1, u2,
and u3, respectively. The cost of each control measure is assumed to be nonlinear and
take quadratic form, that is, B1

2 u2
1, B2

2 u2
2, and B3

2 u2
3 are the costs of the control measure

associated with u1, u2, and u3, respectively. Thus we seek the optimal controls, u∗
1, u∗

2, u∗
3

satisfying

J
(
u∗

1, u∗
2, u∗

3
)

= min
{

J(u1, u2, u3) : u1, u2, u3 ∈ U
}

, (26)

where U = {(u1, u2, u3) : each ui, i = 1, 2, 3 is Lebesgue measurable with 0 ≤ ui ≤ ui max

for 0 ≤ t ≤ tf } is the set of acceptable controls.

4.1 Existence of an optimal control
Theorem 4.1 There exist optimal controls u∗

1, u∗
2, and u∗

3 and the corresponding state so-
lutions S∗, E∗, I∗, and R∗ to Eqs. (24)–(26) that minimize J(u1, u2, u3) over U .
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Proof The nontrivial criteria regarding the set of admissible controls U and the set of end
conditions from the theorem of Fleming and Rishel [11] are described and checked below.

A. The set of all solutions to Eqs. (24)–(26) with corresponding control functions in U
is nonempty.

B. The state system (24) can be written as a linear function of the control variables with
coefficients dependent on time and the state variables.

C. The integrand L of (25), L(t, S, E, I, R, u1, u2, u3) = E + I + B1
2 u2

1 + B2
2 u2

2 + B3
2 u2

3 is convex
on U and additionally satisfies L(t, S, E, I, R, u1, u2, u3) ≥ d1|(u1, u2, u3)|τ – d2, where d1 > 0
and τ > 1. To establish condition A, Picard–Lindelöf ’s theorem from [3, 4] is referred.
If the solutions of the state equations are bounded and the state equations are Lipschitz
continuous in the state variables, then there is a unique solution corresponding to every
admissible control U . With the boundedness of the solutions of model (1) already justified,
it follows that the state system is continuous and bounded. It is also equally direct to show
the boundedness of the partial derivatives with respect to the state variables in the state
system, which confirms that the system is Lipschitz in relation to the state variables [7].
This completes the proof of condition A. Condition B is confirmed by observing linear
dependence on controls u1, u2, and u3 of the state equations. Finally, to verify condition C,
by definition from [8] any constant, linear, and quadratic functions are convex. Therefore
L(t, S, E, I, R, u1, u2, u3) is convex on U . To prove the bound on L, note that by the definition
of U we have

B3u2
3 ≤ B3 since u3 ∈ [0, u3 max],

B3

2
u2

3 ≤ B3

2
⇒ B3

2
u2

3 –
B3

2
≤ 0,

L(t, S, E, I, R, u1, u2, u3) = E + I +
B1

2
u2

1 +
B2

2
u2

2 +
B3

2
u2

3 ≥ B1

2
u2

1 +
B2

2
u2

2 +
B3

2
u2

3 –
B3

2

⇒ L(t, S, E, I, R, u1, u2, u3) ≥ min

(
B1

2
,

B2

2
,

B3

2

)
(
u2

1 + u2
2 + u2

3
)

–
B3

2

⇒ L(t, S, E, I, R, u1, u2, u3) ≥ min

(
B1

2
,

B2

2
,

B3

2

)
∣
∣(u1, u2, u3)

∣
∣2 –

B3

2
.

Therefore L(t, S, E, I, R, u1, u2, u3) ≥ d1|(u1, u2, u3)|τ – d2, where d1 = min( B1
2 , B2

2 , B3
2 ), d2 =

B3
2 , and τ = 2. �

4.2 Characterization of the optimal controls
Necessary conditions that optimal solutions need to satisfy are obtained from Pontryagin’s
maximum principle. This principle converts Eqs. (24)–(26) into a problem of minimizing
pointwise a Hamiltonian (H) with respect to u1, u2, and u3 given by

H(t, S, E, I, R, u1, u2, u3,λ1,λ2,λ3,λ4) = L(t, S, E, I, R, u1, u2, u3) +
4∑

i=1

λifi, (27)

where L(t, S, E, I, R, u1, u2, u3) = E + I + B1
2 u2

1 + B2
2 u2

2 + B3
2 u2

3, fi, i = 1, 2, 3, 4, are the right-hand
side components of model (24), and λi, i = 1, 2, 3, 4, are the adjoint or costate variables
associated with S, E, I , and R. Then, applying the Pontryagin’s maximum principle, we
obtain the following result.
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Theorem 4.2 There exist optimal controls u∗
1, u∗

2, and u∗
3 and the corresponding state solu-

tions S∗, E∗, I∗, and R∗ that minimize J(u1, u2, u3) over U , and therefore there exist adjoint
variables λ1, λ2, λ3, and λ4 such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dλ1
dt = λ1(μ + (1 – u∗

1) βI∗
N ) – λ2((1 – u∗

1) βI∗
N ),

dλ2
dt = –1 + λ2(μ + k + (1 + u∗

2)α) – λ3k – λ4(1 + u∗
2)α,

dλ3
dt = –1 + λ1((1 – u∗

1) βS∗
N ) – λ2((1 – u∗

1) βS∗
N ) + λ3(μ + γ + u∗

3) – λ4(γ + u∗
3),

dλ4
dt = μλ4,

(28)

with transversality conditions

λi(tf ) = 0, i = 1, 2, 3, 4. (29)

Furthermore, the characterization of the optimal controls is given by

u∗
1(t) = min

{

max

{

0,
(λ2 – λ1)βS∗I∗/N

B1

}

, u1 max

}

,

u∗
2(t) = min

{

max

{

0,
(λ2 – λ4)αE∗

B2

}

, u2 max

}

, (30)

u∗
3(t) = min

{

max

{

0,
(λ3 – λ4)I∗

B3

}

, u3 max

}

.

Proof The adjoint system is obtained by taking the negative partial derivatives of H with
respect to each state variable [13], evaluated at optimal controls and corresponding state
variables as follows:

dλ1

dt
=

–∂H
∂S

= λ1

(

μ +
(
1 – u∗

1
)βI∗

N

)

– λ2

(
(
1 – u∗

1
)βI∗

N

)

, λ1(tf ) = 0,

dλ2

dt
=

–∂H
∂E

= –1 + λ2
(
μ + k +

(
1 + u∗

2
)
α
)

– λ3k – λ4
(
1 + u∗

2
)
α, λ2(tf ) = 0,

dλ3

dt
=

–∂H
∂I

= –1 + λ1

(
(
1 – u∗

1
)βS∗

N

)

– λ2

(
(
1 – u∗

1
)βS∗

N

)

+ λ3
(
μ + γ + u∗

3
)

– λ4
(
γ + u∗

3
)
, λ3(tf ) = 0,

dλ4

dt
=

–∂H
∂R

= μλ4, λ4(tf ) = 0.

Also, for characterization of the optimal controls, we first obtain the optimality condi-
tions by taking the partial derivatives of H with respect to each control ui, i = 1, 2, 3, and
setting them to zero, that is,

∂H
∂u1

= B1u1 +
λ1βSI

N
–

λ2βSI
N

= 0 ⇒ u∗
1(t) =

(λ2 – λ1)βSI/N
B1

,

∂H
∂u2

= B2u2 – λ2αE + λ4αE = 0 ⇒ u∗
2(t) =

(λ2 – λ4)αE
B2

,

∂H
∂u3

= B3u3 – λ3I + λ4I = 0 ⇒ u∗
3(t) =

(λ3 – λ4)I
B3

.
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Then, using the property of the control bounds 0 ≤ ui ≤ ui max, i = 1, 2, 3, the controls
are given as

u∗
1 =

⎧
⎪⎪⎨

⎪⎪⎩

0 if (λ2 – 1)βSI/N < 0,

u∗
1 if 0 ≤ (λ2–λ1)βSI

N ≤ B1u1 max,

u1 max if (λ2–λ1)βSI
N > B1u1 max,

u∗
2 =

⎧
⎪⎪⎨

⎪⎪⎩

0 if (λ2 – λ4)αE < 0,

u∗
2 if 0 ≤ (λ2 – λ4)αE ≤ B2u2 max,

u2 max if (λ2 – λ4)αE > B2u2 max,

and

u∗
3 =

⎧
⎪⎪⎨

⎪⎪⎩

0 if (λ3 – λ4)I < 0,

u∗
3 if 0 ≤ (λ3 – λ4)I ≤ B3u3 max,

u3 max if (λ3 – λ4)I > B3u3 max.

This can be written in compact form as follows:

u∗
1(t) = min

{

max

{

0,
(λ∗

2 – λ∗
1)βS∗I∗/N
B1

}

, 1
}

,

u∗
2(t) = min

{

max

{

0,
(λ∗

2 – λ∗
4)αE∗

B2

}

, 1
}

,

u∗
3(t) = min

{

max

{

0,
(λ∗

3 – λ∗
4)I∗

B3

}

, 1
}

.

We point out that the optimal controls and the corresponding state solutions are found
by solving the following optimality system, which consists of the state system (24) with
its initial conditions coupled with the adjoint system (28) and its transversality conditions
(29) together with the characterization of the optimal controls (30):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = μN – μS – (1 – u∗

1) βSI
N ,

dE
dt = (1 – u∗

1) βSI
N – (μ + k + (1 + u∗

2)α)E,
dI
dt = kE – (μ + γ + u∗

3)I,
dR
dt = (1 + u∗

2)αE + (γ + u∗
3)I – μR,

dλ1
dt = λ1(μ + (1 – u∗

1) βI
N ) – λ2((1 – u∗

1) βI
N ),

dλ2
dt = –1 + λ2(μ + k + (1 + u∗

2)α) – λ3k – λ4(1 + u∗
2)α,

dλ3
dt = –1 + λ1((1 – u∗

1) βS
N ) – λ2((1 – u∗

1) βS
N ) + λ3(μ + γ + u∗

3) – λ4(γ + u∗
3),

dλ4
dt = μλ4,

S(0) = S0, E(0) = E0, I(0) = I0, R(0) = R0,

λi(tf ) = 0, i = 1, 2, 3, 4.

(31)

�

4.3 Uniqueness of the optimality system
Since the state and adjoint variables are bounded (because the adjoint system (28) is also
linear in λi, i = 1, 2, 3, 4, as the state system) and satisfy the Lipschitz condition rela-
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Figure 2 Simulation results for the cumulative number of people infected with TB

tive to their state variables, it is possible to show the uniqueness of the optimality sys-
tem.

Theorem 4.3 If the state and adjoint variables are bounded and satisfy the Lipschitz con-
dition relative to their state variables with constant M > 0, then for the sufficiently small
final time tf , the solutions of system (31) are unique (for proof, see [14]).

5 Numerical results and discussions
In this section, we first estimate the model parameters. Second, we analyze the stability
of the equilibrium points. Then we investigate the effect of the controls in reducing the
infected population with TB under different strategies.

5.1 Estimation of model parameters
Since some parameter values such as demographic data are well known from the litera-
ture, we have estimated unknown parameters based on the data obtained from the health
office of the Haramaya district and Haramaya hospital to keep the model more realistic.
The natural mortality μ is postulated to be equal to the inverse of the life expectancy at
birth, which is now about 65.5 years in Ethiopia [22]. Therefore the natural death rate μ

in Ethiopia is 1
65.5 = 0.015267 per year. The mean infectious period 1

γ
is estimated in the

range of 0.5–2 years. Here we choose γ = 0.5+2
2 = 1.25 year–1. The parameter β is in the

range of 10–15 year–1 by the assumption that a person with active TB infects an average
of 10–15 other people every year [18]. So, we have taken β = 10 year–1. The parameters k
and α, which cannot be obtained by the observed data or references, are estimated using
the least-squares data fitting method with the help of a MATLAB tool fminsearch, which
is part of the optimization toolbox. This is done by fitting model (1) to the observed data of
active TB incidence in 2010–2019 ensuring that the minimum error occurred whilst get-
ting the best fits. The fitted curve to the observed data is shown in Fig. 2 and the estimated
values of k and α are presented in Table 2.
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Table 2 Parameter estimates and 95% CI calculated from 1000 simulated data sets

Parameter Estimate 95% CI

k 0.0444 (0.0392, 0.0501)
α 0.2325 (0.1689, 0.3077)

To quantify parameter uncertainty and construct confidence intervals (CI), we rely on
the parametric bootstrapping method. Bootstrapping is a statistical method for assigning
accuracy measures to the sample estimates [6]. In this method, multiple observations are
repeatedly sampled from the best-fit model to quantify parameter uncertainty by assum-
ing that the time series follow a Poisson distribution centered on the mean at the time
points.

In addition to the parameters, we take the following as an initial population of the district
relating to the year 2010, and for numerical results, we divide the total population N =
361,000, as follows. We assume that 80% of the population are susceptible [18], whereas
the number I0 of infectious individuals in 2010 was estimated by the number of smear
positive patients obtained from the health office of the Haramaya district and Haramaya
hospital. So, with this assumption, we have the following initial data for the simulation
purpose: (S0, E0, I0, R0) = (288,800, 3455, 155, 68,590).

5.2 Stability analysis of equilibrium points
Based on the above real data, we found from Eq. (12) that R0 = 1.2011 > 1. This in princi-
ple shows that TB does spread in the community of the district. Since R0 > 1, the preva-
lence of TB will result in an epidemic. This is due to the fact that the rate of transmis-
sion is greater than the recovery rate. From Eq. (10), the DFE point is determined to be
E1 = (361,000, 0, 0), and from Eq. (11), EE point E2 = ( N

R0
, μN(μ+γ )

βk (R0 – 1), μN
β

(R0 – 1)) =
(300557.8, 3158.4, 110.8).

The characteristic equation from (17) becomes

λ3 + 1.5727λ2 – 0.0506λ – 0.0011 = 0,

which shows that the DFE point is unstable by the Routh–Hurwitz criterion. This means
that when an individual infected with Mycobacterium TB is present in a susceptible pop-
ulation, it will eventually result in an outbreak of the disease. The characteristic equation
from (21) also becomes

λ3 + 1.5758λ2 + 0.0286λ + 0.0011 = 0,

which shows that the EE point is stable. This means that TB in the study area will persist.

5.3 Optimal control problem analysis
In this section, we numerically analyze the impact of control strategies on controlling
transmission of the TB disease using the Matlab R2019a program. We solve the optimality
system (31), which consists of eight ordinary differential equations from state and adjoint
equations, using the forward–backward sweep method developed by Lenhart and Work-
man [13]. The numerical procedure starts with an initial guess on the control variables.
Then, using fourth-order Runge–Kutta scheme, we solve the state equations simultane-
ously forward in time starting from the initial conditions, and using the state solutions, we
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Figure 3 Simulations of the model showing the effect of strategy A

solve the adjoint equations backward in time simultaneously starting from the transver-
sality conditions. The controls are updated by using a convex combination of the previous
controls and the characterization values. The we utilize the updated controls to repeat
the solutions of state and adjoint systems. This process is repeated until the values of the
state, adjoint, and control variables at the previous iteration are very close to those at the
present iteration.

To illustrate the numerical results, we consider B1 = B2 = B3 = 100. The impact of each
control strategy on eradication of the TB disease is investigated under the following strate-
gies:

i. Strategy A: Applying distancing (u1) only.
ii. Strategy B: Applying case finding (u2) only.
iii. Strategy C: Applying treatment (u3) only.
iv. Strategy D: Combination of use of distancing (u1) and case finding (u2).
v. Strategy E: Combination of use of distancing (u1) and treatment (u3).
vi. Strategy F: Combination of use of case finding (u2) and treatment (u3).
vii. Strategy G: Combination of use of distancing (u1), case finding (u2), and treatment

(u3).

5.3.1 Strategy A
Here we only use distancing control u1 to optimize the objective functional J in (25). From
Fig. 3 we observe that the strategy has a significant effect in reducing the number of ex-
posed and infectious populations when compared to the numbers in the case without
controls.

5.3.2 Strategy B
Under this strategy, we use the case finding control u2 to optimize the objective functional
J in (25) while setting other controls to zero. From Fig. 4 we observe that this strategy is
effective in reducing the number of exposed and infectious populations.

5.3.3 Strategy C
In this strategy, we only use treatment control u3 to optimize the objective functional J
in (25) while setting other controls to zero. From Fig. 5 we observe that the strategy is
effective in reducing the number of exposed and infectious populations.
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Figure 4 Simulations of the model showing the effect of strategy B

Figure 5 Simulations of the model showing the effect of strategy C

From the numerical computation we get that the numbers of infectives with strategies
A, B, and C are 306, 701, and 1292, respectively, at final time. In Figs. 6(a), 6(b), and 6(c),
the control profiles of strategies A, B, and C are displayed, which suggest that controls
u1, u2, and u3 of the respective strategy are at upper bound for period of 8.1, 8.3, and 7.7
years, respectively, before sharply drop to zero at final time. These clearly indicate that the
number of infection is reduced by a larger amount in strategy A than in strategy B and C,
whereas strategy C requires less effort than strategies A and B.

5.3.4 Strategy D
The distancing control u1 and case finding control u2 are applied under this strategy,
whereas treatment control u3 is set to zero. We observe from Fig. 7 that the number of
exposed and infectious populations decrease when compared to the numbers in the case
without controls.

5.3.5 Strategy E
Here both distancing control u1 and treatment control u3 are used, whereas case finding
control u2 is set to zero. We observe from Fig. 8 that the strategy is effective in reducing
the number of exposed and infectious populations.
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Figure 6 Control profile for strategy A, B and C

Figure 7 Simulations of the model showing the effect of strategy D

5.3.6 Strategy F
In this strategy, the objective functional J is optimized using case finding control u2 and
treatment control u3. We observe from Fig. 9 that this strategy shows a significant effect
in reducing the number of exposed and infectious populations.
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Figure 8 Simulations of the model showing the effect of strategy E

Figure 9 Simulations of the model showing the effect of strategy F

Figure 10 Simulations of the model showing the effect of strategy G
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Figure 11 Control profile for strategy D, E, F, and G

5.3.7 Strategy G
Here we used all the three control strategies u1, u2, and u3 to optimize the objective func-
tional J . We observe from Fig. 10 that the number of exposed and infectious populations
highly decrease when compared to the numbers in the case without controls.

The results from the numerical computations show that the numbers of infectives with
strategies D, E, F, and G are 89, 305, 259, and 88, respectively, at final time, which indicates
that strategy G is more effective in reducing the number of infection than other strategies.
In Figs. 11(a), 11(b), 11(c), and 11(d) the control profiles of strategy D, E, F, and G are
shown, which indicate that strategy G requires less effort than other strategies.
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Figure 12 Cost function of the intervention strategies

From the above results, all strategies are effective in reducing the number of exposed and
infectious populations when compared with a situation without controls. The strategies
with only one control are less effective in reducing the number of exposed and infectious
populations when compared to strategies that incorporate more than one control. Also,
even if the strategies with only one control are less effective, they are cheaper than the
strategies that incorporate more than one control, as indicated in Fig. 12.

6 Conclusion
In this paper, we developed a dynamic model for TB transmission in the Haramaya district
of Ethiopia based on active-TB incidence data recorded by the district health office and
the Haramaya hospital. The model qualitative analysis demonstrates that model solutions
are bounded and positive. The basic reproduction number and local stability conditions
of the equilibria were determined, and the basic reproduction number was used to per-
form the sensitivity analysis that identified the role of each parameter used in the model
to the spread of TB disease. Three time-dependent control measures such as distancing,
case finding through screening of TB exposed individuals, and treatment of TB infectious
population were applied to the model so that basic model was extended into an optimal
control model. Theoretically, we proved the existence of an optimal control and obtained
necessary conditions that optimal solutions need to satisfy using Pontryagin’s maximum
principle. Numerically, the levels of exposed and infectious populations with and with-
out optimal controls were compared under different intervention strategies to investigate
the roles of control measures independently and as combination in eradication of the TB
disease. Implementing strategies with only one control is less effective in reducing the
number of exposed and infectious populations when compared with strategies that in-
corporate more than one control. From strategies that incorporate more than one control
measure, the strategy with combination of all three control measures is the best strategy
in reducing the number of TB infection with minimum cost of interventions.
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