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Abstract
An interesting point in studying the oscillatory behavior of solutions of delay
differential equations is the abbreviation of the conditions that ensure the oscillation
of all solutions, especially when studying the noncanonical case. Therefore, this study
aims to reduce the oscillation conditions of the fourth-order delay differential
equations with a noncanonical operator. Moreover, the approach used gives more
accurate results when applied to some special cases, as we explained in the examples.
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1 Introduction and preliminaries
Delay differential equations (DDEs) are of great importance in modeling many phenomena
and problems in various applied sciences, see [13]. The mounting interest in studying the
qualitative properties of solutions of DDEs is easy to notice, see for example [1–12] and
[14–25]. However, the equations with noncanonical operator did not receive the same
attention as the equations in the canonical case. One can trace the evolution in the study
of the oscillatory properties of higher-order DDEs with noncanonical operator through
works of Baculikova et al. [7], Zhang et al. [23–25], and, recently, Moaaz et al. [16, 18].

This study is concerned with finding sufficient oscillation conditions for the solutions
of the DDE

(
a(l)

(
v′′′(l)

)κ)′ + f
(
l, v

(
g(l)

))
= 0, l ≥ l0, (1.1)

in the noncanonical case, that is,

ψ0(l0) :=
∫ ∞

l0

1
(a(ν))1/κ dν < ∞. (1.2)
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In this study, we suppose that κ > 0 is a ratio of odd integers, a ∈ C1(I0,R+), a′(l) ≥ 0,
g ∈ C(I0,R+), g(l) ≤ l, g ′(l) > 0, liml→∞ g(l) = ∞, Iϑ := [lϑ ,∞), f ∈ C(I0 × R,R), and there
exists a function h ∈ C(I0, [0,∞)) such that f (l, v) ≥ h(l)vκ .

By a solution of (1.1), we mean a nontrivial real-valued function v ∈ C([lκ ,∞),R) for
some lκ ≥ l0, which has the property a(v′′′)κ ∈ C1([l0,∞),R) and satisfies (1.1) on [l0,∞).
We will consider only those solutions of (1.1) which exist on some half-line [lκ ,∞) and
satisfy the condition

sup
{∣∣v(l)

∣
∣ : lc ≤ l < ∞}

> 0 for any lc ≥ lκ .

If v is either positive or negative, eventually, then v is called nonoscillatory; otherwise it is
called oscillatory. Equation (1.1) itself is termed oscillatory if all its solutions are oscilla-
tory.

Zhang et al. [25] considered the higher-order DDE

(
a
(
v(n–1)κ)′(l) + h(l)vγ

(
g(l)

)
= 0, (1.3)

where κ , γ are a ration of odd integers and 0 < γ ≤ κ . Moreover, Zhang et al. [23] studied
the oscillation of solutions for (1.3) and improved the results [25]. For the convenience of
the reader, we present some of their results below at κ = γ and n = 4.

Theorem 1.1 ([25, Corollary 2.1]) If

lim inf
l→∞

∫ l

g(l)
h(s)

(g3(s))κ

a(g(s))
ds >

(3!)κ

e
(1.4)

and

lim sup
l→∞

∫ l

l0

(
h(s)

(
ε1ψ0(s)g2(s)

2!

)κ

–
κκ+1

(κ + 1)κ+1
1

ψ0(s)a1/κ (s)

)
ds = ∞ (1.5)

for some ε1 ∈ (0, 1), then every nonoscillatory solution of (1.1) tends to zero.

Theorem 1.2 ([23, Corollary 2.1]) If (1.4), (1.5), and

lim sup
l→∞

∫ l

l0

(
h(s)aκ (s) –

κκ+1

(κ + 1)κ+1
(a′(s))κ+1

a(s)aκ∗(s)

)
ds = ∞ (1.6)

for some ε1 ∈ (0, 1), where

a(s) =
∫ ∞

l
(η – l)ψ0(η) dη

and

a∗(s) =
∫ ∞

l
ψ0(η) dη,

then (1.1) is oscillatory.
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Dzurina and Jadlovska [9] considered the second-order DDE

(
a(l)

(
v′(l)

)κ)′ + h(l)vκ
(
g(l)

)
= 0. (1.7)

Moreover, Dzurina et al. [10] investigated the oscillation of solutions for (1.7) and im-
proved the results [9].

Theorem 1.3 ([9, Theorem 3]) Assume that

lim sup
l→∞

ψκ
0 (l)

∫ l

l0
h(s) ds > 1.

Then (1.7) is oscillatory.

Theorem 1.4 ([10, Theorem 2.3]) Let

∫ ∞

l0

1
a1/κ (l)

(∫ l

l0
h(s) ds

)1/κ

dl = ∞

hold. If

k := lim inf
l→∞

1
ψ(l)

∫ ∞

l
ψκ+1(s)h(s) ds > κ

or

k ≤ κ and K > 1 –
k
κ

,

where

K := lim sup
l→∞

ψ(l)
(∫ l

l0
h(s) ds

)1/κ

> 1,

then (1.7) is oscillatory.

The objective of this paper is to improve and simplify the oscillation criteria of the
fourth-order DDE (1.1) in the noncanonical case. In the noncanonical case, it is usual
to have oscillation criteria in the form of at least three independent conditions; however,
in Sect. 2, we obtain only two independent conditions that guarantee the oscillation of all
solutions. In Sect. 3, we take an approach that creates improved criteria for oscillation.
Further, the examples provided illustrate the significance of the results.

Lemma 1.1 ([5]) Assume that F ∈ Cm(I0,R) and F (m)(l) is eventually of constant sign. Then
there are lu ≥ l0 and 	 ∈ Z, 0 ≤ 	 ≤ m, with m + 	 even for F (m)(l) ≥ 0 or m + 	 odd for
F (m)(l) ≤ 0, such that

	 > 0 yields F (k)(l) > 0 for k = 0, 1, . . . ,	 – 1
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and

	 ≤ m – 1 yields (–1)	+kF (k)(l) > 0 for k = 	,	 + 1, . . . , m – 1

for all l ∈ Iu.

2 Simplified criteria for oscillation
Lemma 2.1 Assume that v ∈ C([l0,∞), (0,∞)) is a solution of (1.1). Then (a(l)(v′′′(l))κ )′ ≤
0, and one of the following cases holds, eventually:

(a) v′(l) and v′′′(l) are positive, and v(4)(l) is nonpositive;
(b) v′(l) and v′′(l) are positive, and v′′′(l) is negative;
(c) v′′(l) is positive, and v′(l) and v′′′(l) are negative.

Proof Assume that v ∈ C([l0,∞), (0,∞)) is a solution of (1.1). From (1.1), we have

(
a(l)

(
v′′′(l)

)κ)′ ≤ –h(l)vκ (l) ≤ 0.

From (1.1) and Lemma 1.1, there exist three possible cases (a), (b), and (c) for l ≥ l1, l1

large enough. The proof is complete. �

Let us define

ψm(l) :=
∫ ∞

l
ψm–1(ν) dν for m = 1, 2.

Theorem 2.1 Assume that v ∈ C(I0, (0,∞)) is a solution of (1.1). If

lim sup
l→∞

∫ l

l1

(
1

a1/κ (u)

(∫ u

l1
h(s)ψκ

2
(
g(s)

)
ds

)1/κ)
du = ∞, (2.1)

then v satisfies case (b) in Lemma 2.1.

Proof Assume on the contrary that v ∈ C(I0, (0,∞)) is a solution (1.1) and satisfies either
case (a) or case (c).

First, we suppose that (c) holds on I1. Since (a(l)(v′′′(l))κ )′ ≤ 0, we have

a(l)
(
v′′′(l)

)κ ≤ a(l1)
(
v′′′(l1)

)κ := –L < 0, (2.2)

which is

a1/κ (l)v′′′(l) ≤ –L1/κ . (2.3)

If we divide (2.3) by a1/κ and then integrate from lto 
, we find

v′′(
) ≤ v′′(l) – L1/κ
∫ 


l

1
a1/κ (s)

ds.

Letting 
 → ∞, we get

0 ≤ v′′(l) – L1/κψ0(l). (2.4)
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Integrating (2.4) from l to ∞, we obtain

–v′(l) ≥ L1/κψ1(l). (2.5)

Integrating (2.5) from l to ∞ implies that

v(l) ≥ L1/κψ2(l). (2.6)

From (1.1) and (2.6), we have

(
a(l)

(
v′′′(l)

)κ)′ ≤ –h(l)Lψκ
2
(
g(l)

)
. (2.7)

Integrating (2.7) from l1 to l, we obtain

a(l)
(
v′′′(l)

)κ ≤ a(l1)
(
v′′′(l1)

)κ – L
∫ l

l1
h(s)ψκ

2
(
g(s)

)
ds

≤ –L
∫ l

l1
h(s)ψκ

2
(
g(s)

)
ds. (2.8)

Integrating (2.8) from l1 to l, we get

v′′(l) ≤ v′′(l1) – L1/κ
∫ l

l1

(
1

a1/κ (u)

(∫ u

l1
h(s)ψκ

2
(
g(s)

)
ds

)1/κ)
du.

At l → ∞, we arrive at a contradiction with (2.1).
Finally, let case (a) hold on I1. On the other hand, it follows from (2.1) and (1.2) that

∫ l
l1

h(s)ψκ
2 (s) ds must be unbounded. Further, since ψ ′

2(s) < 0, it is easy to see that

∫ l

l1
h(s) ds → ∞ as l → ∞. (2.9)

Integrating (1.1) from l2 to l, we get

a(l)
(
v′′′(l)

)κ ≤ a(l2)
(
v′′′(l2)

)κ –
∫ l

l2
h(s)vκ

(
g(s)

)
ds

≤ a(l2)
(
v′′′(l2)

)κ – vκ
(
g(l2)

)∫ l

l2
h(s) ds. (2.10)

From (2.9) and (2.10), we get a contradiction with the positivity of a(l)(v′′′(l))κ . This com-
pletes the proof. �

Theorem 2.2 Assume that v ∈ C(I0, (0,∞)) is a solution of (1.1). If

lim sup
l→∞

ψκ
2 (l)

∫ l

l1
h(s) ds > 1, (2.11)

then v satisfies case (b) in Lemma 2.1.
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Proof Assume on the contrary that v ∈ C(I0, (0,∞)) is a solution (1.1) and satisfies case (a)
or case (c).

First, we suppose that (c) holds on I1. Then

v′′(l) ≥ –
∫ ∞

l
a–1/κ (s)a1/κ (s)v′′′(s) ds ≥ –a1/κ (l)v′′′(l)ψ0(l). (2.12)

Integrating (2.12) twice from l to ∞, we arrive at

v′(l) ≤
∫ ∞

l
a1/κ (s)v′′′(s)ψ(s) ds ≤ a1/κ (l)v′′′(l)ψ1(l) (2.13)

and

v(l) ≥ –
∫ ∞

l
a1/κ (s)v′′′(s)ψ1(s) ds ≥ –a1/κ (l)v′′′(l)ψ2(l). (2.14)

Integrating (1.1) from l1 to l, we get

a(l)
(
v′′′(l)

)κ ≤ a(l1)
(
v′′′(l1)

)κ –
∫ l

l1
h(s)vκ

(
g(s)

)
ds,

since g ′(l) > 0 and s ≤ l, we obtain

a(l)
(
v′′′(l)

)κ ≤ –vκ
(
g(l)

)∫ l

l1
h(s) ds. (2.15)

Since g(l) ≤ l, we have

a(l)
(
v′′′(l)

)κ ≤ –vκ (l)
∫ l

l1
h(s) ds. (2.16)

From (2.14) and (2.16), we find

a(l)
(
v′′′(l)

)κ ≤ a(l)
(
v′′′(l)

)κ
ψκ

2 (l)
∫ l

l1
h(s) ds. (2.17)

Dividing both sides of inequality (2.17) by a(l)(v′′′(l))κ and taking the limsup, we arrive at

lim sup
l→∞

ψκ
2 (l)

∫ l

l1
h(s) ds ≤ 1,

we arrive at a contradiction with (2.11).
Next, we suppose that case (a) holds on I1. From (2.11) and the fact that ψ2(l) < ∞, we

get that (2.9) holds. Then, this part of the proof is similar to that of Theorem 2.1. This
completes the proof. �

Theorem 2.3 Assume that (2.1) or (2.11) holds. If there is ρ ∈ C1(I0,R+) such that

lim
l→∞

sup
ψκ

0 (l)
ρ(l)

∫ l

l0

(
ρ(s)h(s)

(
λ

2!
g2(s)

)κ

–
a(s)(ρ ′(s))κ+1

(κ + 1)κ+1ρκ (s)

)
ds > 1 (2.18)

holds for some λ1 ∈ (0, 1), then all solutions of (1.1) are oscillatory.
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Proof Suppose that (1.1) has a nonoscillatory solution v in I0. Then we assume that v is
eventually positive. From Lemma 2.1, we have three cases for v and its derivatives. Using
Theorems 2.1 and 2.2, we have that condition (2.1) or (2.11) ensures that solution v satis-
fies case (b). On the other hand, using Theorem 2.2 in [18], we find that condition (2.18)
contrasts with case (b). This completes the proof. �

Example 2.1 Consider the DDE

(
l3κ+1(v′′′(l)

)κ)′ + h0vκ (εl) = 0, (2.19)

where h0 > 0 and ε ∈ (0, 1]. Note that a(l) := l3κ+1, g(l) := εl, f (v) := vκ , and h(l) := h0. Thus,
we have that

ψ0(l) =
κ

(2κ + 1)l(2κ+1)/κ , ψ1(l) =
κ2

(2κ + 1)(κ + 1)l(κ+1)/κ

and

ψ2(l) =
κ3

(2κ + 1)(κ + 1)l1/κ .

Now, condition (2.11) reduces to

κ3κh0

((2κ + 1)(κ + 1))κ
> 1. (2.20)

Furthermore, if ρ(l) := 1/l2κ+1, then condition (2.18) becomes

h0

(
λ

2!
ε2

)κ

>
(2κ + 1)κ+1

(κ + 1)κ+1 . (2.21)

Using Theorem 2.3, we have that (2.19) is oscillatory if (2.20) and (2.21) hold.

Remark 2.4 Note that, we used two conditions only for testing the oscillation of the fourth-
order DDEs. Moreover, our results can also be applied to ordinary DEs when g(l) = l.

3 Improved criteria for oscillation
Theorem 3.1 Assume that v ∈ C(I0, (0,∞)) is a solution of (1.1). If the DE

v′(l) +
1

ψ2(g(l))

(∫ ∞

l

∫ ∞

ς

ψ2(g(u))
a1/κ (u)

(∫ u

l1
h(s) ds

)1/κ

du dς

)
v
(
g(l)

)
= 0 (3.1)

is oscillatory, then the solution v does not satisfy case (c).

Proof Suppose the contrary that v satisfies case (c). As in the proof of Theorem 2.2, we get
that (2.12) and (2.15) hold. From (2.12), we have

(
v′′(l)
ψ(l)

)′
=

ψ(l)v′′′(l) + v′′(l)a–1/κ (l)
ψ2(l)

≥ 0.



Moaaz et al. Advances in Difference Equations        (2021) 2021:295 Page 8 of 13

Thus, we get that

–v′(l) ≥
∫ ∞

l

v′′(s)
ψ(s)

ψ(s) ds ≥ v′′(l)
ψ(l)

∫ ∞

l
ψ(s) ds,

that is, –v′(l)ψ(l) ≥ v′′(l)ψ1(l). Therefore,

(
v′(l)
ψ1(l)

)′
=

ψ1(l)v′′(l) + v′(l)ψ(l)
ψ2

1 (l)
≤ 0. (3.2)

Using (3.2), we obtain that

–v(l) ≤
∫ ∞

l

v′(s)
ψ1(s)

ψ1(s) ds ≤ v′(l)
ψ1(l)

∫ ∞

l
ψ1(s) ds,

that is, –ψ1(l)v(l) ≤ v′(l)ψ2(l). Hence,

(
v(l)
ψ2(l)

)′
=

ψ2(l)v′(l) + v(l)ψ1(l)
ψ2

2 (l)
≥ 0. (3.3)

Now, integrating (2.15) from l to ∞ and using (3.3), we get

–v′′(l) ≤ –
∫ ∞

l

v(g(u))
a1/κ (u)

(∫ u

l1
h(s) ds

)1/κ

du

≤ –
∫ ∞

l

v(g(u))
ψ2(g(u))

ψ2(g(u))
a1/κ (u)

(∫ u

l1
h(s) ds

)1/κ

du

≤ –
v(g(l))
ψ2(g(l))

∫ ∞

l

ψ2(g(u))
a1/κ (u)

(∫ u

l1
h(s) ds

)1/κ

du. (3.4)

Integrating (3.4) from l to ∞, we find

v′(l) ≤ –
∫ ∞

l

v(g(ς ))
ψ2(g(ς ))

∫ ∞

ς

ψ2(g(u))
a1/κ (u)

(∫ u

l1
h(s) ds

)1/κ

du dς

≤ –
v(g(l))
ψ2(g(l))

∫ ∞

l

∫ ∞

ς

ψ2(g(u))
a1/κ (u)

(∫ u

l1
h(s) ds

)1/κ

du dς .

Thus, it is easy to see that v is a positive solution of the first-order delay differential in-
equality

v′(l) +
1

ψ2(g(l))

(∫ ∞

l

∫ ∞

ς

ψ2(g(u))
a1/κ (u)

(∫ u

l1
h(s) ds

)1/κ

du dς

)
v
(
g(l)

) ≤ 0.

Using [22], we have that (3.1) has also a positive solution, a contradiction. This completes
the proof. �

Corollary 3.1 Assume that v ∈ C(I0, (0,∞)) is a solution of (1.1). If

lim inf
l→∞

∫ l

g(l)

1
ψ2(g(ϑ))

(∫ ∞

ϑ

∫ ∞

ς

ψ2(g(u))
a1/κ (u)

(∫ u

l1
h(s) ds

)1/κ

du dς

)
dϑ >

1
e

, (3.5)

then the solution v does not satisfy case (c).
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Proof Using [22], we note that condition (3.5) ensures the oscillation of (3.1). This com-
pletes the proof. �

Lemma 3.1 Assume that v ∈ C(I0, (0,∞)) is a solution of (1.1) and case (c) holds. If

∫ ∞

l0

(
1

a(ς )

∫ ς

l1
h(s) ds

)1/κ

dς = ∞, (3.6)

then liml→∞ v(l) = 0.

Proof Suppose that v satisfies case (c). Then we obtain that liml→∞ v(l) = c ≥ 0. We claim
that liml→∞ v(l) = 0. Suppose the contrary that c > 0. Thus, there exists l1 ≥ l0 such that
v(g(l)) ≥ c for l ≥ l1, and hence

–
(
a(l)

(
v′′′(l)

)κ)′ ≥ h(l)vκ
(
g(l)

) ≥ cκh(l) (3.7)

for l ≥ l1. Integrating (3.7) twice from l1 to l, we obtain

v′′′(l) ≤ –c
(

1
a(l)

∫ l

l1
h(s) ds

)1/κ

and

v′′(l) ≤ v′′(l1) – c
∫ l

l1

(
1

a(ς )

∫ ς

l1
h(s) ds

)1/κ

dς .

Letting l → ∞ and using (3.6), we obtain that liml→∞ v′′(l) = –∞, which contradicts
v′′(l) > 0. Thus, the proof is complete. �

Lemma 3.2 Assume that (3.6) holds, v ∈ C(I0, (0,∞)) is a solution of (1.1), and case (c)
holds. If there exists a constant μ ≥ 0 such that

ψ2(l)
(∫ l

l0
h(s) ds

)1/κ

≥ μ, (3.8)

then

d
dl

(
v(l)

ψ
μ
2 (l)

)
≤ 0. (3.9)

Proof Suppose that v satisfies case (c). As in the proof of Theorem 2.2, we get that (2.13)
holds. Integrating (1.1) from l1 to l and using v′(l) < 0, we find

a(l)
(
v′′′(l)

)κ ≤ a(l1)
(
v′′′(l1)

)κ –
∫ l

l1
h(s)vκ

(
g(s)

)
ds

≤ a(l1)
(
v′′′(l1)

)κ – vκ
(
g(l)

)∫ l

l0
h(s) ds + vκ

(
g(l)

)∫ l1

l0
h(s) ds. (3.10)
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Using Lemma 3.1, we get that liml→∞ v(l) = 0. Thus, there is l2 ≥ l1 such that

a(l1)
(
v′′′(l1)

)κ + vκ
(
g(l)

)∫ l1

l0
h(s) ds < 0 for every l ≥ l2,

which, with (3.10), gives

a(l)
(
v′′′(l)

)κ ≤ –vκ
(
g(l)

)∫ l

l0
h(s) ds ≤ –vκ (l)

∫ l

l0
h(s) ds. (3.11)

Next, we have that

d
dl

(
v(l)

ψ
μ
2 (l)

)
=

ψ
μ
2 (l)v′(l) + μψ

μ–1
2 (l)ψ1(l)v(l)

ψ
2μ
2 (l)

. (3.12)

Combining (2.13) and (3.11), we get

v′(l) ≤ –v(l)ψ1(l)
(∫ l

l0
h(s) ds

)1/κ

.

This implies

ψ
μ
2 (l)v′(l) + μψ

μ–1
2 (l)ψ1(l)v(l) ≤ –ψ

μ
2 (l)ψ1(l)v(l)

(∫ l

l0
h(s) ds

)1/κ

+ μψ
μ–1
2 (l)ψ1(l)v(l)

=
(

–ψ2(l)
(∫ l

l0
h(s) ds

)1/κ

+ μ

)
ψ

μ–1
2 (l)ψ1(l)v(l).

It follows from (3.8) that ψ
μ
2 (l)v′(l) +μψ

μ–1
2 (l)ψ1(l)v(l) ≤ 0, which, with (3.12), implies that

the function v(l)/ψμ
2 (l) is nonincreasing. This completes the proof. �

Theorem 3.2 Assume that (3.6) holds. If there exists a constant μ ≥ 0 such that (3.8) holds,
and the equation

(
1

ψκ
1 (l)

(
v′(l)

)κ

)′
+ h(l)

(
ψ2(g(l))
ψ2(l)

)μκ

vκ (l) = 0 (3.13)

is oscillatory, then the solution v does not satisfy case (c).

Proof Assume on the contrary that (1.1) has a positive solution v which satisfies case (c).
Using Theorem 2.2 and Lemma 3.2, we get that (2.13) and (3.9) hold, respectively. Inte-
grating (3.9) from g(l) to l, we obtain

v
(
g(l)

) ≥
(

ψ2(g(l))
ψ2(l)

)μ

v(l),

which with (1.1) gives

(
a(l)

(
v′′′(l)

)κ)′ ≤ –h(l)
(

ψ2(g(l))
ψ2(l)

)μκ

vκ (l). (3.14)
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Integrating (2.13) from l to ∞ provides

v(l) ≥ –a1/κ (l)v′′′(l)ψ2(l). (3.15)

Next, we define

w(l) := a(l)
(

v′′′(l)
v(l)

)κ

< 0. (3.16)

From (3.14) and (3.16), we conclude that

w′(l) ≤ –h(l)
(

ψ2(g(l))
ψ2(l)

)μκ

– κ
a(l)(v′′′(l))κ

vκ+1(l)
v′(l),

which, in view of (2.13), gives

w′(l) + h(l)
(

ψ2(g(l))
ψ2(l)

)μκ

+ κψ1(l)w(κ+1)/κ (l) ≤ 0. (3.17)

In view of [6], differential equation (3.13) is nonoscillatory if and only if there exists a
function w ∈ C([l1,∞),R) satisfying inequality (3.17) for l ≥ l1, l1 large enough, which is a
contradiction. This completes the proof. �

Using Theorems 3.2, 1.3, and 1.4, we establish the following oscillation criteria for (1.1)
under the assumption ψ2(l0) < ∞.

Corollary 3.2 Assume that (3.6) holds and there exists a constant μ ≥ 0 such that (3.8)
holds. If ψ2(l0) < ∞ and

lim sup
l→∞

ψκ
2 (l)

∫ l

l0
h(s)

(
ψ2(g(s))
ψ2(s)

)μκ

ds > 1 (3.18)

or

lim inf
l→∞

1
ψ2(l)

∫ ∞

l
ψκ+1

2 (s)h(s)
(

ψ2(g(s))
ψ2(s)

)μκ

ds >
(

κ

κ + 1

)κ+1

(3.19)

hold, then the solution v does not satisfy case (c).

Theorem 3.3 Assume that (1.4), (1.5), and (3.5) hold, then all solutions of equation (1.1)
are oscillatory.

Proof Suppose to the contrary that there exists a nonoscillatory solution v of (1.1). With-
out loss of generality, we suppose that there exists l1 ∈ [l0,∞) such that v(l) > 0 and
v(g(l)) > 0 for l ≥ l1. Using Lemma 2.1, there exist three possible cases (a)–(c). Obviously,
one can show that Theorem 1.1 together with (a) and (b) leads to a contradiction with
(1.4) and (1.5). Therefore, v satisfies (c). From Corollary 3.1, we get a contradiction with
condition (3.5). This completes the proof. �
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Theorem 3.4 Assume that (3.6), (1.4), and (1.5 hold and there exists a constant μ ≥ 0
such that (3.8) holds. If ψ2(l0) < ∞ and (3.19) hold, then all solutions of equation (1.1) are
oscillatory.

Proof Suppose to the contrary that there exists a nonoscillatory solution v of (1.1). With-
out loss of generality, we suppose that there exists l1 ∈ [l0,∞) such that v(l) > 0 and
v(g(l)) > 0 for l ≥ l1. Using Lemma 2.1, there exist three possible cases (a)–(c). Obviously,
one can show that Theorem 1.1 together with (a) and (b) leads to a contradiction with
(1.4) and (1.5). Therefore, v satisfies (c). From Corollary 3.2, we get a contradiction with
condition (3.19). This completes the proof. �

Example 3.1 Consider the delay differential equation

(
e3l(v′′′(l)

)3)′ + h0e3lv3(l – 1) = 0, (3.20)

where h0 > 0. We note that a(l) := e3l , h(l) := h0e3l , f (v) := v3, and g(l) := l – 1. Thus, we have
that

ψi(l) = e–l for i = 0, 1, 2.

It is easy to verify that ψ2(l0) < ∞, (3.6), (1.4), and (1.5) are satisfied. Now, (3.5) holds if
h0 > 0.14936. Moreover, if we choose μ := (h0/3)1/3, then we see that (3.8) is satisfied and
(3.19) holds if h0 > 0.11505.

Hence, by Theorem 3.3, every solution of (3.20) is oscillatory if h0 > 0.14936. Further, by
Theorem 3.4, every solution of (3.20) is oscillatory if h0 > 0.11505.

Remark 3.5 By using [23, Corollary 2.1], equation (3.20) is oscillatory when h0 > 0.31641.
Thus, we note that Theorem 3.4 provides a better criterion for the oscillation of (3.20).
Moreover, our oscillation criteria take into account the influence of g(l), which has not
been taken care of in the related results [18, 25].

4 Conclusion
In this work, we simplified and improved the oscillation criteria for a class of even-order
delay differential equations. In the noncanonical case, it always sets three conditions to
check the oscillation of even-order DDEs. First, we obtained a criterion with only two
conditions to check the oscillation. Furthermore, we improved the three-condition oscil-
lation criteria by creating a better estimate of the ratio v(g(l))/v(l). Through the example,
we compared our results with the previous results and explained the importance of our
new oscillation criteria. It will be interesting to extend our results of this study to the neu-
tral and mixed case.
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