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Abstract
The aim of this manuscript is to handle the nonlocal boundary value problem for a
specific kind of nonlinear fractional differential equations involving a ξ -Hilfer
derivative. The used fractional operator is generated by the kernel of the kind
k(ϑ , s) = ξ (ϑ ) – ξ (s) and the operator of differentiation Dξ = ( 1

ξ ′(ϑ )
d
dϑ ). The existence

and uniqueness of solutions are established for the considered system. Our
perspective relies on the properties of the generalized Hilfer derivative and the
implementation of Krasnoselskii’s fixed point approach and Banach’s contraction
principle with respect to the Bielecki norm to obtain the uniqueness of solution on a
bounded domain in a Banach space. Besides, we discuss the Ulam–Hyers stability
criteria for the main fractional system. Finally, some examples are given to illustrate
the viability of the main theories.
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1 Introduction
Fractional calculus (FC) was introduced at the end of the seventeenth century as a branch
of mathematical analysis that deals with the examinations of various possibilities to term
real (or complex) number powers of the integration (and differentiation) operators. FC
is the generalization of ordinary calculus concerned with operations of integration (and
differentiation) of noninteger order.

Fractional differential equations (FDEs) including Caputo, Riemann–Liouville (RL), Hil-
fer, Hadamard, and Erdelyi–Kober fractional derivatives (FDs) have been used in different
areas of technological disciplines and concentrated on by numerous mathematicians, see
the books [1–5] and the references given therein. Recently, using the generalized Mittag-
Leffler function, Atangana and Baleanu [6] suggested a new formulation of the fractional
derivative with a nonlocal and nonsingular kernel. Atangana [7] introduced a new differen-
tiation which combines fractal differentiation and fractional differentiation. Very recently,
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another methodology of FDs having a general kernel with respect to another function
known as the ψ-Caputo and ψ-Hilfer operator has been introduced by Almeida [8] and
Sousa and Oliveira [9], respectively, drawing on the idea of Kilbas et al. [1, 3] and Agrawal
[10] who made some generalizations to fractional integrals and derivatives with respect to
another function. Jarad and Abdeljawad [11] presented interesting properties of general-
ized operators with another function, including the generalized Laplace transform. A few
specialists were as of late occupied with the advancement of ξ -Caputo (or ξ -Hilfer)-type
FDEs, see [12–25] and the references therein. Impressive considerations have been pro-
vided to the investigation of the Ulam–Hyers (UH) stability of a wide range of FDEs, see
[26–32].

In this regard, we investigate the existence, uniqueness, and UH stability of solutions for
the following nonlocal boundary value problem:

D�1,�2;ξ
a+ z(ϑ) = F

(
ϑ , z(ϑ)

)
, ϑ ∈ J := [a, b], (1.1)

z(a) = za + p(z), z′
ξ (b) = zb +

m–2∑

i=1

λiz′
ξ (κi), (1.2)

where z′
ξ = z′

ξ ′ and D�1,�2;ξ
a+ is the ξ -Hilfer FD of order �1 ∈ (1, 2) and type �2 ∈ [0, 1], za, zb ∈

R , λi > 0, a < κi < b, i = 1, 2, . . . , m – 2,
∑m–2

i=1 λiz′
ξ (κi) := d < 1, and F : J × R → R and

p : C(J ,R) → R are continuous.

Remark 1.1 Our results for problem (1.1)–(1.2) remain true for the following cases:

• RL-type problem for ξ (ϑ) = ϑ and �2 = 0.
• Caputo-type problem for ξ (ϑ) = ϑ and �2 = 1.
• ξ -RL-type problem for �2 = 0.
• ξ -Caputo-type problem for �2 = 1.
• Hilfer-type problem for ξ (ϑ) = ϑ .
• Hilfer–Hadamard-type problem for ξ (ϑ) = logϑ .
• Katugampola-type problem for ξ (ϑ) = ϑρ .

Remark 1.2 Results acquired for problem (1.1)–(1.2) include the results of Zhong and Lin
[33] and Asawasamrit et al. [34], in particular:

(1) For ξ (ϑ) = ϑ and �2 = 1, the outcomes obtained in the present work incorporate the
results of Zhong and Lin [33] for Caputo-type nonlocal and multiple-point BVP.

(2) If, in problem (1.1)–(1.2), ξ (ϑ) = ϑ and replacing conditions
z(a) = 0, z(b) =

∑m
i=1 λiIδi (κi) with (1.2), then our current results cover the results of

Asawasamrit et al. [34] for Hilfer nonlocal BVP.

The main contribution of the current work is to determine the equivalent fractional inte-
gral equation to ξ -Hilfer type FDEs (1.1)–(1.2) and to explore the existence and uniqueness
results. Further, we discuss the Ulam–Hyers stability result to such equations. Observe
that, with the above discussions, problem (1.1)–(1.2) not just incorporates the previously
specified BVPs in the literature, yet additionally nontrivially extends the status to a more
comprehensive class of nonlocal BVPs, i.e., for various values of �2 and ξ , our considered
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problem covers the problems referenced in Remark 1.1. Consequently, problem (1.1)–(1.2)
studied in this paper is novel and is the first to investigate fractional nonlocal problems of
ξ -Hilfer type.

Here is a brief outline of the paper. Section 2 provides the definitions and preliminary
facts that we will need for our forthcoming analysis. In Sect. 3, we prove the existence,
uniqueness, and UH stability results for problem (1.1)–(1.2). Two examples are given in
Sect. 5. This work closes with a conclusion.

2 Preliminaries
In this section, we give some notions regarding the fractional integrals and derivatives
with respect to another function ξ . For more details, we refer to [1–3, 5].

Let J = [a, b] ⊂ R . Denote by C := C(J ,R) the Banach space of continuous functions
ω : J → R with the norm

‖ω‖∞ = sup
{∣∣ω(ϑ)

∣∣,ϑ ∈ J
}

.

Let ξ ,ω ∈ Cn such that ξ is increasing and ξ ′(ϑ) �= 0 for all ϑ ∈ J .

Definition 2.1 ([9]) The ξ -Hilfer FD of a function ω of order �1 ∈ (n – 1, n] and type
�2 ∈ [0, 1] is defined by

D�1,�2;ξ
a+ ω(ϑ) = I�2(n–�1);ξ

a+ Dn
ξ I (1–�2)(n–�1);ξ

a+ ω(ϑ), (2.1)

where n = [�1] + 1, n ∈ N, and Dn
ξ = ( 1

ξ ′(ϑ)
d
dt )n. Relation (2.1) can be written as

D�1,�2;ξ
a+ ω(ϑ) = Iγ –�1;ξ

a+
RLDγ ;ξ

a+ ω(ϑ), (2.2)

with γ = �1 +�2(n–�1), Iγ –�1;ξ
a+ (·) and RLDγ ;ξ

a+ (·) are the ξ -RL fractional integral and deriva-
tive defined by (see [1])

Iθ ;ξ
a+ ω(ϑ) =

1
�(θ )

∫ ϑ

a
ξ ′(s)

(
ξ (ϑ) – ξ (s)

)θ–1
ω(s) ds (2.3)

and

RLDθ ;ξ
a+ ω(x) = Dn

ξIn–θ ;ξ
a+ ω(ϑ), (2.4)

respectively. Furthermore, the ξ -Caputo FD is given by (see [8])

CDθ ;ξ
a+ ω(ϑ) = In–θ ;ξ

a+ Dn
ξ ω(ϑ), (2.5)

where θ ∈ {γ – �1,γ ,�1}.

Remark 2.2 If we set ξ (ϑ) = ϑ in relations (2.1), (2.3), (2.4), and (2.5), we obtain the clas-
sical fractional operators introduced in [1, 5, 35].
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Lemma 2.3 ([1, 9]) Let �1,�2 > 0 and ω ∈ C . Then

I�1;ξ
a+ I�2;ξ

a+ ω(ϑ) = I�1+�2;ξ
a+ ω(ϑ)

and

D�1,�2;ξ
a+ I�1;ξ

a+ ω(ϑ) = ω(ϑ).

Lemma 2.4 ([1, 9]) Let �1,�2 > 0 and δ > 0. If ψ(ϑ) := (ξ (ϑ) – ξ (a))δ–1, then
(1) I�1;ξ

a+ ψ(ϑ) = �(δ)
�(�1+δ) (ξ (ϑ) – ξ (a))�1+δ–1;

(2) D�1,�2;ξ
a+ ψ(ϑ) = �(δ)

�(δ–�1) (ξ (ϑ) – ξ (a))�1–δ–1, δ > γ = �1 + �2(n – �1);
(3) D�1,�2;ξ

a+ ψ(ϑ) = 0 for δ = γ .

Lemma 2.5 ([9]) Let �1 ∈ (n – 1, n] (n ∈N), �2 ∈ [0, 1] with γ = �1 + �2(n – �1) and ω ∈ Cn.
Then

(
I�1;ξ

a+ D�1,�2;ξ
a+ ω

)
(ϑ) = ω(ϑ) –

n∑

k=1

(ξ (ϑ) – ξ (a))γ –k

�(γ – k + 1)
Dn

ξ

(
I (1–�2)(n–�1);ξ

a+ ω
)
(a).

In particular, if 1 < �1 ≤ 2, 0 ≤ �2 ≤ 1,where γ = �1 + �2(2 – �1), then

(
I�1;ξ

a+ D�1,�2;ξ
a+ ω

)
(ϑ) = ω(ϑ) –

(ξ (ϑ) – ξ (a))γ –1

�(γ )
(
I1–γ ;ξ

a+ ω
)
(a)

–
(ξ (ϑ) – ξ (a))γ –2

�(γ – 1)
(
I2–γ ;ξ

a+ ω
)
(a).

Lemma 2.6 ([1]) Let n – 1 ≤ �1 < n and ω ∈ C . Then

(
I�1;ξ

a+ ω
)
(a) = lim

ϑ→a+

(
I�1;ξ

a+ ω
)
(ϑ) = 0.

Lemma 2.7 Let �1, θ > 0. Then, for all ϑ ∈ J , we have

I�1;ξ
a+ eθ (ξ (ϑ)–ξ (a)) ≤ eθ (ξ (ϑ)–ξ (a))

θ�1
.

Proof From equation (2.3), we have

I�1;φ
a+ eθ (ξ (ϑ)–ξ (a)) =

1
�(�1)

∫ ϑ

a
ξ ′(s)

(
ξ (ϑ) – ξ (s)

)�1–1eθ (ξ (s)–ξ (a)) ds.

By utilizing the change of variables y = ξ (ϑ) – ξ (s), we obtain

I�1,ξ
a+ eθ (ξ (ϑ)–ξ (a)) =

eθ (ξ (ϑ)–ξ (a))

�(�1)

∫ ξ (ϑ)–ξ (a)

0
y�1–1e–θydy. (2.6)
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Again, by utilizing the change of variables v = θy in (2.6), we attain

I�1,ξ
a+ eθ (ξ (ϑ)–ξ (a)) =

eθ (ξ (ϑ)–ξ (a))

�(�1)θ�1

∫ θ (ξ (ϑ)–ξ (a))

0
v�1–1e–vdv

≤ eθ (ξ (ϑ)–ξ (a))

�(�1)θ�1

∫ ∞

0
v�1–1e–vdv

=
eθ (ξ (ϑ)–ξ (a))

θ�1
.

This completes the proof. �

Let us now conclude this section by recalling the following fixed point theorems.

Theorem 2.8 (Banach [36]) Let E be a nonempty closed subset of a Banach space X and
H : E → E be a strict contraction mapping, i.e., ‖Hz – Hy‖ ≤ k‖z – y‖ for all z, y ∈ E and
for some k ∈ (0, 1). Then H possesses a unique fixed point.

Theorem 2.9 (Kransnoselskii [37]) Let X be a Banach space. Let S be a nonempty convex,
closed, and bounded subset of X, and let H1,H2 be mappings from S to X such that:

(i) H1z + H2y ∈ S whenever z, y ∈ S ;
(ii) H1 is continuous and compact;
(iii) H2 is a strict contraction. Then there exists z ∈ S such that z = H1z + H2z.

3 Main result
The next lemma transacts with a linear form associated with problem (1.1)–(1.2).

Lemma 3.1 Let 1 < �1 ≤ 2, 0 ≤ �2 ≤ 1, where γ = �1 + �2(2 – �1) and h ∈ C . If

A =

[
[ξ (b) – ξ (a)]γ –2

�(γ – 1)
–

m–2∑

i=1

λi
[ξ (κi) – ξ (a)]γ –2

�(γ – 1)

]

�= 0, (3.1)

then the function z ∈ C is a solution of the linear-type problem

⎧
⎨

⎩
D�1,�2;ξ

a+ z(ϑ) = h(ϑ), �1 ∈ (1, 2),ϑ ∈ J := [a, b],

z(a) = za + p(z), z′
ξ (b) = zb +

∑m–2
i=1 λiz′

ξ (κi)
(3.2)

if and only if

z(ϑ) = I�1;ξ
a+ h(ϑ) +

[ξ (ϑ) – ξ (a)]γ –1

A�(γ )

[

zb + I�1–1;ξ
a+ h(b) +

m–2∑

i=1

λiI�1–1;ξ
a+ h(κi)

]

(3.3)

+
[za + p(z)]

A

[
[ξ (b) – ξ (a)]γ –3 +

∑m–2
i=1 λi[ξ (κi) – ξ (a)]γ –3

�(γ – 2)
+

[ξ (ϑ) – ξ (a)]γ –2

�(γ – 1)

]
.

Proof The first equation of (3.2) can be written as

I2–�1;ξ
a+ D2;ξ

a+ I (1–�2)(2–�1);ξ
a+ z(ϑ) = h(ϑ).
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Applying the operator I�1;ξ
a+ , we get

I�1;ξ
a+ I2–�1;ξ

a+ D2;ξ
a+ I (1–�2)(2–�1);ξ

a+ z(ϑ) = I�1;ξ
a+ h(ϑ),

which implies

Iγ ;ξ
a+

RLDγ ;ξ
a+ z(ϑ) = I�1;ξ

a+ h(ϑ), γ = �1 + �2(2 – �1).

By Lemma 2.5 and setting I2–γ ;ξ
a+ z(a) = c1, I1–γ ;ξ

a+ z(a) = c2, we have

z(ϑ) =
c2

�(γ )
[
ξ (ϑ) – ξ (a)

]γ –1 +
c1

�(γ – 1)
[
ξ (ϑ) – ξ (a)

]γ –2 + I�1;ξ
a+ h(ϑ). (3.4)

Differentiation of (3.4) with the fact that Dk
ξI

σ ,ξ
a+ = Iσ–k,ξ

a+ for k = 0, 1, . . . , n – 1, σ > k (see
[12]) leads to

z′
ξ (ϑ) =

z′(ϑ)
ξ ′(ϑ)

=
c2(γ – 1)

�(γ )
[
ξ (ϑ) – ξ (a)

]γ –2 +
c1(γ – 2)
�(γ – 1)

[
ξ (ϑ) – ξ (a)

]γ –3 + I�1–1;ξ
a+ h(ϑ).

From the boundary conditions of (3.2), we obtain c1 = za + p(z) and

c2

�(γ – 1)
[
ξ (b) – ξ (a)

]γ –2 +
[za + p(z)]
�(γ – 2)

[
ξ (b) – ξ (a)

]γ –3 + I�1–1;ξ
a+ h(b)

= zb +
m–2∑

i=1

λi

[
c2

�(γ – 1)
[
ξ (κi) – ξ (a)

]γ –2 +
[za + p(z)]
�(γ – 2)

[
ξ (κi) – ξ (a)

]γ –3

+ I�1–1;ξ
a+ h(κi)

]
.

It follows that

c2

[
[ξ (b) – ξ (a)]γ –2

�(γ – 1)
–

m–2∑

i=1

λi
[ξ (κi) – ξ (a)]γ –2

�(γ – 1)

]

=
[za + p(z)]
�(γ – 2)

[m–2∑

i=1

λi
[
ξ (κi) – ξ (a)

]γ –3 –
[
ξ (b) – ξ (a)

]γ –3
]

+ zb +
m–2∑

i=1

λiI�1–1;ξ
a+ h(κi) – I�1–1;ξ

a+ h(b).

Therefore,

c2 =
1
A

[

zb +
m–2∑

i=1

λiI�1–1;ξ
a+ h(κi) – I�1–1;ξ

a+ h(b)

+
[za + p(z)]
�(γ – 2)

(m–2∑

i=1

λi
[
ξ (κi) – ξ (a)

]γ –3 –
[
ξ (b) – ξ (a)

]γ –3
)]

.
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Substituting the values of c1, c2 into (3.4), we get

z(ϑ) = I�1;ξ
a+ h(ϑ) +

[ξ (ϑ) – ξ (a)]γ –1

A�(γ )

[

zb +
m–2∑

i=1

λiI�1–1;ξ
a+ h(κi) – I�1–1;ξ

a+ h(b)

]

(3.5)

+
[za + p(z)]

A

[
(
∑m–2

i=1 λi[ξ (κi) – ξ (a)]γ –3 – [ξ (b) – ξ (a)]γ –3)
�(γ – 2)

+
[ξ (ϑ) – ξ (a)]γ –2

�(γ – 1)

]
.

Note that

Iθ ;ξ
a+ h(ϑ) =

1
�(θ )

∫ x

a
ξ ′(s)

[
ξ (ϑ) – ξ (s)

]θ–1h(s) ds, θ ∈ {�1,�1 – 1}, and x ∈ {ϑ , b,κi}.

The converse follows by direct calculation with the aid of the results in Lemmas 2.4, 2.5.
This finishes the proof. �

To follow up, we need the following assumptions.
(G1) F : J × R → R and p : C → R are continuous.
(G2) There exist constants L1,L2 > 0 such that

∣
∣F (ϑ , z) – F (ϑ , z)

∣
∣ ≤L1|z – z|, z, z ∈R,

and

∣
∣p(z) – p(z)

∣
∣ ≤L2|z – z|, z, z ∈ C.

(G3) There exist positive functions ϕ,φ with bounds ‖ϕ‖ and ‖φ‖, respectively, such that:

∣
∣F (ϑ , z)

∣
∣ ≤ ϕ(ϑ), ∀(ϑ , z) ∈ J ×R,

∣∣p(z)
∣∣ ≤ φ(ϑ), ∀(ϑ , z) ∈ J × C.

For simplicity, we denote

M := sup
ϑ∈[a,b]

∣
∣F (ϑ , 0)

∣
∣,

∣
∣p(0)

∣
∣ := p0,

� :=

[

L1

(
(ξ (b) – ξ (a))�1

�(�1 + 1)
+

[ξ (b) – ξ (a)]γ –1

A�(γ )

×
[

(ξ (b) – ξ (a))�1–1

�(�1)
+

m–2∑

i=1

λi
(ξ (κi) – ξ (a))�1–1

�(�1)

])

+ L2

[
[ξ (b) – ξ (a)]γ –3 +

∑m–2
i=1 λi[ξ (κi) – ξ (a)]γ –3

A�(γ – 2)
+

[ξ (b) – ξ (a)]γ –2

A�(γ – 1)

]]

, (3.6)

� :=

[

L1

(
[ξ (b) – ξ (a)]γ –1

A�(γ )

[
(ξ (b) – ξ (a))�1–1

�(�1)
+

m–2∑

i=1

λi
(ξ (κi) – ξ (a))�1–1

�(�1)

])
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+ L2

[
[ξ (b) – ξ (a)]γ –3 +

∑m–2
i=1 λi[ξ (κi) – ξ (a)]γ –3

A�(γ – 2)
+

[ξ (b) – ξ (a)]γ –2

A�(γ – 1)

]]

, (3.7)

μ(ϑ) :=
[ξ (ϑ) – ξ (a)]γ –1

A�(γ )
, (3.8)

ν(ϑ) :=
[

[ξ (b) – ξ (a)]γ –3 +
∑m–2

i=1 λi[ξ (κi) – ξ (a)]γ –3

A�(γ – 2)
+

[ξ (ϑ) – ξ (a)]γ –2

A�(γ – 1)

]
, (3.9)

�1 :=

[
(ξ (b) – ξ (a))�1

�(�1 + 1)
+ μ∗

(
(ξ (b) – ξ (a))�1–1

�(�1)
+

m–2∑

i=1

λi
(ξ (κi) – ξ (a))�1–1

�(�1)

)]

,

�2 := ν∗, �3 := μ∗|zb| + ν∗|za|, (3.10)

Gχ

ξ (ϑ , s) =
ξ ′(s)(ξ (ϑ) – ξ (s))χ–1

�(χ )
, χ > 0, (3.11)

μ∗ = max
0≤ϑ≤b

∣∣μ(ϑ)
∣∣,

ν∗ = max
0<ϑ<b

∣
∣ν(ϑ)

∣
∣.

In what follows, we present the needful lemma that represents the equivalent solution
to problem (1.1)–(1.2).

Lemma 3.2 Assume that F : J × R → R , p : C → R are continuous. A function z(ϑ)
solves system (1.1)–(1.2) if and only if it is a fixed point of the operator H : C → C defined
by

Hz(ϑ) = I�1;ξ
a+ F

(
ϑ , z(ϑ)

)
+ μ(ϑ)

[

zb + I�1–1;ξ
a+ F

(
b, z(b)

)
+

m–2∑

i=1

λiI�1–1;ξ
a+ F

(
κi, z(κi)

)
]

+ ν(ϑ)
[
za + p(z)

]
. (3.12)

3.1 Uniqueness results via Theorem 2.8
Theorem 3.3 Assume that (G1)–(G2) hold. If

� := L1�1 + L2�2 < 1, (3.13)

then there exists a unique solution for (1.1)–(1.2) on J , where � is given by (3.6).

Proof According to Lemma 3.1, we consider the operator H : C → C defined by (3.12).
Then we prove that H has a fixed point due to Theorem 2.8. First, we define the closed
ball BR = {z ∈ C : ‖z‖ ≤R} ⊂ C with R > M�1+�3

1–(L1�1+L2�2) . Then, for z ∈ BR, we have

∣
∣F (s, z(s)

∣
∣ =

∣
∣F

(
s, z(s)

)
– F (s, 0) + F (s, 0)

∣
∣

≤ ∣
∣F

(
s, z(s)

)
– F (s, 0)

∣
∣ +

∣
∣F (s, 0)

∣
∣

≤ (
L1

∣
∣z(s)

∣
∣ +

∣
∣F (s, 0)

∣
∣)

≤L1R + M.
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Similarly, we obtain

∣∣p(z)
∣∣ ≤L2R.

Hence

∣∣Hz(ϑ)
∣∣ = ν(ϑ)

[|za| +
∣∣p(z)

∣∣] +
∫ ϑ

a
G�1

ξ (ϑ , s)
∣∣F

(
s, z(s)

)∣∣ds

+ μ(ϑ)

[

|zb| +
∫ b

a
G�1–1

ξ (b, s)
∣
∣F

(
s, z(s)

)∣∣ds

+
m–2∑

i=1

λi

∫
κi

a
G�1–1

ξ (κi, s)
∣
∣F

(
s, z(s)

)∣∣ds

]

≤ ν(ϑ)
[|za| + L2R

]
+ (L1R + M)

∫ ϑ

a
G�1

ξ (ϑ , s) ds

+ μ(ϑ)

[

|zb| + (L1R + M)

(∫ b

a
G�1–1

ξ (b, s)ds +
m–2∑

i=1

λi

∫
κi

a
G�1–1

ξ (κi, s) ds

)]

≤ ν∗[|za| + L2R
]

+ (L1R + M)
(ξ (b) – ξ (a))�1

�(�1 + 1)

+ μ∗
[

|zb| + (L1R + M)

(
(ξ (b) – ξ (a))�1–1

�(�1)
+

m–2∑

i=1

λi
(ξ (κi) – ξ (a))�1–1

�(�1)

)]

≤ (L1R + M)

[
(ξ (b) – ξ (a))�1

�(�1 + 1)

+ μ∗
(

(ξ (b) – ξ (a))�1–1

�(�1)
+

m–2∑

i=1

λi
(ξ (κi) – ξ (a))�1–1

�(�1)

)]

+ ν∗[L2R] + μ∗|zb| + ν∗|za|
≤ (L1R + M)�1 + (L2R)�2 + �3 ≤R,

which implies that ‖Hz‖ ≤R, i.e., HBR ⊆ BR.
Now, we show that H is a contraction. Let z, y ∈ C . Then, for every ϑ ∈ J ,

∣
∣(Hy)(ϑ) – (Hz)(ϑ)

∣
∣ = ν(ϑ)

[∣∣p(y) – p(z)
∣
∣] +

∫ ϑ

a
G�1

ξ (ϑ , s)
∣
∣F

(
s, y(s)

)
– F

(
s, z(s)

)∣∣ds

+ μ(ϑ)

[∫ b

a
G�1–1

ξ (b, s)
∣∣F

(
s, y(s)

)
– F

(
s, z(s)

)∣∣ds

+
m–2∑

i=1

λi

∫
κi

a
G�1–1

ξ (κi, s)
∣∣F

(
s, y(s)

)
– F

(
s, z(s)

)∣∣ds

]

≤ ν(ϑ)
[
L2

∣
∣y(s) – z(s)

∣
∣] +

∫ ϑ

a
G�1

ξ (ϑ , s)L1
∣
∣y(s) – z(s)

∣
∣ds

+ μ(ϑ)

[∫ b

a
G�1–1

ξ (b, s)L1
∣
∣y(s) – z(s)

∣
∣ds
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+
m–2∑

i=1

λi

∫
κi

a
G�1–1

ξ (κi, s)L1
∣
∣y(s) – z(s)

∣
∣ds

]

≤ ‖y – z‖
[

L2ν(ϑ) + L1

(∫ ϑ

a
G�1

ξ (ϑ , s) ds + μ(ϑ)

×
[∫ b

a
G�1–1

ξ (b, s) ds +
m–2∑

i=1

λi

∫
κi

a
G�1–1

ξ (κi, s) ds

])]

.

Also note that

∫ ϑ

a
Gχ

ξ (ϑ , s) ds ≤ (ξ (b) – ξ (a))χ

�(χ + 1)
, χ > 0.

Using the above arguments, we get

‖Hy – Hz‖∞

≤ ‖y – z‖∞

[

L2ν
∗ + L1

(
(ξ (b) – ξ (a))�1

�(�1 + 1)

+ μ∗
[

(ξ (b) – ξ (a))�1–1

�(�1)
+

m–2∑

i=1

λi
(ξ (κi) – ξ (a))�1–1

�(�1)

])]

:= �‖y – z‖∞.

As � < 1, we deduce that H is a contraction. Hence, Theorem 2.8 shows that BVP (1.1)–
(1.2) has a unique solution. This completes the proof. �

Remark 3.4 We would like to point out that the strong condition � < 1 can be removed if
we use the well-known Bielecki norm.

In fact, just like the discussion in Theorem 3.3, we only prove that H defined as before
is a contraction on C via the Bielecki norm. Given z, y ∈ C and ϑ ∈ J , using (G2) and
Lemma 2.7, we have

∣
∣(Hy)(ϑ) – (Hz)(ϑ)

∣
∣

≤ ν(ϑ)
[∣∣p(y) – p(z)

∣∣] +
∫ ϑ

a
G�1

ξ (ϑ , s)
∣∣F

(
s, y(s)

)
– F

(
s, z(s)

)∣∣ds

+ μ(ϑ)

[∫ b

a
G�1–1

ξ (b, s)
∣∣F

(
s, y(s)

)
– F

(
s, z(s)

)∣∣ds

+
m–2∑

i=1

λi

∫
κi

a
G�1–1

ξ (κi, s)
∣∣F

(
s, y(s)

)
– F

(
s, z(s)

)∣∣ds

]

≤ ν(ϑ)
[L2|y(ϑ) – z(ϑ)|

eθ (ξ (ϑ)–ξ (a)) eθ (ξ (ϑ)–ξ (a))
]

+
∫ ϑ

a
G�1

ξ (ϑ , s)
L1|y(s) – z(s)|

eθ (ξ (s)–ξ (a)) eθ (ξ (s)–ξ (a)) ds
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+ μ(ϑ)

[∫ b

a
G�1–1

ξ (b, s)
L1|y(s) – z(s)|

eθ (ξ (s)–ξ (a)) eθ (ξ (s)–ξ (a)) ds

+
m–2∑

i=1

λi

∫
κi

a
G�1–1

ξ (κi, s)
L1|y(s) – z(s)|

eθ (ξ (s)–ξ (a)) eθ (ξ (s)–ξ (a)) ds

]

≤
[

ν(ϑ)L2
[
eθ (ξ (ϑ)–ξ (a))] + L1

∫ ϑ

a
G�1

ξ (ϑ , s)eθ (ξ (s)–ξ (a)) ds

+ μ(ϑ)L1

[∫ b

a
G�1–1

ξ (b, s)eθ (ξ (s)–ξ (a)) ds

+
m–2∑

i=1

λi

∫
κi

a
G�1–1

ξ (κi, s)eθ (ξ (s)–ξ (a)) ds

]]

‖y – z‖θ

≤
[(

ν∗L2 +
L1

θ�1

)
eθ (ξ (ϑ)–ξ (a))

+
μ∗L1

θ�1–1 eθ (ξ (b)–ξ (a)) +
m–2∑

i=1

λi
L1μ

∗

θ�1–1 eθ (ξ (κi)–ξ (a))

]

‖y – z‖θ ,

where

‖z‖θ := sup
ϑ∈J

|z(ϑ)|
eθ (ξ (ϑ)–ξ (a)) , θ > 0,

denotes the Bielecki-type norm on the Banach space C . Thus, we obtain

‖Hy – Hz‖θ ≤
[

L2ν
∗ + L1

(
1

θ�1
+

μ∗

θ�1–1 +
m–2∑

i=1

λi
μ∗

θ�1–1

)]

‖y – z‖θ .

Taking θ > 0 large enough such that

[

L2ν
∗ + L1

(
1

θ�1
+

μ∗

θ�1–1 +
m–2∑

i=1

λi
μ∗

θ�1–1

)]

< 1,

it follows that

‖Hy – Hz‖θ < ‖y – z‖θ .

This means that H is a contraction with respect to the Bielecki norm. Hence, Theorem 2.8
shows that BVP (1.1)–(1.2) has a unique solution.

3.2 Existence result via Theorem 2.9
Theorem 3.5 Assume that (G1)–(G3) hold. Then (1.1)–(1.2) has at least one solution on
J , provided

� < 1, (3.14)

where � is given by (3.7).
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Proof By assumption (G3), we can fix

ρ ≥ ‖ϕ‖�1 + ‖φ‖�2 + �3,

where Bρ = {z ∈ C : ‖z‖ ≤ ρ}. Let us split the operator H : C → C defined by (3.12) as
H = H1 + H2, where H1 and H2 are given by

H1z(ϑ) =
∫ ϑ

a
G�1

ξ (ϑ , s)F
(
s, z(s)

)
ds,

H2z(ϑ) = μ(ϑ)

[

zb +
∫ b

a
G�1

ξ (b, s)F
(
s, z(s)

)
ds +

m–2∑

i=1

λi

∫
κi

a
G�1

ξ (κi, s)F
(
s, z(s)

)
ds

]

+ ν(ϑ)
[
za + p(z)

]
.

The proof will be split into numerous steps.
Step 1: H1(z) + H2(z1) ∈ Bρ . Indeed, for each z, z1 ∈ Bρ and ϑ ∈ J , then

‖H1z + H2z1‖
= sup

ϑ∈J

∣∣(H1z)(ϑ) + (H2z1)(ϑ)
∣∣

≤
∫ ϑ

a
G�1

ξ (ϑ , s)
∣∣F

(
s, z(s)

)∣∣ds + μ(ϑ)

×
[

|zb| +
∫ b

a
G�1–1

ξ (b, s)
∣
∣F

(
s, z(s)

)∣∣ds

+
m–2∑

i=1

λi

∫
κi

a
G�1–1

ξ (κi, s)
∣
∣F

(
s, z(s)

)∣∣ds

]

+ ν(ϑ)
[|za| +

∣∣p(z)
∣∣]

≤ ‖ϕ‖
[

(ξ (b) – ξ (a))�1

�(�1 + 1)
+ μ∗

(
(ξ (b) – ξ (a))�1–1

�(�1)
+

m–2∑

i=1

λi
(ξ (κi) – ξ (a))�1–1

�(�1)

)]

+ ‖φ‖ν∗ + |za|ν∗ + μ∗|zb|
≤ ‖ϕ‖�1 + ‖φ‖�2 + �3 ≤ ρ.

Hence

‖H1z + H2z1‖ ≤ ρ,

which shows that H1z + H2z1 ∈ Bρ .
Step 2: H2 is a contraction map on Bρ .
Due to the contractility of H as in Theorem 3.3, H2 is a contraction map too.
Step 3: H1 is completely continuous on Bρ .
From the continuity of F (·, z(·)) it follows that H1 is continuous.
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Since

‖H1z‖ = sup
ϑ∈J

∣∣H1z(ϑ)
∣∣ ≤

∫ ϑ

a
G�1

ξ (ϑ , s)
∣∣F

(
s, z(s)

)∣∣ds

≤ ‖φ‖ (ξ (b) – ξ (a))�1

�(�1 + 1)
:= p, z ∈ Bρ ,

we get ‖H1z‖ ≤ p, which emphasizes that H1 uniformly bounded on Bρ .
Finally, we prove the compactness of H1.
For z ∈ Bρ and ϑ ∈ J , we can estimate the operator derivative as follows:

∣∣(H1z)(1)
ξ (ϑ)

∣∣ ≤
∫ ϑ

a
G�1–1

ξ (ϑ , s)
∣∣F

(
s, z(s)

)∣∣ds

≤ ‖ϕ‖ (ξ (b) – ξ (a))�1–1

�(�1)
:= �,

where we used the fact

Dk
ξI

�1,ξ
a+ = I�1–k,ξ

a+ , ω
(k)
ξ (ϑ) =

(
1

ξ ′(ϑ)
d

dϑ

)k

ω(ϑ) for k = 0, 1, . . . , n – 1.

Hence, for each ϑ1,ϑ2 ∈ J with a < ϑ1 < ϑ2 < b and for z ∈ Bρ , we get

∣
∣(H1z)(ϑ2) – (H1z)(ϑ1)

∣
∣ =

∫ ϑ2

ϑ1

∣
∣(H1z)′(s)

∣
∣ds ≤ �(ϑ2 – ϑ1),

where (ϑ2 – ϑ1) tends to zero independent of z. So, H1 is equicontinuous. In light of the
previous arguments along with the Arzela–Ascoli theorem, we derive that H1 is compact
on Bρ . Thus, the hypotheses of Theorem 2.9 hold. So there exists at least one solution of
(1.1)–(1.2) on J . �

Remark 3.6 In Theorem 3.5, we can exchange the roles of the operators H1 and H2 to
obtain a second result by replacing (3.14) with the following condition:

L1

(
(ξ (b) – ξ (a))�1

�(�1 + 1)

)
< 1.

4 UH stability analysis
In this section, we discuss UH and generalized UH stability of (1.1)–(1.2). Let ε > 0. We
consider the following inequality:

∣∣D�1,�2;ξ
a+ z̃(ϑ) – F

(
ϑ , z̃(ϑ)

)∣∣ ≤ ε, ϑ ∈ J . (4.1)

Definition 4.1 FDE (1.1)–(1.2) is UH stable if there exists cF ∈R
+ such that, for any ε > 0

and for each solution z̃ ∈ C of inequality (4.1), there exists a solution z ∈ U of 1.1)–(1.2)
with

∣
∣z̃(ϑ) – z(ϑ)

∣
∣ ≤ εcF , ϑ ∈ J .
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Definition 4.2 FDE (1.1)–(1.2) is called generalized UH stable if there exists ϕF ∈
C(R+,R+) along with ϕF (0) = 0 if, for any ε > 0 and for each solution z̃ ∈ C of inequal-
ity (4.1), a solution z ∈ C of (1.1)–(1.2) exists uniquely for which

∣∣z̃(ϑ) – z(ϑ)
∣∣ ≤ ϕF (ε), ϑ ∈ J .

Remark 4.3 A function z̃ ∈ C is a solution of (4.1) iff there exists a function υ ∈ C (which
depends on solution z̃) such that

1. |υ(ϑ)| ≤ ε,ϑ ∈ J .
2. D�1,�2;ξ

a+ z̃(ϑ) = F (ϑ , z̃(ϑ)) + υ(ϑ),ϑ ∈ J .

Theorem 4.4 Let � < 1 and hypotheses (G1) and (G2) be satisfied. Then FDE (1.1)–(1.2)
is UH stable on J and consequently generalized UH stable.

Proof Let ε > 0 and z̃ ∈ C satisfy inequality (4.1), and let z ∈ C be the unique solution of
the following problem:

⎧
⎨

⎩
D�1,�2;ξ

a+ z(ϑ) = F (ϑ , z(ϑ)), ϑ ∈ J := [a, b],

z(a) = za + p(z), z′
ξ (b) = zb +

∑m–2
i=1 λiz′

ξ (κi).
(4.2)

By Lemma 3.1, we have

z(ϑ) = I�1;ξ
a+ h(ϑ) + μ(ϑ)

[

zb + I�1–1;ξ
a+ h(b) +

m–2∑

i=1

λiI�1–1;ξ
a+ h(κi)

]

+ ν(ϑ)
[
za + p(z)

]

=
∫ ϑ

a
G�1

ξ (ϑ , s)F
(
s, z(s)

)
ds

+ μ(ϑ)

[

zb +
∫ b

a
G�1–1

ξ (b, s)F
(
s, z(s)

)
ds +

m–2∑

i=1

λi

∫
κi

a
G�1–1

ξ (κi, s)F
(
s, z(s)

)
ds

]

+ ν(ϑ)
[
za + p(z)

]
. (4.3)

Since we have assumed that z̃ is a solution of (4.1), we have by Remark 4.3

⎧
⎨

⎩
D�1,�2;ξ

a+ z̃(ϑ) = F (ϑ , z̃(ϑ)) + υ(ϑ), ϑ ∈ J := [a, b],

z̃(a) = za + p(̃z), z̃′
ξ (b) = zb +

∑m–2
i=1 λĩz′

ξ (κi).
(4.4)

Again by Lemma 3.1, we have

z̃(ϑ) =
∫ ϑ

a
G�1

ξ (ϑ , s)F
(
s, z̃(s)

)
ds +

∫ ϑ

a
G�1

ξ (ϑ , s)υ(s) ds

+ μ(ϑ)

[

zb +
∫ b

a
G�1–1

ξ (b, s)F
(
s, z̃(s)

)
ds +

∫ b

a
G�1–1

ξ (b, s)υ(s) ds

+
m–2∑

i=1

λi

∫
κi

a
G�1–1

ξ (κi, s)F
(
s, z̃(s)

)
ds +

m–2∑

i=1

λi

∫
κi

a
G�1–1

ξ (κi, s)υ(s) ds

]
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+ ν(ϑ)
[
za + p(̃z)

]
.

Consequently, for each ϑ ∈ J , we have

∣∣̃z(ϑ) – z(ϑ)
∣∣

=
∫ ϑ

a
G�1

ξ (ϑ , s)
∣
∣F

(
s, z̃(s)

)
– F

(
s, z(s)

)∣∣ds +
∫ ϑ

a
G�1

ξ (ϑ , s)υ(s) ds

+ μ(ϑ)

[∫ b

a
G�1–1

ξ (b, s)
∣∣F

(
s, z̃(s)

)
– F

(
s, z(s)

)∣∣ds +
∫ b

a
G�1–1

ξ (b, s)υ(s) ds

+
m–2∑

i=1

λi

∫
κi

a
G�1–1

ξ (κi, s)
∣∣F

(
s, z̃(s)

)
– F

(
s, z(s)

)∣∣ds

+
m–2∑

i=1

λi

∫
κi

a
G�1–1

ξ (κi, s)υ(s) ds

]

+ ν(ϑ)
∣∣p(̃z) – p(z)

∣∣. (4.5)

From Remark 4.3 and (G2), we derive

∣∣̃z(ϑ) – z(ϑ)
∣∣

≤ �‖̃z – z‖

+

(
(ξ (b) – ξ (a))�1

�(�1 + 1)
+ μ∗

[
(ξ (b) – ξ (a))�1–1

�(�1)
+

m–2∑

i=1

λi
(ξ (κi) – ξ (a))�1–1

�(�1)

])

ε

:= �‖̃z – z‖ + �ε,

where � is defined in (3.6). In consequence, it follows that

‖̃z – z‖∞ ≤ �ε

(1 – �)
.

If we set cF = �
(1–�) , then the UH stability condition holds. Moreover, for ϕF (ε) = �ε

(1–�) with
ϕF (0) = 0, the generalized UH stability condition holds too. This completes the proof. �

5 Examples
In this section, we consider two examples to better illustrate our main results.

Example 5.1 Consider the following BVP for FDE:

⎧
⎨

⎩
D

3
2 ,0;ϑ
0+ z(ϑ) = F (ϑ , z(ϑ)), ϑ ∈ J := [0, 1],

z(0) = 1
5 +

∑n
j=1 cjz(ϑj), z′

ϑ (1) = 2
7 + 1

10 z′( 1
6 ) + 1

15 z′( 2
9 ),

(5.1)

where

�1 = γ =
3
2

, �2 = 0, b = 1, a = 0, ξ (ϑ) = ϑ ,
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za =
1
5

; zb =
2
7

; λ1 =
1

10
, λ2 =

1
15

,

κ1 =
1
6

, κ2 =
2
9

. (5.2)

Using the given data, we find that

A =

[
[b – a)]γ –2

�(γ – 1)
–

m–2∑

i=1

λi
[κi – a]γ –2

�(γ – 1)

]

� 0.3462 �= 0.

In order to illustrate Theorem 3.3 and Theorem 3.5, we take

f
(
ϑ , z(ϑ)

)
=

ϑ2 – 1
(2 – sin2 πϑ)3

( |z(ϑ)|
1 + |z(ϑ)|

)
,

p(z) =
n∑

j=1

cjz(ϑi),
(5.3)

in (1.1), where 0 < ϑ1 < ϑ2 < · · · < ϑn < cj, j = 1, . . . , n, are given positive constants with
∑n

j=1 cj < 2
5 , and note that

∥∥f (ϑ , z) – f (ϑ , v)
∥∥ ≤ 1

8
‖z – v‖,

∥∥p(z) – p(v)
∥∥ =

n∑

j=1

cj‖z – v‖.
(5.4)

Hence conditions (G1)–(G3) hold with L1 = 1
8 , L2 = 2

5 . Further, from the above given data
it is easy to calculate

� � 0.1325 < 1.

By Theorem 3.5, problem (5.1) with data (5.2) and (5.3) has at least a solution z. Further-
more � � 0.2265 < 1. Hence, by Theorem 3.3, problem (5.1) with data (5.2) and (5.3) has
a unique solution.

Example 5.2 Let us consider BVP for FDE (1.1)–(1.2) with

ξ (ϑ) = 2ϑ , �1 =
5
3

, �2 =
1
3

, γ =
16
9

,

za =
1
5

; zb =
2
7

; λ1 =
1
5

, λ2 =
2
7

,

κ1 =
3
4

, κ2 =
2
5

, b = 1, a = 0.

In order to illustrate Theorem 3.3 and Theorem 3.5, we take

f
(
ϑ , z(ϑ)

)
=

e–2ϑ

(ϑ4 + 25)
(
sin

∣
∣z(ϑ)

∣
∣),

p(z) =
n∑

j=1

cjz(ϑi)
(5.5)
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in (1.1), where 0 < ϑ1 < ϑ2 < · · · < ϑn < cj, i = 1, . . . , n, are given positive constants with
∑n

j=1 cj < 2
15 , and note that

∥∥f (ϑ , z) – f (ϑ , v)
∥∥ ≤ 1

25
‖z – v‖,

∥
∥p(z) – p(v)

∥
∥ =

n∑

j=1

cj‖z – v‖.
(5.6)

Hence conditions (G1)–(G3) hold with L1 = 1
25 and L1 = 1

15 . Further, from the above given
data, it is easy to calculate

� � 0.7967 < 1.

Using the given values of the parameters in (3.1), by the Matlab program, we find that

A =

[
[2b – 2a]γ –2

�(γ – 1)
–

m–2∑

i=1

λi
[2κi – 2a]γ –2

�(γ – 1)

]

� 0.3449 �= 0.

Hence condition (G2) holds with L1 = 1
16 , L2 = 1

24 . We shall check that condition (3.13)
is satisfied. Indeed, using simple calculations, we can find

� � 0.8811 < 1.

Hence, by Theorem 3.3, BVP (1.1)–(1.2) has a unique solution on J . Moreover, Theo-
rem 4.4 ensures that BVP (1.1)–(1.2) is HU stable and generalized HU stable.

6 Conclusion
By using standard fixed point techniques, we have established some advantageous results
about the existence, uniqueness, and stability of the Ulam–Hyers type of the BVP for non-
linear FDEs involving a ξ -Hilfer FD under nonlocal boundary conditions. The acquired
results have been justified by two examples. Furthermore, problem (1.1)–(1.2) not just
incorporates the formerly specified BVPs in the literature, but it does cover as many prob-
lems as special cases for various values of �2 and ξ , as referenced in Remarks 1.1, 1.2. Con-
sequently, the fixed point technique is a powerful approach to investigate diverse nonlinear
problems, which is very important in many theoretical and applied fields.
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