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1 Introduction
In [1], Ulam proposed the universal Ulam stability problem in metric groups. In [2], Hyers
gave the first affirmative answer to the question of Ulam for additive functional equations
in Banach spaces. Since then the Hyers result has produced many significant generaliza-
tions [3–8]. Furthermore, useful non-stability results for various functional equations have
been given by Gajda [9], Bodaghi, Senthil Kumar, and Rassias [10], Alessa et al. [11] and
Karthikeyan, Park, Rassias, and Lee [12].

The theory of stability is an important branch of the qualitative theory of differential
equations. During the last decades many interesting results have been investigated on dif-
ferent types differential equations (for more details, see [13–18]).

A generalization of Ulam’s problem was proposed by replacing functional equations with
differential equations: The differential equation φ(f , x, x′, x′′, . . . , x(n)) = 0 has the Hyers–
Ulam stability if, for given ε > 0 and a function x such that

∣
∣φ

(

f , x, x′, x′′, . . . , x(n))∣∣ ≤ ε,

there exists a solution xa of the differential equation such that |x(t) – xa(t)| ≤ K(ε) and

lim
ε→0

K(ε) = 0.

If the preceding statement is also true when we replace ε and K(ε) with φ(t) and ϕ(t),
where φ, ϕ are appropriate functions not depending on x and xa explicitly, then we say
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that the corresponding differential equation has the generalized Hyers–Ulam stability or
Hyers–Ulam–Rassias stability.

Alsina and Ger [19] investigated the stability of the differential equation x′(t)–x(t). They
proved the following celebrated theorem.

Theorem 1.1 ([19]) Let f : I → R be a differentiable function, which is a solution of the
following differential inequality ‖x′(t) – x(t)‖ ≤ ε, where I is an open interval of R. Then
there is a solution g : I → R of x′(t) = x(t) such that, for any t ∈ I , we have ‖f (t) – g(t)‖ ≤ 3ε.

This result was generalized by Takahasi et al. [20], who proved the Hyers–Ulam stability
for the Banach space-valued differential equation y′(t) = λy(t). Furthermore, the Hyers–
Ulam stability has been proved for the first order linear differential equations in more
general settings [21–25].

In 2007, Wang, Zhou, and Sun [26] established the Hyers–Ulam stability of a class of
first order linear differential equations.

Many different methods for solving differential equations have been used to study the
Hyers–Ulam stability problem for various differential equations. But some initial condi-
tions have more significant advantage for solving differential equations. In 2011, Gavruta,
Jung, and Li [27] studied the Hyers–Ulam stability for the second order linear differential
equation y′′ + β(x)y = 0 with initial and boundary conditions using Taylor’s formula.

In 2014, Alqifiary and Jung [28] investigated the generalized Hyers–Ulam stability of

x(n)(t) +
n–1
∑

k=0

αkx(k)(t) = f (t)

by using the Laplace transform method. In 2020, Murali and Selvan [29] established the
Mittag-Leffler–Hyers–Ulam stability of the first order linear differential equation for both
homogeneous and non-homogeneous cases by using Laplace transformation. The Hyers–
Ulam stability of differential equations has been given attention, and it was established by
many authors (see [30–34]).

Recently, Murali, Selvan, and Park [35] investigated the Hyers–Ulam stability of various
differential equations by using the Fourier transform method (also [36, 37]).

In this paper, our main intention is to establish the Hyers–Ulam stability and the Mittag-
Leffler–Hyers–Ulam stability of the following second order linear differential equations:

u′′(t) + μ2u = 0 (1.1)

and

u′′(t) + μ2u = q(t) (1.2)

for all t ∈ I , u(t) ∈ C2(I) and q(t) ∈ C(I), I = [a, b], –∞ < a < b < ∞, by using a new integral
transform method, i.e., Aboodh transform method.

2 Preliminaries
In this section, we introduce some standard notations and definitions which will be very
useful to obtain our main results.
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Throughout this paper, F denotes the real field R or the complex field C. A function
f : (0,∞) → F is said to be of exponential order if there exist constants A, B ∈ R such that
|f (t)| ≤ AetB for all t > 0.

Definition 2.1 ([38, 39]) The Aboodh integral transform is defined, for a function of ex-
ponential order f (t), by

A
{

f (t)
}

=
1
ξ

∫ ∞

0
f (t)e–ξ t dt = F(ξ ), t ≥ 0,

provided that the integral exists for some ξ , where ξ ∈ (k1, k2). A is called the Aboodh
integral transform operator.

Let f and g be Lebesgue integrable functions on (–∞, +∞). Let S denote the set of x for
which the Lebesgue integral

h(x) =
∫ ∞

–∞
f (t)g(x – t) dt

exists. This integral defines a function h on S called the convolution of f and g . We also
write h = f ∗ g to denote this function.

Definition 2.2 ([40]) The Mittag-Leffler function of one parameter, denoted by Eα(z), is
defined as

Eα(z) =
∞

∑

k=0

1
	(αk + 1)

zk ,

where z,α ∈ C and Re(α) > 0. If we put α = 1, then the above equation becomes

E1(z) =
∞

∑

k=0

1
	(k + 1)

zk =
∞

∑

k=0

zk

k
= ez.

Definition 2.3 ([40]) A generalization of Eα(z) is defined as a function

Eα,β (z) =
∞

∑

k=0

1
	(αk + β)

zk ,

where z,α,β ∈ C, Re(α) > 0 and Re(β) > 0.

Let I, J ⊆ R be intervals. Throughout this paper, we denote the space of k continuously
differentiable functions from I to J by Ck(I, J) and denote Ck(I, I) by Ck(I). Furthermore,
C(I, J) = C0(I, J) denotes the space of continuous functions from I to J . In addition, R+ :=
[0,∞). From now on, we assume that I = [a, b], where –∞ < a < b < ∞.

Here, we give some definitions of various forms of Hyers–Ulam stability and Mittag-
Leffler–Hyers–Ulam stability of differential equations (1.1) and (1.2).

Definition 2.4 We say that differential equation (1.1) has the Hyers–Ulam stability if there
exists a constant L > 0 satisfying the following condition: For every ε > 0 and some u(t) ∈
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C2(I) satisfying the inequality

∣
∣u′′(t) + μ2u

∣
∣ ≤ ε

for all t ∈ I , there exists a solution v ∈ C2(I) satisfying the differential equation v′′(t)+μ2v =
0 and |u(t) – v(t)| ≤ Lε for all t ∈ I . We call such L the Hyers–Ulam stability constant for
(1.1).

Definition 2.5 We say that differential equation (1.1) has the Hyers–Ulam–Rassias sta-
bility with respect to φ ∈ C(R+, R+) if there exists a constant Lφ > 0 with the following
property: For every ε > 0 and some u(t) ∈ C2(I) satisfying the inequality

∣
∣u′′(t) + μ2u

∣
∣ ≤ εφ(t)

for all t ∈ I , there exists a solution v ∈ C2(I) satisfying the differential equation v′′(t)+μ2v =
0 and

∣
∣u(t) – v(t)

∣
∣ ≤ Lφεφ(t)

for all t ∈ I . We call such L the Hyers–Ulam–Rassias stability constant for (1.1).

Definition 2.6 We say that differential equation (1.2) has the Hyers–Ulam stability if there
exists a constant L > 0 satisfying the following condition: For every ε > 0 and some u(t) ∈
C2(I) satisfying the inequality

∣
∣u′′(t) + μ2u – q(t)

∣
∣ ≤ ε

for all t ∈ I , there exists some v ∈ C2(I) satisfying v′′(t) + μ2v = q(t) and

∣
∣u(t) – v(t)

∣
∣ ≤ Lε

for all t ∈ I . We call such L the Hyers–Ulam stability constant for (1.2).

Definition 2.7 We say that differential equation (1.2) has the Hyers–Ulam–Rassias sta-
bility with respect to φ ∈ C(R+, R+) if there exists a constant Lφ > 0 such that, for every
ε > 0 and some u(t) ∈ C2(I) satisfying the inequality

∣
∣u′′(t) + μ2u – q(t)

∣
∣ ≤ εφ(t)

for all t ∈ I , there exists some v ∈ C2(I) satisfying the differential equation v′′(t)+μ2v = q(t)
and

∣
∣u(t) – v(t)

∣
∣ ≤ Lφεφ(t)

for all t ∈ I . We call such L the Hyers–Ulam–Rassias stability constant for (1.2).
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Definition 2.8 We say that differential equation (1.1) has the Mittag-Leffler–Hyers–Ulam
stability if there exists a positive constant L satisfying the following condition: For every
ε > 0 and some u(t) ∈ C2(I) satisfying the inequality

∣
∣u′′(t) + μ2u

∣
∣ ≤ εEα(t)

for all t ∈ I , there exists a solution v ∈ C2(I) satisfying v′′(t) + μ2v = 0 and

∣
∣u(t) – v(t)

∣
∣ ≤ LεEα(t)

for all t ∈ I . We call such L the Mittag-Leffler–Hyers–Ulam stability constant for (1.1).

Definition 2.9 We say that differential equation (1.1) has the Mittag-Leffler–Hyers–
Ulam–Rassias stability with respect to φ : (0,∞) → (0,∞) if there exists a positive con-
stant Lφ satisfying the following condition: For every ε > 0 and some u(t) ∈ C2(I) satisfying
the inequality

∣
∣u′′(t) + μ2u

∣
∣ ≤ φ(t)εEα(t)

for all t ∈ I , there exists a solution v ∈ C2(I) satisfying v′′(t) + μ2v = 0 and

∣
∣u(t) – v(t)

∣
∣ ≤ Lφφ(t)εEα(t)

for all t ∈ I . We call such Lφ the Mittag-Leffler–Hyers–Ulam–Rassias stability constant
for (1.1).

Definition 2.10 We say that differential equation (1.2) has the Mittag-Leffler–Hyers–
Ulam stability if there exists a positive constant L satisfying the following condition: For
every ε > 0 and some u(t) ∈ C2(I) satisfying the inequality

∣
∣u′′(t) + μ2u – q(t)

∣
∣ ≤ εEα(t)

for all t ∈ I , there exists a solution v ∈ C2(I) satisfying the linear differential equation v′′(t)+
μ2v = q(t) and

∣
∣u(t) – v(t)

∣
∣ ≤ LεEα(t)

for all t ∈ I . We call such L the Mittag-Leffler–Hyers–Ulam stability constant for (1.2).

Definition 2.11 We say that differential equation (1.2) has the Mittag-Leffler–Hyers–
Ulam–Rassias stability with respect to φ : (0,∞) → (0,∞) if there exists a positive con-
stant Lφ satisfying the following condition: For every ε > 0 and some u(t) ∈ C2(I) satisfying
the inequality

∣
∣u′′(t) + μ2u – q(t)

∣
∣ ≤ φ(t)εEα(t)

for all t ∈ I , there exists a solution v ∈ C2(I) satisfying the linear differential equation v′′(t)+
μ2v = q(t) and |u(t) – v(t)| ≤ Lφφ(t)εEα(t) for all t ∈ I . We call such Lφ the Mittag-Leffler–
Hyers–Ulam–Rassias stability constant for (1.2).
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3 Hyers–Ulam stability for (1.1)
In this section, we prove the Hyers–Ulam stability, Hyers–Ulam–Rassias stability, Mittag-
Leffler–Hyers–Ulam stability, and Mittag-Leffler–Hyers–Ulam–Rassias stability of differ-
ential equation (1.1) by using the Aboodh transform.

Theorem 3.1 Differential equation (1.1) is Hyers–Ulam stable.

Proof Let ε > 0. Suppose that u(t) ∈ C2(I) satisfies

∣
∣u′′(t) + μ2u

∣
∣ ≤ ε (3.1)

for all t ∈ I . We prove that there exists a real number L > 0 which is independent of ε and u
such that |u(t) – v(t)| ≤ Lε for some v ∈ C2(I) satisfying v′′(t) + μ2v = 0 for all t ∈ I . Define
a function p : (0,∞) → F such that p(t) =: u′′(t) + μ2u(t) for all t > 0. In view of (3.1), we
have |p(t)| ≤ ε. Taking the Aboodh transform to p(t), we have

A{p} =
(

ξ 2 + μ2)A{u} – u(0) –
u′(0)

ξ
, (3.2)

and thus

A{u} =
A{p} + u(0) + u′(0)

ξ

ξ 2 + μ2 .

In view of (3.2), a function u0 : (0,∞) −→ F is a solution of (1.1) if and only if

(

ξ 2 + μ2)A{u0} – u0(0) –
u′

0(0)
ξ

= 0.

If there exist constants l and m in F such that ξ 2 + μ2 = (ξ – l)(ξ – m) with l + m = 0 and
lm = μ2, then (3.2) becomes

A{u} =
A{p} + u(0) + u′(0)

ξ

(ξ – l)(ξ – m)
. (3.3)

Set

v(t) = u(0)
(

lelt – memt

l – m

)

+ u′(0)
(

elt – emt

l – m

)

.

We have v(0) = u(0) and u′(0) = v′(0). Taking the Aboodh transform to v(t), we obtain

A{v} =
u(0)

(ξ – l)(ξ – m)
+

u′(0)
ξ

1
(ξ – l)(ξ – m)

. (3.4)

On the other hand, A{v′′(t) + μ2v} = (ξ 2 + μ2)A{v} – v(0) – v′(0)
ξ

. Using (3.4), we get
A{v′′(t) + μ2v} = 0. Since A is one-to-one and linear, v′′(t) + μ2v = 0. This means that v(t)
is a solution of (1.1). It follows from (3.3) and (3.4) that

A{u} – A{v} =
A{p} + u(0) + u′(0)

ξ

(ξ – l)(ξ – m)
–

u(0) + u′(0)
ξ

(ξ – l)(ξ – m)
=

A{p}
(ξ – l)(ξ – m)

,
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A
{

u(t) – v(t)
}

= A
{

p(t) ∗
(

elt – emt

l – m

)}

.

The above equalities show that

u(t) – v(t) = p(t) ∗
(

elt – emt

l – m

)

.

Taking modulus on both sides and using |p(t)| ≤ ε, we get

∣
∣u(t) – v(t)

∣
∣ =

∣
∣
∣
∣
p(t) ∗

(
elt – emt

l – m

)∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ t

0
p(x)

(
el(t–x) – em(t–x)

l – m

)

dx
∣
∣
∣
∣

≤ ε

∣
∣
∣
∣

∫ t

0

(
el(t–x) – em(t–x)

l – m

)

dx
∣
∣
∣
∣

for all t > 0, where

L =
∣
∣
∣
∣

∫ t

0

(
el(t–x) – em(t–x)

l – m

)

dx
∣
∣
∣
∣

≤ 1
|l – m|

{

eR(l)t
∫ t

0
e–R(l)x dx + eR(m)t

∫ t

0
e–R(m)x dx

}

≤ K
|l – m| ,

where
∫ t

0 e–R(l)x dx and
∫ t

0 e–R(m)x dx exist. Hence |u(t) – v(t)| ≤ K
|l–m|ε = Lε. By Defini-

tion 2.4, linear differential equation (1.1) has the Hyers–Ulam stability. This finishes the
proof. �

By using the same technique as in Theorem 3.1, we can also prove the Hyers–Ulam–
Rassias stability of differential equation (1.1). The method of the proof is similar, but we
include it for the sake of completeness.

Theorem 3.2 Differential equation (1.1) is Hyers–Ulam–Rassias stable.

Proof Assume that u(t) ∈ C2(I) satisfies

∣
∣u′′(t) + μ2u

∣
∣ ≤ εφ(t) (3.5)

for all t ∈ I , ε > 0 and an integrable function φ ∈ C(R+, R+). We show that there exists a real
number Lφ > 0 such that |u(t) – v(t)| ≤ Lφεφ(t) for some v ∈ C2(I) satisfying v′′(t) +μ2v = 0
for all t ∈ I .

Define a function p : (0,∞) → F such that p(t) =: u′′(t) + μ2u(t) for all t > 0. By (3.5), we
have |p(t)| ≤ εφ(t). Now, taking the Aboodh transform to p(t), we have

A{p} =
(

ξ 2 + μ2)A{u} – u(0) –
u′(0)

ξ
. (3.6)

We know the function u0 : (0,∞) −→ F is a solution of (1.1) if and only if

(

ξ 2 + μ2)A{u0} – u0(0) –
u′

0(0)
ξ

= 0.
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If there exist two constants l and m in F such that ξ 2 + μ2 = (ξ – l)(ξ – m) with l + m = 0
and lm = μ2, then (3.6) becomes

A{u} =
A{p} + u(0) + u′(0)

ξ

(ξ – l)(ξ – m)
. (3.7)

Let v(t) = u(0)( lelt–memt

l–m ) + u′(0)( elt–emt

l–m ). Then v(0) = u(0) and u′(0) = v′(0). Taking again the
Aboodh transform to v(t), we have

A{v} =
u(0) + u′(0)

ξ

(ξ – l)(ξ – m)
. (3.8)

Furthermore,A{v′′(t)+μ2v} = (ξ 2 +μ2)A{v}–v(0)– v′(0)
ξ

. Thus, using (3.8), we getA{v′′(t)+
μ2v} = 0, and so v′′(t) + μ2v = 0. Applying (3.7) and (3.8), we get

A{u} – A{v} =
A{p} + u(0) + u′(0)

ξ

(ξ – l)(ξ – m)
–

u(0) + u′(0)
ξ

(ξ – l)(ξ – m)
=

A{p}
(ξ – l)(ξ – m)

,

A
{

u(t) – v(t)
}

= A
{

p(t) ∗
(

elt – emt

l – m

)}

.

Therefore, u(t) – v(t) = p(t) ∗ ( elt–emt

l–m ). Using |p(t)| ≤ εφ(t), we get

∣
∣u(t) – v(t)

∣
∣ ≤ ε

∣
∣
∣
∣

∫ t

0

(
el(t–x) – em(t–x)

l – m

)

φ(t) dx
∣
∣
∣
∣

for all t > 0, where

Lφ =
∣
∣
∣
∣

∫ t

0

(
el(t–x) – em(t–x)

l – m

)

φ(x) dx
∣
∣
∣
∣

≤ 1
|l – m|

{

eR(l)t
∫ t

0
e–R(l)xφ(x) dx + eR(m)t

∫ t

0
e–R(m)xφ(x) dx

}

≤ Kφφ(t)
|l – m| ,

where
∫ t

0 e–R(l)xφ(x) dx and
∫ t

0 e–R(m)xφ(x) dx exist for all t > 0 and an integrable function φ.
Hence |u(t) – v(t)| ≤ Kφφ(t)

|l–m| ε = Lφεφ(t). �

Theorem 3.3 Differential equation (1.1) has Mittag-Leffler–Hyers–Ulam stability.

Proof Let ε > 0. Suppose that u(t) ∈ C2(I) satisfies

∣
∣u′′(t) + μ2u

∣
∣ ≤ εEα(t) (3.9)

for all t ∈ I . We prove that there exists a real number L > 0 which is independent of ε and
u such that |u(t) – v(t)| ≤ LεEα(t) for some v ∈ C2(I) satisfying v′′(t) + μ2v = 0 for all t ∈ I .
Define a function p : (0,∞) → F such that p(t) =: u′′(t) + μ2u(t) for all t > 0. In view of
(3.9), we have |p(t)| ≤ εEα(t). Taking the Aboodh transform to p(t), we have

A{p} =
(

ξ 2 + μ2)A{u} – u(0) –
u′(0)

ξ
, (3.10)
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and thus

A{u} =
A{p} + u(0) + u′(0)

ξ

ξ 2 + μ2 .

By (3.10), a function u0 : (0,∞) −→ F is a solution of (1.1) if and only if

(

ξ 2 + μ2)A{u0} – u0(0) –
u′

0(0)
ξ

= 0.

If there exist constants l and m in F such that ξ 2 + μ2 = (ξ – l)(ξ – m) with l + m = 0 and
lm = μ2, then (3.10) becomes

A{u} =
A{p} + u(0) + u′(0)

ξ

(ξ – l)(ξ – m)
. (3.11)

Set

v(t) = u(0)
(

lelt – memt

l – m

)

+ u′(0)
(

elt – emt

l – m

)

.

We have v(0) = u(0) and v′(0) = u′(0). Taking the Aboodh transform to v(t), we obtain

A{v} =
u(0) + u′(0)

ξ

(ξ – l)(ξ – m)
. (3.12)

On the other hand, A{v′′(t) + μ2v} = (ξ 2 + μ2)A{v} – v(0) – v′(0)
ξ

. Using (3.12), we get
A{v′′(t) + μ2v} = 0. Since A is one-to-one and linear, v′′(t) + μ2v = 0. This means that v(t)
is a solution of (1.1). It follows from (3.11) and (3.12) that

A{u} – A{v} =
A{p} + u(0) + u′(0)

ξ

(ξ – l)(ξ – m)
–

u(0) + u′(0)
ξ

(ξ – l)(ξ – m)
=

A{p}
(ξ – l)(ξ – m)

,

A
{

u(t) – v(t)
}

= A
{

p(t) ∗
(

elt – emt

l – m

)}

.

The above equalities show that

u(t) – v(t) = p(t) ∗
(

elt – emt

l – m

)

,

and by using |p(t)| ≤ εEα(t), we get

∣
∣u(t) – v(t)

∣
∣ ≤ εEα(t)

∣
∣
∣
∣

∫ t

0

(
el(t–x) – em(t–x)

l – m

)

dx
∣
∣
∣
∣

for all t > 0, where

L =
∣
∣
∣
∣

∫ t

0

(
el(t–x) – em(t–x)

l – m

)

dx
∣
∣
∣
∣
≤ 1

|l – m|
{

eR(l)t
∫ t

0
e–R(l)x dx + eR(m)t

∫ t

0
e–R(m)x dx

}

≤ K
|l – m| ,
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where
∫ t

0 e–R(l)x dx and
∫ t

0 e–R(m)x dx exist. Hence |u(t) – v(t)| ≤ LεEα(t). By Definition 2.8,
linear differential equation (1.1) has the Hyers–Ulam stability. This finishes the proof. �

The following corollary proves the Mittag-Leffler–Hyers–Ulam–Rassias stability of dif-
ferential equation (1.1). The method of proof is similar to the proof of Theorem 3.3.

Corollary 3.4 For every ε > 0, let u(t) be a twice continuously differentiable function on I
which satisfies the inequality

∣
∣u′′(t) + μ2u

∣
∣ ≤ εφ(t)Eα(t)

for all t ∈ I . Then there exists a real number Lφ > 0 which is independent of ε and u such
that

∣
∣u(t) – v(t)

∣
∣ ≤ Lφεφ(t)Eα(t)

for some v ∈ C2(I) satisfying v′′(t) + μ2v = 0 for all t ∈ I .

4 Hyers–Ulam stability for (1.2)
In this section, we investigate the Hyers–Ulam stability, the Hyers–Ulam–Rassias stability,
the Mittag-Leffler–Hyers–Ulam stability, and the Mittag-Leffler–Hyers–Ulam–Rassias
stability of non-homogeneous differential equation (1.2).

Firstly, we prove the Hyers–Ulam stability of linear differential equation (1.2).

Theorem 4.1 Non-homogeneous linear differential equation (1.2) has Hyers–Ulam sta-
bility.

Proof For every ε > 0 and for each solution u(t) ∈ C2(I) satisfying

∣
∣u′′(t) + μ2u – q(t)

∣
∣ ≤ ε (4.1)

for all t ∈ I , we prove that there exists a real number L > 0 which is independent of ε and
u such that |u(t) – v(t)| ≤ Lε for some v ∈ C2(I) satisfying v′′(t) + μ2v = q(t) for all t ∈ I .
Define a function p : (0,∞) → F such that p(t) =: u′′(t) + μ2u(t) – q(t) satisfies |p(t)| ≤ ε.
Taking the Aboodh transform to p(t), we have

A{u} =
A{p} + u(0) + u′(0)

ξ
+ A{q}

ξ 2 + μ2 . (4.2)

Equality (4.2) shows that a function u0 : (0,∞) −→ F is a solution of (1.2) if and only if

(

ξ 2 + μ2)A{u0} – u0(0) –
u′

0(0)
ξ

= A{q}.

If there exist constants l and m in F such that ξ 2 + μ2 = (ξ – l)(ξ – m) with l + m = 0 and
lm = μ2, then (4.2) becomes

A{u} =
A{p} + u(0) + u′(0)

ξ
+ A{q}

(ξ – l)(ξ – m)
. (4.3)
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Set r(t) = elt–emt

l–m and

v(t) = u(0)
(

lelt – memt

l – m

)

+ u′(0)r(t) +
[

(r ∗ q)(t)
]

.

Then v(0) = u(0) and u′(0) = v′(0). Once more, taking the Aboodh transform to v(t), we
have

A{v} =
u(0) + u′(0)

ξ
+ A{q}

(ξ – l)(ξ – m)
. (4.4)

On the other hand,

A
{

v′′(t) + μ2v
}

=
(

ξ 2 + μ2)A{v} – v(0) –
v′(0)
ξ

.

By (4.4), the last equality becomes A{v′′(t) +μ2v} = A{q}. Since A is one-to-one and linear,
v′′(t) + μ2v = q(t), which shows that v(t) is a solution of (1.2). Now, relations (4.3) and (4.4)
necessitate that

A
{

u(t) – v(t)
}

= A{u} – A{v} =
A{p}

(ξ – l)(ξ – m)
= A

{

p(t) ∗ r(t)
}

,

and hence u(t) – v(t) = p(t) ∗ r(t). Taking modulus on both sides of the last equality and
using |p(t)| ≤ ε, we get

∣
∣u(t) – v(t)

∣
∣ =

∣
∣p(t) ∗ r(t)

∣
∣ ≤ ε

∣
∣
∣
∣

∫ t

0

(
el(t–x) – em(t–x)

l – m

)

dt
∣
∣
∣
∣
≤ Lε

for all t > 0, where

L =
∣
∣
∣
∣

∫ t

0

(
el(t–x) – em(t–x)

l – m

)

dx
∣
∣
∣
∣

≤ 1
|l – m|

{

eR(l)t
∫ t

0
e–R(l)x dx + eR(m)t

∫ t

0
e–R(m)x dx

}

≤ K
|l – m| ,

where the integrals
∫ t

0 e–R(l)x dx and
∫ t

0 e–R(m)x dx exist. Hence |u(t) – v(t)| ≤ K
|l–m|ε = Lε.

Therefore, linear differential equation (1.2) has the Hyers–Ulam stability. �

In analogous way to Theorem 4.1, we have the following result which proves the Hyers–
Ulam-Rassias stability of differential equation (1.2).

Theorem 4.2 Differential equation (1.2) has Hyers–Ulam–Rassias stability.

Proof Let ε > 0 and φ ∈ C(R+, R+). Suppose that u(t) ∈ C2(I) satisfies

∣
∣u′′(t) + μ2u – q(t)

∣
∣ ≤ εφ(t) (4.5)

for all t ∈ I . We prove that there exists a real number Lφ > 0 such that |u(t)–v(t)| ≤ Lφεφ(t)
for some v ∈ C2(I) satisfying v′′(t) +μ2v = q(t) for all t ∈ I . Define a function p : (0,∞) → F
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by p(t) =: u′′(t) + μ2u(t) – q(t) for all t > 0. In view of (4.5), we have |p(t)| ≤ εφ(t). Now,
taking the Aboodh transform to p(t), we get

A{u} =
A{p} + u(0) + u′(0)

ξ
+ A{q}

ξ 2 + μ2 . (4.6)

In addition, by (4.6), a function u0 : (0,∞) → F is a solution of (1.2) if and only if

(

ξ 2 + μ2)A{u0} – u0(0) –
u′

0(0)
ξ

= A{q}.

However, (4.6) becomes

A{u} =
A{p} + u(0) + u′(0)

ξ
+ A{q}

(ξ – l)(ξ – m)
. (4.7)

Assume that there exist constants l and m in F such that ξ 2 + μ2 = (ξ – l)(ξ – m) with
l + m = 0 and lm = μ2. Putting r(t) = elt–emt

l–m and

v(t) = u(0)
(

lelt – memt

l – m

)

+ u′(0)r(t) +
[

(r ∗ q)(t)
]

,

one can easily obtain v(0) = u(0) and u′(0) = v′(0). Taking the Aboodh transform to v(t),
we have

A{v} =
u(0) + u′(0)

ξ
+ A{q}

(ξ – l)(ξ – m)
. (4.8)

Furthermore, A{v′′ +μ2v} = (ξ 2 +μ2)A{v}– v(0) – v′(0)
ξ

. By (4.8), we obtain A{v′′(t) +μ2v} =
A{q}. The last equality implies that v′′(t) + μ2v(t) = q(t). This means that v(t) is a solution
of (1.2). Hence, by (4.7) and (4.8), we obtain

A
{

u(t) – v(t)
}

= A{u} – A{v} =
A{p}

(ξ – l)(ξ – m)
= A

{

p(t) ∗ r(t)
}

.

Thus u(t) – v(t) = p(t) ∗ r(t). Then, by using |p(t)| ≤ εφ(t), we get

∣
∣u(t) – v(t)

∣
∣ ≤ ε

∣
∣
∣
∣

∫ t

0

(
el(t–x) – em(t–x)

l – m

)

φ(t) dx
∣
∣
∣
∣
≤ Lφεφ(t)

for all t > 0, where

Lφ =
∣
∣
∣
∣

∫ t

0

(
el(t–x) – em(t–x)

l – m

)

φ(x) dx
∣
∣
∣
∣

≤ 1
|l – m|

{

eR(l)t
∫ t

0
e–R(l)xφ(x) dx + eR(m)t

∫ t

0
e–R(m)xφ(x) dx

}

≤ Kφφ(t)
|l – m| ,
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where the integrals
∫ t

0 e–R(l)xφ(x) dx and
∫ t

0 e–R(m)xφ(x) dx exist for all t > 0 and an inte-
grable function φ. Hence

∣
∣u(t) – v(t)

∣
∣ ≤ Kφφ(t)

|l – m| ε = Lφεφ(t).

This finishes the proof. �

By using the same technique as in Theorem 3.1, we can also prove the Mittag-Leffler–
Hyers–Ulam stability of differential equation (1.2). The method of the proof is similar, but
we include it for the sake of completeness.

Theorem 4.3 Differential equation (1.2) is Mittag-Leffler–Hyers–Ulam stable.

Proof For every ε > 0 and for each solution u(t) ∈ C2(I) satisfying

∣
∣u′′(t) + μ2u – q(t)

∣
∣ ≤ εEα(t) (4.9)

for all t ∈ I , we prove that there exists a real number L > 0 which is independent of ε and
u such that |u(t) – v(t)| ≤ LεEα(t) for some v ∈ C2(I) satisfying v′′(t) + μ2v = q(t) for all
t ∈ I . Then the function p : (0,∞) → F defined by p(t) =: u′′(t) + μ2u(t) – q(t) satisfies
|p(t)| ≤ εEα(t). Taking the Aboodh transform to p(t), we have

A{u} =
A{p} + u(0) + u′(0)

ξ
+ A{q}

ξ 2 + μ2 . (4.10)

Equality (4.10) shows that a function u0 : (0,∞) → F is a solution of (1.2) if and only if

(

ξ 2 + μ2)A{u0} – u0(0) –
u′

0(0)
ξ

= A{q}.

If there exist constants l and m in F such that ξ 2 + μ2 = (ξ – l)(ξ – m) with l + m = 0 and
lm = μ2, then (4.10) becomes

A{u} =
A{p} + u(0) + u′(0)

ξ
+ A{q}

(ξ – l)(ξ – m)
. (4.11)

Set r(t) = elt–emt

l–m and

v(t) = u(0)
(

lelt – memt

l – m

)

+ u′(0)r(t) +
[

(r ∗ q)(t)
]

.

Then v(0) = u(0) and v′(0) = u′(0). Once more, taking the Aboodh transform to v(t), we
obtain

A{v} =
u(0) + u′(0)

ξ
+ A{q}

(ξ – l)(ξ – m)
. (4.12)
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On the other hand, A{v′′(t)+μ2v} = (ξ 2 +μ2)A{v}–v(0)– v′(0)
ξ

. By (4.12), the last equality
becomes A{v′′(t) + μ2v} = A{q}. Since A is one-to-one and linear, v′′(t) + μ2v = q(t), which
shows that v(t) is a solution of (1.2). Now, relations (4.11) and (4.12) necessitate that

A
{

u(t) – v(t)
}

= A{u} – A{v} =
A{p}

(ξ – l)(ξ – m)
= A

{

p(t) ∗ r(t)
}

,

and hence u(t) – v(t) = p(t) ∗ r(t). Taking modulus on both sides of the last equality and
using |p(t)| ≤ εEα(t), we get

∣
∣u(t) – v(t)

∣
∣ ≤ LεEα(t),

where L = | ∫ t
0 ( el(t–x)–em(t–x)

l–m ) dt| and the integral exists for all t > 0. Hence linear differential
equation (1.2) has the Mittag-Leffler–Hyers–Ulam stability. �

In analogous way to Theorem 4.3, we have the following corollary which proves the
Mittag-Leffler–Hyers–Ulam–Rassias stability of differential equation (1.2).

Corollary 4.4 For every ε > 0, let u(t) be a twice continuously differentiable function on I
which satisfies the inequality

∣
∣u′′(t) + μ2u – q(t)

∣
∣ ≤ εφ(t)Eα(t)

for all t ∈ I . Then there exists a real number Lφ > 0 which is independent of ε and u such
that

∣
∣u(t) – v(t)

∣
∣ ≤ Lφεφ(t)Eα(t)

for some v ∈ C2(I) satisfying v′′(t) + μ2v = q(t) for all t ∈ I .

5 Examples and remarks
In this section, we provide some examples to make it easier to understand the main results
of this paper.

Example 5.1 We consider the following homogeneous linear differential equation of sec-
ond order:

u′′(t) + u(t) = 0, (5.1)

where μ2 = 1, with the initial conditions u(0) = u′(0) = 1. Letting p(t) = u′′(t) + u(t) in The-
orem 3.1 and taking the Aboodh transform, we get

P(ξ ) = ξ 2U(ξ ) –
u′(0)

ξ
– u(0) + U(ξ ).

By the initial conditions, we have A{u} = ξP(ξ )+ξ+1
ξ (ξ2+1) . If a continuously differentiable function

u : [0,∞) → F of exponential order satisfies

∣
∣u′′(t) + u(t)

∣
∣ ≤ ε
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for all t ≥ 0 and for some ε > 0, then, by Theorem 3.1, there exists a solution v : [0,∞) → F
of differential equation (5.1) such that

∣
∣u(t) – v(t)

∣
∣ ≤ Lε

for all t ≥ 0. In fact, v(t) = c1 cos t + c2 sin t for some constants c1, c2 ∈ F.

Example 5.2 Let us take the non-homogeneous linear differential equation

u′′(t) + 3u(t) = t, (5.2)

with the initial conditions u(0) = u′(0) = –1. Here q(t) = t is a function of exponential order
and μ2 = 3.

If a continuously differentiable function u : [0,∞) → F of exponential order satisfies

∣
∣u′′(t) + 3u(t) – t

∣
∣ ≤ ε

for all t ≥ 0 and some ε > 0, then, by Theorem 4.1, there exists a solution v : [0,∞) → F of
differential equation (5.2) such that v(t) is of exponential order and

∣
∣u(t) – v(t)

∣
∣ ≤ Lε

for all t ≥ 0. In fact, v(t) = c1 cos
√

3t + c2 sin
√

3t + 1
3 t for some constants c1, c2 ∈ F.

Example 5.3 Consider the non-homogeneous linear differential equation

u′′(t) + 2u(t) = 4e3t , (5.3)

with the initial conditions

u(0) = –3 and u′(0) = 5,

where q(t) = 4e3t is a function of exponential order with μ2 = 2.
Letting p(t) = u′′(t) + 2u(t) – 4e3t in Theorem 4.1 and taking the Aboodh transform, we

get

P(ξ ) = ξ 2U(ξ ) –
u′(0)

ξ
– u(0) + 2U(ξ ) –

4
ξ (ξ – 3)

.

By the initial conditions, we have

U(ξ ) = A{u} =
1

ξ 2 + 2

[

P(ξ ) +
4

ξ (ξ – 3)
+

5
ξ

– 3
]

.

If a continuously differentiable function u : [0,∞) → F of exponential order satisfies

∣
∣u′′(t) + 2u(t) – 4e3t∣∣ ≤ ε
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for all t ≥ 0 and some ε > 0, then, by Theorem 4.1, there exists a solution v : [0,∞) → F of
differential equation (5.3) such that

∣
∣u(t) – v(t)

∣
∣ ≤ Lε

for all t ≥ 0. In fact, v(t) = c1 cos
√

2t + c2 sin
√

2t + 4e3t for some constants c1, c2 ∈ F.

Example 5.4 Consider the linear differential equation

u′′(t) + 9u(t) = 2 cos t (5.4)

with the initial conditions

u(0) = 3 and u′(0) = 4,

where q(t) = 2 cos t is a function of exponential order with μ2 = 2.
Letting p(t) = u′′(t) + 9u(t) – 2 cos t in Theorem 4.1 and taking the Aboodh transform,

we get

P(ξ ) = ξ 2U(ξ ) –
u′(0)

ξ
– u(0) + 9U(ξ ) –

2
ξ 2 + 1

.

By the initial conditions, we have

U(ξ ) = A{u} =
1

ξ 2 + 9

[

P(ξ ) +
2

ξ 2 + 1
+

4
ξ

+ 3
]

.

If a continuously differentiable function u : [0,∞) → F of exponential order satisfies

∣
∣u′′(t) + 9u(t) – 2 cos t

∣
∣ ≤ ε

for all t ≥ 0 and some ε > 0, then, by Theorem 4.1, there exists a solution v : [0,∞) → F of
differential equation (5.4) such that

∣
∣u(t) – v(t)

∣
∣ ≤ Lε

for all t ≥ 0. In fact, v(t) = c1 cos 3t + c2 sin 3t + 2
5 cos t for some constants c1, c2 ∈ F.

Remark 5.5 The above examples are also true when we replace ε and Kε with φ(t)ε and
Kφ(t)ε, respectively, where φ(t) is an increasing function. In this case, we see that the
corresponding differential equations have the Hyers–Ulam–Rassias stability.

Remark 5.6 Differential equations (5.1), (5.2), (5.3), and (5.4) have the Mittag-Leffler–
Hyers–Ulam stability when α > 0. Moreover, they also have the Mittag-Leffler–Hyers–
Ulam–Rassias stability when φ(t) is an increasing function and α > 0.
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6 Conclusion
In this paper, we introduced a new integral transform, namely Aboodh transform, and we
applied the transform to investigate the Hyers–Ulam stability, the Hyers–Ulam–Rassias
stability, the Mittag-Leffler–Hyers–Ulam stability, and the Mittag-Leffler–Hyers–Ulam–
Rassias stability of second order linear differential equations with constant coefficients.

In other words, we established sufficient criteria for the Hyers–Ulam stability of second
order linear differential equations with constant coefficients by using the Aboodh trans-
form method. Moreover, this paper provides a new method to investigate the Hyers–Ulam
stability of differential equations. This is the first attempt to use the Aboodh transforma-
tion to prove the Hyers–Ulam stability for linear differential equations of second order.
Furthermore, this paper shows that the Aboodh transform method is more convenient for
investigating the stability problems for linear differential equations with constant coeffi-
cients. Readers can also apply this terminology to various problems on differential equa-
tions.

Acknowledgements
We would like to express our sincere gratitude to the anonymous referee for his/her helpful comments that will help to
improve the quality of the manuscript.

Funding
Not applicable.

Abbreviations
Not applicable.

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Authors’ contributions
The authors equally conceived of the study, participated in its design and coordination, drafted the manuscript,
participated in the sequence alignment, and read and approved the final manuscript.

Author details
1PG and Research Department of Mathematics, Sacred Heart College (Autonomous), 635 601 Tirupattur, India.
2Department of Mathematics, Sri Sai Ram Institute of Technology, 600 044 Chennai, India. 3Research Institute for Natural
Sciences, Hanyang University, 04763 Seoul, Korea. 4Department of Data Science, Daejin University, 11159 Kyunggi, Korea.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 5 March 2021 Accepted: 7 June 2021

References
1. Ulam, S.M.: Problem in Modern Mathematics. Willey, New York (1960)
2. Hyers, D.H.: On the stability of a linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222–224 (1941)
3. Aoki, T.: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 2, 64–66 (1950)
4. Jung, S., Popa, D., Rassias, M.T.: On the stability of the linear functional equation in a single variable on complete

metric spaces. J. Glob. Optim. 59, 13–16 (2014)
5. Lee, Y., Jung, S., Rassias, M.T.: Uniqueness theorems on functional inequalities concerning cubic–quadratic–additive

equation. J. Math. Inequal. 12, 43–61 (2018)
6. Rassias, J.M.: On approximately of approximately linear mappings by linear mappings. J. Funct. Anal. 46, 126–130

(1982)
7. Rassias, T.M.: On the stability of the linear mappings in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)



Murali et al. Advances in Difference Equations        (2021) 2021:296 Page 18 of 18

8. Gavruta, P., Gavruta, L.: A new method for the generalized Hyers–Ulam–Rassias stability. Int. J. Nonlinear Anal. Appl. 2,
11–18 (2010)

9. Gajda, Z.: On stability of additive mappings. Int. J. Math. Math. Sci. 14, 431–434 (1991)
10. Bodaghi, A., Senthil Kumar, B.V., Rassias, J.M.: Stabiliies and non-stabilities of the reciprocal-nonic and the

reciprocal-decic functional equations. Bol. Soc. Parana. Mat. 38(3), 9–22 (2020)
11. Alessa, N., Tamilvanan, K., Loganathan, K., Karthik, T.S., Rassias, J.M.: Orthogonal stability and nonstability of a

generalized quartic functional equation in quasi-β -normed spaces. J. Funct. Spaces 2021, Article ID 5577833 (2021)
12. Karthikeyan, S., Park, C., Rassias, J.M., Lee, J.: Stability of n-variable additive functional equation in paranormed spaces.

Preprint
13. Svetlin, G.G., Khaled, Z.: New results on IBVP for class of nonlinear parabolic equations. Adv. Theory Nonlinear Anal.

Appl. 2(4), 202–216 (2018)
14. Nguyen, D.P., Nguyen, L., Le, D.L.: Modified quasi boundary value method for inverse source biparabolic. Adv. Theory

Nonlinear Anal. Appl. 4(3), 132–142 (2020)
15. Nguyen, D.P., Luu, V.C.H., Karapinar, E., Singh, J., Binh, H.D., Nguyen, H.C.: Fractional order continuity of a time

semi-linear fractional diffusion-wave system. Alex. Eng. J. 59, 4959–4968 (2020)
16. Kim, I.: Semilinear problems involving nonlinear operators of monotone type. Res. Nonlinear Anal. 2, 25–35 (2019)
17. Marino, G., Scardamaglia, B., Karapinar, E.: Strong convergence theorem for strict pseudo-contractions in Hilbert

spaces. J. Inequal. Appl. 2016 Paper No. 134 (2016)
18. Karapinar, E., Binh, H.D., Nguyen, H.L., Nguyen, H.C.: On continuity of the fractional derivative of the time-fractional

semilinear pseudo-parabolic systems. Adv. Differ. Equ. 2021 Paper No. 70 (2021)
19. Alsina, C., Ger, R.: On some inequalities and stability results related to the exponential function. J. Inequal. Appl. 2,

373–380 (1998)
20. Takahasi, S.E., Miura, T., Miyajima, S.: On the Hyers–Ulam stability of the Banach space-valued differential equation

y′ = αy. Bull. Korean Math. Soc. 39, 309–315 (2002)
21. Jung, S.: Hyers–Ulam stability of linear differential equation of first order. Appl. Math. Lett. 17, 1135–1140 (2004)
22. Jung, S.: Hyers–Ulam stability of linear differential equations of first order (III). J. Math. Anal. Appl. 311, 139–146 (2005)
23. Jung, S.: Hyers–Ulam stability of linear differential equations of first order (II). Appl. Math. Lett. 19, 854–858 (2006)
24. Jung, S.: Hyers–Ulam stability of a system of first order linear differential equations with constant coefficients. J. Math.

Anal. Appl. 320, 549–561 (2006)
25. Jung, S.: Approximate solution of a linear differential equation of third order. Bull. Malays. Math. Sci. Soc. 35(4),

1063–1073 (2012)
26. Wang, G., Zhou, M., Sun, L.: Hyers–Ulam stability of linear differential equations of first order. Appl. Math. Lett. 21,

1024–1028 (2008)
27. Gavruta, P., Jung, S.M., Li, Y.: Hyers–Ulam stability for the second order linear differential equations with boundary

conditions. Electron. J. Differ. Equ. 2011, Paper No. 80 (2011)
28. Alqifiary, Q.H., Jung, S.: Laplace transform and generalized Hyers–Ulam stability of differential equations. Electron.

J. Differ. Equ. 2014, Paper No. 80 (2014)
29. Murali, R., Selvan, A.P.: Mittag-Leffler–Hyers–Ulam stability of a linear differential equations of first order using Laplace

transforms. Can. J. Appl. Math. 2(2), 47–59 (2020)
30. Buakird, A., Saejung, S.: Ulam stability with respect to a directed graph for some fixed point equations. Carpath.

J. Math. 35, 23–30 (2019)
31. Li, T., Zada, A., Faisal, S.: Hyers–Ulam stability of nth order linear differential equations. J. Nonlinear Sci. Appl. 9,

2070–2075 (2016)
32. Murali, R., Selvan, A.P.: Hyers–Ulam stability of a free and forced vibrations. Kragujev. J. Math. 44(2), 299–312 (2020)
33. Murali, R., Park, C., Selvan, A.P.: Hyers–Ulam stability for an nth order differential equation using fixed point approach.

J. Appl. Anal. Comput. 11, 614–631 (2021)
34. Fukutaka, R., Onitsuka, M.: Best constant in Hyers–Ulam stability of first-order homogeneous linear differential

equations with a periodic coefficient. J. Math. Anal. Appl. 473, 1432–1446 (2019)
35. Murali, R., Selvan, A.P., Park, C.: Ulam stability of linear differential equations using Fourier transform. AIMS Math. 5,

766–780 (2019)
36. Murali, R., Selvan, A.P.: Fourier transforms and Ulam stabilities of linear differential equations. In: Front. Funct. Equ.

Anal. Inequal., pp. 195–217. Springer, Cham (2019)
37. Rassias, J.M., Murali, R., Selvan, A.P.: Mittag-Leffler–Hyers–Ulam stability of linear differential equations using Fourier

transforms. J. Comput. Anal. Appl. 29, 68–85 (2021)
38. Alshikh, A.A., Mahgob, M.M.A.: A comparative study between Laplace transform and two new integrals “ELzaki”

transform and Aboodh transform. Pure Appl. Math. J. 5(5), 145–150 (2016)
39. Aboodh, K.S.: Solving porous medium equation using Aboodh transform homotopy perturbation method. Pure

Appl. Math. J. 4(6), 271–276 (2016)
40. Kalvandi, V., Eghbali, N., Rassias, J.M.: Mittag-Leffler–Hyers–Ulam stability of fractional differential equations of second

order. J. Math. Ext. 13(1), 1–15 (2019)


	Aboodh transform and the stability of second order linear differential equations
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Hyers-Ulam stability for (1.1)
	Hyers-Ulam stability for (1.2)
	Examples and remarks
	Conclusion
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	Consent for publication
	Authors' contributions
	Author details
	Publisher's Note
	References


