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Abstract
Some results on the long-term behavior of solutions to a class of difference equations,
which includes numerous nonlinear difference equations of various orders that
attracted some attention in the last 15 years, are presented. We also present a natural
connection among these difference equations, compare some results on the
equations with some other ones in the literature, and give a list of a considerable
number of difference equations which can be treated in a similar way.
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1 Introduction
1.1 Notation and some general facts
By N and Z we denote the sets of natural and whole numbers, respectively. If k ∈ Z, then
by Nk we denote the set of all n ∈ Z such that k ≤ n. If l, m ∈ Z, then j = l, m, denotes the
set of all j ∈ Z such that l ≤ j ≤ m. If l, m ∈N, then gcd(l, m) denotes the greatest common
divisor of numbers l and m.

During the last 30 years there has been a huge interest in investigating solutions to con-
crete difference equations and systems of difference equations (see, e.g., [1–36]).

1.2 On an influential result
The following difference equation is one of the concrete ones which attracted some atten-
tion:

xn+1 =
xn–1

1 + xn
, n ∈N0. (1)

A difficult problem on the existence of a positive solution to Eq. (1) converging to zero had
been open for some time (the problem was posed for another difference equation which
is equivalent to the equation).

Note that the linearization of Eq. (1) is

xn+1 – xn–1 = 0, n ∈N0,
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and that the zeros of the associated characteristic polynomial

P(λ) = λ2 – 1

to the equation are λ1,2 = ±1.
The difference equations and systems whose linearizations have some zeros with mod-

ulus equal to one are of some interest and have been studied a lot (see, e.g., [2, 7–
9, 13, 15, 16, 26, 28]).

The above-mentioned problem was solved in [26] by considering a more general equa-
tion, for which it was shown, in a quite complex way, the existence of a positive solution
converging to zero, from which the same result follows for Eq. (1) as a special case of
the general equation. During the course of a long solution of the problem there have been
proved several interesting formulas which are satisfied by solutions to the difference equa-
tion. Some other solutions to the problem were given in [2] and [13].

The next theorem, among other ones, was proved in [26].

Theorem 1 For each positive solution to (1) the following claims are true.
(a) (x2n)n∈N0 and (x2n+1)n≥–1 are decreasing and x2n → a and x2n+1 → b, as n → +∞.
(b) The sequence x̃2n–1 = b, x̃2n = a, n ∈ N0, is a solution to (1) with period two.
(c) ab = 0.
(d) If xn ≥ xn+1 for all n ≥ n1 and some n1 ∈ N, then limn→∞ xn = 0.
(e) We have

x2n = x0

(

1 – x1

n
∑

j=1

2j–1
∏

i=1

1
1 + xi

)

, n ∈ N0, (2)

x2n+1 = x–1

(

1 –
x0

1 + x0

n
∑

j=0

2j
∏

i=1

1
1 + xi

)

, n ≥ –1. (3)

(f ) If x0 + x2
0 ≤ x–1, then limn→+∞ x2n �= 0 or limn→+∞ x2n+1 �= 0.

(g) Each solution to (1) converging to zero decreases.

Remark 1 The formulation of Theorem 1 (f ) in [26] is, in fact, slightly different, but what
was proved therein is stated above. An improvement of Theorem 1 (f ) has been recently
presented in [34]. Namely, the following result was proved therein.

Theorem 2 Let (xn)n≥–1 be a positive solution to (1) such that x0 + x2
0 ≤ x–1. Then x2n → 0

and x2n+1 → b �= 0, as n → ∞.

1.3 A generalization of Eq. (1) and some important investigations
A natural generalization of Eq. (1) is

xn =
xn–k

1 + xn–1 · · ·xn–k+1
, n ∈N0, (4)

where k ≥ 2.
In order to generalize some results obtained in [26], Stević in [28] and [31], and some-

what later Berg and Stević in [9] studied the existence of a positive solution to Eq. (4) which
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converges to zero. It is not easy to develop the method in [26] for the case of Eq. (4), since
it is basically connected to second order difference equations, that is, to the case k = 2. In
[2–6], Berg employed some asymptotic methods for solving similar problems. For more
information on asymptotic methods see, for example, [37]. Stević developed Berg’s ideas
and applied them successfully in solving some related problems, for example, in [10, 27–
30, 32] (see also [14]). Stević in [28] solved the problem by using asymptotic methods. The
existence problem for the case k = 3 was further treated by Berg in [7], whereas the general
case was further treated in Berg–Stević’s paper [9].

Although cited in [9] as reference [14] therein and circulated among some experts on
difference equations, preprint [31] has never been published. One of the reasons for this
was to avoid publishing two papers on the same problem.

1.4 Some equations influenced by [26]
In [25] has been recently studied the following difference equation:

xn+1 =
xn–17

1 + xn–5xn–11
, n ∈N0. (5)

It is said therein that some of these authors and their collaborators studied also the fol-
lowing difference equations:

xn+1 =
xn–5

1 + xn–1xn–3
, n ∈ N0, (6)

xn+1 =
xn–3

1 + xnxn–1xn–2
, n ∈N0, (7)

xn+1 =
xn–15

1 + xn–3xn–7xn–11
, n ∈N0, (8)

xn+1 =
xn–11

1 + xn–2xn–5xn–8
, n ∈N0, (9)

xn+1 =
xn–11

1 + xn–1xn–3xn–5xn–7xn–9
, n ∈N0, (10)

xn+1 =
xn–(5k+9)

1 + xn–4xn–9 · · ·xn–(5k+4)
, n ∈N0, (11)

xn+1 =
xn–(4k+3)

1 +
∏2

t=0 xn–(k+1)t–k
, n ∈N0, (12)

xn+1 =
xn–(k+1)

1 + xnxn–1 · · ·xn–k
, n ∈ N0. (13)

They also studied some other equations not mentioned in [25] such as

xn+1 =
xn–23

1 + xn–5xn–11xn–17
, n ∈ N0, (14)

and the following quite recently studied equations:

xn+1 =
xn–14

1 + xn–2xn–5xn–8xn–11
, n ∈N0, (15)

xn+1 =
xn–20

1 + xn–2xn–5xn–8xn–11xn–14xn–17
, n ∈N0, (16)
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xn+1 =
xn–13

1 + xn–1xn–3xn–5xn–7xn–9xn–11
, n ∈ N0, (17)

xn+1 =
xn–pl+1

1 +
∏p–1

j=1 xn–jl+1
, n ∈N0. (18)

At first sight the difference equations in (5)–(18) form a large collection of various equa-
tions of different orders, and one can expect that these investigations of the equations pro-
duced many different results. It should be also said that a detailed inspection of the results
and their proofs shows that the main motivation for all these studies has been the proof
of Theorem 1 in Stević’s paper [26].

1.5 The aim of the paper
We show that the results on all the difference equations in (5)–(18) in the above quoted
papers follow from the results on only one of the equations, namely on the results on
Eq. (13) only, and that they are essentially obtained by some slight modifications of the
results in Theorem 1 from [26]. This fact has been noticed long time ago in [31] for the
case of few of these equations. The problem was essentially noticed also in [7]. Few of the
results in [31] were mentioned in [9]. We present one of the main results in [31] in its
original form (some of the statements are more general than the corresponding ones in
many published papers on the difference equations of this type).

2 Equations with interlacing indices and some examples
In this section we explain the notion of difference equations with interlacing indices,
present some examples of such equations which can be found in the literature, and give
some comments on the equations.

2.1 Equations with interlacing indices
From a difference equation or system it is always possible to construct a sequence of dif-
ference equations or systems by using a simple method.

The general equation

xn+1 = g(xn+1–(k+1), xn+1–2(k+1), . . . , xn+1–l(k+1)), n ∈N0, (19)

where l ∈ N and k ∈ N0, is a difference equation with interlacing indices (for some details
and examples see [35, 36]).

Let Al
j := {(m – l)(k + 1) + 1 + j : m ∈ N0}, j = 0, k. Then Al

i ∩Al
j = ∅, i �= j, and

⋃k
j=0 Al

j =
N–l(k+1)+1. If we use the notation

x(j)
m := xm(k+1)+1+j, m ≥ –l,

where j = 0, k, then Eq. (19) becomes

x(j)
m = g

(

x(j)
m–1, x(j)

m–2, . . . , x(j)
m–l

)

, m ∈N0,

for j = 0, k.
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So (x(j)
m )m≥–l , j = 0, k, are the k + 1 solutions to the equation

xn = g(xn–1, xn–2, . . . , xn–l), n ∈N0, (20)

with the initial values x(j)
–t , t = 1, l, for j = 0, k, respectively.

If we go back from Eq. (20), in this way we obtain Eq. (19), which consists of k + 1 non-
related samples of Eq. (20). Thus, if we know some results about solutions to Eq. (20),
then the results are almost trivially transferred to the solutions to Eq. (19). So, there is no
essential need to publish the corresponding results on Eq. (19).

2.2 Some examples of difference equations with interlacing indices
Here we show that some of Eqs. (5)–(18) are also examples of difference equations with
interlacing indices, and to each of such equations we determine the corresponding dif-
ference equation with non-interlacing indices, and give a list of several equations with
interlacing indices belonging to the same class.

Example 1 Equation (6) is a difference equation with interlacing indices. Indeed, from (6)
we see that xn+1 is presented in terms of xn–1, xn–3 and xn–5, and that the indices of the
subsequent members form an arithmetic progression with the difference equal to 2, since
n + 1 – (n – 1) = n – 1 – (n – 3) = n – 3 – (n – 5) = 2. This means the set of indices N–5 :=
{n ∈ Z : n ≥ –5} is partitioned into two disjoint subsets. The set of even and odd indices
belonging to N–5. Hence, the subsequences (x2m)m≥–2 and (x2m–1)m≥–2 are two solutions
to the following difference equation with non-interlacing indices:

ym+1 =
ym–2

1 + ymym–1
. (21)

By using the method described above, from (21) is obtained the following “general” equa-
tion with interlacing indices:

yn+1 =
yn–(3k+2)

1 + yn–kyn–(2k+1)
, n ∈ N0, (22)

where k ∈N0.
Equation (22), beside Eq. (6), which is obtained for k = 1, contains, for example, the

following special cases, which are obtained for k = 2, 3, 4, 5, 6, respectively:

yn+1 =
yn–8

1 + yn–2yn–5
, n ∈N0, (23)

yn+1 =
yn–11

1 + yn–3yn–7
, n ∈N0, (24)

yn+1 =
yn–14

1 + yn–4yn–9
, n ∈N0, (25)

yn+1 =
yn–17

1 + yn–5yn–11
, n ∈N0 (26)

yn+1 =
yn–20

1 + yn–6yn–13
, n ∈N0. (27)
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Example 2 Equation (8) is also another example of a difference equation with interlacing
indices. Indeed, from Eq. (8) we see that xn+1 is presented in terms of the following four
members: xn–3, xn–7, xn–11 and xn–15, and also note that their indices form an arithmetic
progression with the difference equal to four (simply note that the following sequence of
equalities holds: n + 1 – (n – 3) = n – 3 – (n – 7) = n – 7 – (n – 11) = n – 11 – (n – 15) = 4).
This means that the set of indices N–15 is partitioned into four disjoint subsets. Hence, the
subsequences (x4m+j)m≥–4, j = 1, 4, are four solutions to the following difference equation
with non-interlacing indices:

ym+1 =
ym–3

1 + ymym–1ym–2
. (28)

By using the method described above, from (28) is obtained the following sequence of
equations with interlacing indices:

yn+1 =
yn–(4k+3)

1 + yn–kyn–(2k+1)yn–(3k+2)
, n ∈N0, (29)

where k ∈N0.
Equation (29), beside Eq. (8), which is obtained for k = 3, contains, for example, the

following special cases, which are obtained for k = 2, 4, 5, 6, 7, respectively:

yn+1 =
yn–11

1 + yn–2yn–5yn–8
, n ∈N0, (30)

yn+1 =
yn–19

1 + yn–4yn–9yn–14
, n ∈N0, (31)

yn+1 =
yn–23

1 + yn–5yn–11yn–17
, n ∈N0, (32)

yn+1 =
yn–27

1 + yn–6yn–13yn–20
, n ∈N0, (33)

yn+1 =
yn–31

1 + yn–7yn–15yn–23
, n ∈N0. (34)

Remark 2 Note that such obtained Eq. (30), is in fact Eq. (9), whereas Eq. (32) is, in fact,
Eq. (14). Thus the above analysis given in Example 2 shows that Eqs. (8), (9) and (14) are
obtained from the same difference equation, that is, from Eq. (29), by using the method
described above. Note also that Eq. (12) is nothing but Eq. (29), which is also obtained
from Eq. (28) by the method described above. Finally, note that Eq. (7) is, in fact, Eq. (28).

Example 3 Equation (15) is also another difference equation with interlacing indices.
Indeed, from the relation in (15) we see that the member xn+1 is presented in terms
of the following ones: xn–2, xn–5, xn–8, xn–11 and xn–14, and that the indices of the sub-
sequent ones form an arithmetic progression with the difference equal to three, since
n + 1 – (n – 2) = n – 2 – (n – 5) = n – 5 – (n – 8) = n – 8 – (n – 11) = n – 11 – (n – 14) = 3. This
means that the set of indices N–14 is partitioned into three disjoint subsets. Hence, the
subsequences (x3m+j)m≥–5, j = 1, 3, are three solutions to the following difference equation
with non-interlacing indices:

ym+1 =
ym–4

1 + ymym–1ym–2ym–3
. (35)
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By using the method described above, from (35) is obtained the following equation with
interlacing indices:

yn+1 =
yn–(5k+4)

1 + yn–kyn–(2k+1)yn–(3k+2)yn–(4k+3)
, n ∈N0, (36)

where k ∈N0.
Equation (36), beside Eq. (15), which is obtained for k = 2, contains, for example, the

following special cases, which are obtained for k = 3, 4, 5, 6, 7, respectively:

yn+1 =
yn–19

1 + yn–3yn–7yn–11yn–15
, n ∈N0, (37)

yn+1 =
yn–24

1 + yn–4yn–9yn–14yn–19
, n ∈N0, (38)

yn+1 =
yn–29

1 + yn–5yn–11yn–17yn–23
, n ∈N0, (39)

yn+1 =
yn–34

1 + yn–6yn–13yn–20yn–27
, n ∈N0, (40)

yn+1 =
yn–39

1 + yn–7yn–15yn–23yn–31
, n ∈N0. (41)

Example 4 Equation (10) is also a difference equation with interlacing indices. Indeed,
from (10) we see that the member xn+1 is presented in terms of the following ones: xn–1,
xn–3, xn–5, xn–7, xn–9 and xn–11, and that the indices of the subsequent members form an
arithmetic progression with the difference equal to two. This means that the set of indices
N–11 is partitioned into two disjoint subsets. Hence, the subsequences (x2m+j)m≥–6, j = 1, 2,
are two solutions to the following difference equation with non-interlacing indices:

ym+1 =
ym–5

1 + ymym–1ym–2ym–3ym–4
. (42)

By using the method described above, from (42) is obtained the following equation with
interlacing indices:

yn+1 =
yn–(6k+5)

1 + yn–kyn–(2k+1)yn–(3k+2)yn–(4k+3)yn–(5k+4)
, n ∈N0, (43)

where k ∈N0.
Equation (43), beside Eq. (10), which is obtained for k = 1, contains, for example, the

following special cases, which are obtained for k = 2, 3, 4, 5, 6, respectively:

yn+1 =
yn–17

1 + yn–2yn–5yn–8yn–11yn–14
, n ∈N0, (44)

yn+1 =
yn–23

1 + yn–3yn–7yn–11yn–15yn–19
, n ∈N0, (45)

yn+1 =
yn–29

1 + yn–4yn–9yn–14yn–19yn–24
, n ∈N0, (46)

yn+1 =
yn–35

1 + yn–5yn–11yn–17yn–23yn–29
, n ∈ N0, (47)

yn+1 =
yn–41

1 + yn–6yn–13yn–20yn–27yn–34
, n ∈ N0. (48)



Stević et al. Advances in Difference Equations        (2021) 2021:297 Page 8 of 16

Example 5 Equation (16) is also a difference equation with interlacing indices. Indeed,
from (16) we see that xn+1 is presented in terms of xn–2, xn–5, xn–8, xn–11, xn–14, xn–17 and
xn–20, and that their indices form an arithmetic progression with the difference equal to
three. This means that the set of indices N–20 is partitioned into three disjoint subsets.
Hence, the subsequences (x3m+j)m≥–7, j = 1, 3, are three solutions to the following differ-
ence equation with non-interlacing indices:

ym+1 =
ym–6

1 + ymym–1ym–2ym–3ym–4ym–5
. (49)

By using the method described above, from (49) is obtained the following equation with
interlacing indices:

yn+1 =
yn–(7k+6)

1 + yn–kyn–(2k+1)yn–(3k+2)yn–(4k+3)yn–(5k+4)yn–(6k+5)
, n ∈N0, (50)

where k ∈N0.
Equation (50), beside Eq. (16), which is obtained for k = 2, contains, for example, the

following special cases, which are obtained for k = 1, 3, 4, 5, 6, respectively:

yn+1 =
yn–13

1 + yn–1yn–3yn–5yn–7yn–9yn–11
, n ∈N0, (51)

yn+1 =
yn–27

1 + yn–3yn–7yn–11yn–15yn–19yn–23
, n ∈N0, (52)

yn+1 =
yn–34

1 + yn–4yn–9yn–14yn–19yn–24yn–29
, n ∈N0, (53)

yn+1 =
yn–41

1 + yn–5yn–11yn–17yn–23yn–29yn–35
, n ∈N0, (54)

yn+1 =
yn–48

1 + yn–6yn–13yn–20yn–27yn–34yn–41
, n ∈N0. (55)

Remark 3 Note that such obtained Eq. (51) is, in fact, Eq. (17). Thus the analysis in Exam-
ple 5 shows that both, Eq. (16) and Eq. (17) are obtained from the same equation, that is,
from Eq. (50), by using the method described above.

Example 6 Equation (11) is also a difference equation with interlacing indices. Indeed,
from (11) we see that xn+1 is presented in terms of the k + 2 members xn–(5j+4), j = 0, k + 1,
and that the indices of the subsequent members form an arithmetic progression with the
difference equal to five, since n – (5(j – 1) + 4) – (n – (5j + 4)) = 5, j = 1, k + 1. This means that
the set of indices N–(5k+9) is partitioned into five disjoint subsets. Hence, the subsequences
(x5m+j)m≥–(k+2), j = 1, 5, are five solutions to the following difference equation with non-
interlacing indices:

ym+1 =
ym–(k+1)

1 + ymym–1 · · · ym–k
. (56)

By using the method described above, from (56) is obtained the following equation with
interlacing indices:

yn+1 =
yn–(k+2)(s+1)+1

1 + yn–syn–(2s+1) · · · yn–(k+1)(s+1)+1
, n ∈N0, (57)
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where k ∈ N0. Note that if we choose k = p – 2 and s = l – 1 Eq. (57) becomes
Eq. (18).

Equation (57), beside Eq. (11), which is obtained for s = 4, contains, for example, the
following special cases, which are obtained for s = 2, 3, 5, 6, 7, respectively:

yn+1 =
yn–3(k+2)+1

1 + yn–2yn–5 · · · yn–3(k+1)+1
, n ∈N0, (58)

yn+1 =
yn–4(k+2)+1

1 + yn–3yn–7 · · · yn–4(k+1)+1
, n ∈N0, (59)

yn+1 =
yn–6(k+2)+1

1 + yn–5yn–11 · · · yn–6(k+1)+1
, n ∈N0, (60)

yn+1 =
yn–7(k+2)+1

1 + yn–6yn–13 · · · yn–7(k+1)+1
, n ∈N0, (61)

yn+1 =
yn–8(k+2)+1

1 + yn–7yn–15 · · · yn–8(k+1)+1
, n ∈N0. (62)

Remark 4 To the best of our knowledge the following difference equations have not been
studied separately yet:

yn+1 =
yn–8

1 + yn–1yn–2yn–3yn–4yn–5yn–6yn–7
, n ∈N0, (63)

yn+1 =
yn–15

1 + yn–1yn–3yn–5yn–7yn–9yn–11yn–13
, n ∈N0, (64)

yn+1 =
yn–23

1 + yn–2yn–5yn–8yn–11yn–14yn–17yn–20
, n ∈N0, (65)

yn+1 =
yn–31

1 + yn–3yn–7yn–11yn–15yn–19yn–23yn–27
, n ∈N0, (66)

yn+1 =
yn–39

1 + yn–4yn–9yn–14yn–19yn–24yn–29yn–34
, n ∈N0, (67)

yn+1 =
yn–47

1 + yn–5yn–11yn–17yn–23yn–29yn–35yn–41
, n ∈N0, (68)

yn+1 =
yn–55

1 + yn–6yn–13yn–20yn–27yn–34yn–41yn–48
, n ∈N0. (69)

But the above quite detailed explanation shows that they really do not deserve separate
investigations if they only consider the corresponding statements listed in Theorem 1.

Remark 5 Now note that the main equations in Examples 1–5, that is, Eqs. (21), (28),
(35), (42) and (49) are special cases of the main equation in Example 6, that is, of Eq. (56),
and that all other equations including (23)–(27), (30)–(34), (37)–(41), (44)–(48), (51)–(55),
(58)–(62), are obtained by the method described above for forming difference equations
with interlacing indices. The same observation holds for Eqs. (63)–(69).

2.3 Some comments and a theorem
The observations given in Remark 5 shows that the only difference equation which de-
served to be studied is Eq. (56), since the corresponding results for the other difference
equations with interlacing indices easily follow from obtained results on the equation.
Note also that Eq. (56) with k = 0 reduces to Eq. (1), which, as we have already mentioned,
was studied in [26].
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Far the most difficult problem concerning solutions to Eq. (56), out of the studied ones,
was the problem of the existence of a positive solution to Eq. (56) converging to zero.
Recall that the problem was solved in [28] by using asymptotic methods, more precisely,
by finding a finite asymptotic expansion of a suitably chosen solution to the equation.

Later in [9] were found some other solutions, and it was also shown that some of the
corresponding statements in Theorem 1 also hold (see [9, p.583] for the corresponding
statements (a)–(c)). The properties corresponding to the statements (d) and (e) of the the-
orem were proved in [31], but are not explicitly mentioned in [9] (recall that [31] was cited
as reference [14] in [9] and as reference [7] in [7]). One of the reasons for not including
these two statements in [9] was the fact that they are not used in the proofs of the main
results in [9].

As we have already mentioned, preprint [31] has never been published, and although
it circulated among a number of experts its content has not become widely known. Be-
side this, our impression was that the statements are proved by some arguments similar to
the corresponding ones in the proof of Theorem 1 in [26], so that the results might not be
much interesting, especially since in [28] the main problem had already been solved. How-
ever, the number of papers devoted to the investigation of the class of difference equations
shows that the impression of ours was wrong. These facts, among other things, motivate
us to present here the statements and their proofs.

Now we formulate and prove the generalization of Theorem 1 presented in [31]. Shorter
versions of the proofs of the first two statements in the generalization of Theorem 1 are
given in [9]. We present here also detailed proofs of these statements for the completeness
and the benefit of the reader.

Theorem 3 Consider Eq. (4). Let

min{x–k , x–k+1, . . . , x–1} > 0. (70)

Then for every solution (xn)n≥–k to Eq. (4) satisfying condition (70), the following statements
hold.

(a) The subsequences (xkm+r)m≥–1, r = 0, k – 1, are decreasing and bounded.
(b) Let

pr = lim
m→∞ xkm+r , r = 0, k – 1. (71)

Then the sequence defined by

x̂km+r := pr , m ≥ –1, r = 0, k – 1, (72)

is a nonnegative periodic solution to Eq. (4), such that

k–1
∏

i=0

pi = 0. (73)

(c) Assume that l ∈ {1, 2, . . . , k – 1}, gcd(k, l) = 1 and there is n0 ∈N such that the
following condition holds:

xn ≤ xn–l, n ≥ n0. (74)
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Then

lim
n→+∞ xn = 0. (75)

(d) The following formula holds:

xmk+r = xr–k

(

1 –
xr–1 · · ·xr–(k–1)

1 + xr–1 · · ·xr–(k–1)

m
∑

l=0

lk–1
∏

i=0

1
1 +

∏k–2
j=0 xlk+r–1–i–j

)

for each r ∈ {0, 1, . . . , k – 1}.

Proof (a) Let (xn)n≥–k be such a solution to Eq. (4). Then from (4) and (70), we have

0 < xn =
xn–k

1 + xn–1 · · ·xn–(k–1)
< xn–k , n ∈N0,

from which it follows that the subsequences (xkm+r)m≥–1, r = 0, k – 1, are decreasing and
bounded, as claimed.

(b) First note that in view of (a) and a well-known theorem, it follows that the limits

lim
m→+∞ xkm+r ,

r = 0, k – 1, are finite numbers. That (72) is a nonnegative sequence is clear. To prove that it
is a periodic solution to Eq. (4) easily follows by taking the limits in the following relations
obtained from (4):

xmk+j =
x(m–1)k+j

1 + xmk+j–1 · · ·xmk+j–(k–1)
,

where j can be any nonnegative integer.
If we assume that some of the numbers p0, p1, . . . , pk–1 are equal to zero, then clearly

Eq. (73) follows. Now assume that there is i0 ∈ {0, 1, . . . , k – 1} such that pi0 �= 0. Then by
letting m → +∞ in the following consequence of Eq. (4):

xmk+i0 =
x(m–1)k+i0

1 + xmk+i0–1 · · ·xmk+i0–(k–1)
,

it follows that

pi0 =
pi0

1 + pi0–1 · · ·pi0–(k–1)

and consequently

k–1
∏

j=0

pi0–j = 0,

from which together with the periodicity of the sequence defined in (72), or simply by
using the convention pl = ps if l = s (mod k), Eq. (73) follows.
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(c) From (74) it follows that the subsequences (xml+s), s = 0, l – 1, are convergent. Let

qs = lim
m→+∞ xml+s, s = 0, l – 1.

Then clearly the sequence defined by

x̃lm+s := qs,

for m ∈ Z and s = 0, l – 1 such that ml + s ≥ –k, is an l-periodic nonnegative solution to
Eq. (4).

Let (L–i)i∈Z be a full limiting sequence [11, 12] of the solution (xn)n≥–k . Employing the
statement in (b) we see that (L–i)i∈Z is a k-periodic solution to Eq. (4) and from the above-
mentioned fact it follows that (L–i)i∈Z is an l-periodic solution to Eq. (4). From this we
see that (L–i)i∈Z is periodic by periods k and l, and consequently it is periodic by period
gcd(k, l) = 1 (see, for example, [38]). Hence, the solution (xn)n≥–k is convergent, from which
it follows that limn→∞ xn = 0.

(d) From (4) we have

xn – xn–k = –xnxn–1 · · ·xn–(k–1). (76)

Further, from (4) and by using the Eq. (76) where n is replaced by n – 1, it follows that

xn – xn–k = –
xn–1 · · ·xn–(k–1)xn–k

1 + xn–1 · · ·xn–(k–1)

=
xn–1 – xn–(k+1)

1 + xn–1 · · ·xn–(k–1)
,

for n ∈N, which implies that

xn – xn–k = (xr – xr–k)
n–1–r
∏

i=0

1
1 +

∏k–2
j=0 xn–1–i–j

, (77)

for each r ∈ {0, 1 . . . , k – 1}.
Setting n = jk + r for j = 0, m, in (77) and summing such obtained equalities we obtain

xmk+r = xr–k + (xr – xr–k)
m

∑

l=0

lk–1
∏

i=0

1
1 +

∏k–2
j=0 xlk+r–1–i–j

= xr–k –
xr–1 · · ·xr–k

1 + xr–1 · · ·xr–(k–1)

m
∑

l=0

lk–1
∏

i=0

1
1 +

∏k–2
j=0 xlk+r–1–i–j

= xr–k

(

1 –
xr–1 · · ·xr–(k–1)

1 + xr–1 · · ·xr–(k–1)

m
∑

l=0

lk–1
∏

i=0

1
1 +

∏k–2
j=0 xlk+r–1–i–j

)

,

finishing the proof of the theorem. �

Remark 6 Equation (56), which is equivalent to Eq. (4) (the delay k in Eq. (4) corresponds
to the delay k + 2 in Eq. (56)), was also studied in [24], where it was noticed that some
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slight modifications of the proofs of the statements in Theorem 1 in [26], prove some of
the corresponding results for the statements.

Remark 7 Our statement (c) in Theorem 3 is more general than the corresponding ones
in [24, 25], as well as statements in other papers dealing with Eqs. (6)–(18). Here we give
two examples from [24] and [25].

Case of Eq. (13). The essential delay of Eq. (5) studied in [25], that is, the delay of the
corresponding non-interlacing difference equation, is equal to three, so k = 3, whereas
from the assumption xn+1 ≤ xn–11, n ≥ n0, posed in Theorem 2.1 (d) therein, it follows that
the corresponding non-interlacing assumption is xn ≤ xn–2, which means that l = 2. Since
gcd(3, 2) = 1, their statement follows from our Theorem 3 (d).

Case of Eq. (5). The delay of Eq. (13) studied in [24] is equal to k + 2, whereas from the
assumption

xn+1 ≤ xn–k , n ≥ n0,

posed in Theorem 1 (d) therein, we see that l = k + 1. Since

gcd(k + 2, k + 1) = 1,

their statement follows from our Theorem 3 (d).
In the case of the difference equations in (6)–(12), (14)–(18), the situation with the cor-

responding statements is similar. Namely, in all these cases to the corresponding delay,
which we denote by k, the delay l in the corresponding assumption is equal to k – 1, and
since

gcd(k, k – 1) = 1,

all the results follow from our Theorem 3 (d).

Remark 8 Regarding the statements corresponding to Theorem 1 (f ) in [26], which appear
in [24, 25], as well as in other papers dealing with the Eqs. (6)–(12), (14)–(18), it should
be said that they are true, but they trivially follow from the statements corresponding
to Theorem 1 (c) appearing in the papers, so the proofs given there are not necessary.
Moreover, the proofs do not prove what the statements claim. Now we explain it for the
case of the equations treated in [24] and [25].

Case of Eq. (13). Theorem 1 (f ) in [24] states that, if

lim
n→+∞ x(k+2)n+j := aj �= 0, (78)

for j = 1, k + 1, then

lim
n→+∞ x(k+2)n+k+2 := ak+2 = 0. (79)
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However, in Theorem 1 (c) therein, it was proved that

k+2
∏

j=1

aj = 0. (80)

But, if the assumptions in (78) hold, then from this and (80) the reation (79) is directly
obtained.

Case of Eq. (5). Theorem 2.1 (f ) in [25] states that, if

lim
n→+∞ x18n+j := aj �= 0 and lim

n→+∞ x18n+j+6 := aj+6 �= 0, (81)

for j = 1, 6, then

lim
n→+∞ x18n+j+12 := aj+12 = 0, (82)

for j = 1, 6.
On the other hand, in Theorem 2.1 (c) therein, it was proved that

2
∏

i=0

aj+6i = 0, j = 1, 6. (83)

However, if the relations in (81) hold, then from this and (83) Eq. (82) is directly obtained.
On the other hand, the proofs of these two statements given in [24] and [25], respec-

tively, seem wrongly use the argument in the proof of Theorem 1 (f ) in [26]. Namely, to
prove Theorem 1 (f ) in [24] it is started with the assumption: “Suppose that a1 = a2 = · · · =
ak+2 = 0” and there is obtained a contradiction. However, since k ≥ 3 the assumption is not
the negation of the assumptions in (78). Similarly, to prove Theorem 2.1 (f ) in [25] they
started with the assumption: “Suppose that ak+1 = ak+7 = ak+13 = 0 for k = 0, 5” and there
is obtained a contradiction. However, the assumption is not the negation of the assump-
tions in (81). The same situation holds for the proofs of the corresponding statements in
the papers dealing with the Eqs. (6)–(12), (14)–(18).
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31. Stević, S.: On the recursive sequence xn = xn–k/(1 + xn–1 · · · xn–(k–1)) (2007). Preprint
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