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Abstract
We consider an optimal control problem for a time-dependent obstacle variational
inequality involving fractional Liouville–Caputo derivative. The obstacle is considered
as the control, and the corresponding solution to the obstacle problem is regarded as
the state. Our aim is to find the optimal control with the properties that the state is
closed to a given target profile and the obstacle is not excessively large in terms of its
norm. We prove existence results and establish necessary conditions of obstacle
problems via the approximated time fractional-order partial differential equations and
their adjoint problems. The result in this paper is a generalization of the obstacle
problem for a parabolic variational inequalities as the Liouville–Caputo fractional
derivatives were used instead of the classical derivatives.
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1 Introduction
Variational inequalities are extensively used in many applications in mathematical eco-
nomics, finance, optimal control, and optimization. The main problem is minimizing
some function that occurs in mathematical models. To analyze those mathematical mod-
els, a qualitative study of solutions of variational inequalities becomes important for de-
scribing the behavior of the models. One of important classes of variational inequalities is
the obstacle problem motivated by the physical problem of finding the stable shape of an
elastic membrane that is pressed by an obstacle on one side. Many processes in engineer-
ing science can be explained by solutions of obstacle problems. For example, the filtration
to porous medium or dam problem is an obstacle problem of studying fluid flow through
porous medium, which can be derived from Darcy’s law. Other examples include a cavi-
tation problem in hydrodynamic lubrication, which is the study of behavior of a lubricant
contained inside the narrow hydraulic clearance between two eccentric cylindrical bod-
ies in relative motion. In addition, the time-dependent (parabolic) obstacle problems are
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applicable to financial problems, for example, in the optimal stopping problem involving
American option pricing with expiration at time T .

There are extensive results on the existence, uniqueness, and regularity of solutions of
obstacle problems. In many applications, it is crucial to find an obstacle so that its corre-
sponding solution is closed to a given target profile. This motivates the study of optimal
control for obstacle problems. Mathematically, the problem is finding an optimal obstacle
that minimizes a certain objective functional involving solutions to obstacle problems and
target functions. For example, Adams et al. [1] treated the elliptic case with H1

0 (�) obstacle
without source term. They found that the optimal obstacle is identical to the correspond-
ing state. This result does not generally hold for the elliptic case where there is a source
term [2]. We refer to [3–10] for the results on other types of optimal control problem for
variational inequalities. Moreover, Adams and Lenhart [11] investigated the characteriza-
tion of necessary conditions for the optimal control of parabolic variational inequalities
using classical derivatives.

Over the past decades, there has been an extensive development in fractional calculus.
Various definitions of fractional integrals and fractional derivatives have been proposed,
including Riemann–Liouville, Liouville–Caputo, Hilfer, Riesz, Erdelyi–Kober, Hadamard,
and so on. We refer the reader to a recent survey-cum-expository review article by Srivas-
tava [12] for the theory of fractional integral and fractional derivative operators with their
applications. Several research areas of fractional calculus extended the classical theory, es-
pecially, calculus of variations and optimal control [13–20]. There is also a development of
numerical algorithms for fractional-order differential equations arising in physical prob-
lems such as astrophysics, vibration, and nuclear magnetic resonance [21–26]. This gener-
alization involves the differential equations with fractional-order time derivatives instead
of integer-order derivatives. The fractional optimal control problem for differential equa-
tions and variational inequalities can be investigated by fractional variation principle, the
method of Lagrange multipliers, or the Euler–Lagrange first-order optimality condition
based on the adjoint problem. Recent development includes the study of optimal con-
trol problem of time-fractional diffusion equation under various assumptions such as the
linear problem, nonlocal and nonsingular kernels, and time delay problem [27–30]. How-
ever, there seems to be less results for optimal control problem of fractional variational
inequalities.

Motivated by [11], it is interesting to investigate the optimal control for the obsta-
cle problem involving time-dependent variational inequalities under fractional calculus
framework since fractional derivatives can take into account the past memory and nonlo-
cal properties of the system. In this work, we consider the optimal control for the obsta-
cle problem involving time fractional-order derivative in a domain Q = � × (0, T), where
� ⊂R

n is a bounded set with C1 boundary ∂�. Let z ∈ L2(Q) be a given target profile, and
let u0 ∈ H1

0 (�) with u0(x) ≥ 0 a.e. in �. The control set is

U =
{
ψ ∈ L2(0, T ; H2(�) ∩ H1

0 (�)
) | LC

0 Dα
t ψ ∈ L2(Q),ψ(x, 0) = 0

}
,

where LC
0 Dα

t is the Liouville–Caputo fractional derivative of order 0 < α < 1. For any ψ ∈ U ,
we define the fractional admissible set for solutions as

Kα(ψ) =
{

v ∈ L2(0, T ; H1
0 (�)

) | LC
0 Dα

t v ∈ L2(Q),
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v ≥ ψ a.e. on Q, and v(x, 0) = u0(x)
}

for 0 < α < 1.
Let an obstacle ψ ∈ U , and let f ∈ L2(Q). We denote the state u = T (ψ) for the corre-

sponding solution of the time-dependent fractional-order variational inequality

u ∈Kα(ψ),
∫

Q

[LC
0 Dα

t u(v – u) + ∇u · ∇(v – u) dx dt
] ≥

∫

Q
f (v – u) dx dt

(1)

for all v ∈Kα(ψ).
We want to find an obstacle ψ∗ in U such that the state u∗ = T (ψ∗), the solution of (1), is

closed to a given target profile z and the norm of ψ∗ is not excessively big. More precisely,
we consider the objective functional

J(ψ) =
∫

Q

[(
T (ψ) – z

)2 + |�ψ |2 +
∣∣LC
0 Dα

t ψ
∣∣2]dx dt. (2)

Therefore the optimal control problem can be regarded as finding a minimizer of the func-
tional J , that is, ψ∗ ∈ U such that

J
(
ψ∗) = inf

ψ∈U
J(ψ).

For a control ψ∗ and the corresponding state u∗ = T (ψ∗), we call the pair (ψ∗,T (ψ∗)) an
optimal pair.

The main contribution of this paper is that we generalize parabolic variational inequal-
ity in [11] to consider time fractional-order derivatives. Our results contain both existence
and necessary conditions of the optimal pair for the obstacle problem. Indeed, the opti-
mal pair can be constructed from the approximated parabolic equations and their adjoint
problems. The results also provide an extension of optimal control for fractional diffusion
equations to the case of time fractional-order variational inequalities, which is new in the
literature. This paper is structured as follows. In Sect. 2, we recall basic preliminaries and
some known results about fractional calculus. Next, we prove the existence results for the
state variational inequality by considering the approximate time fractional-order semi-
linear differential equations and establish the existence of an optimal control in Sect. 3.
Finally, in Sect. 4, we give the characterization of necessary conditions for the optimal
control and discuss the results in Sect. 5.

2 Preliminaries
In this section, we begin by presenting some definitions and properties of the fractional
operators including fractional derivatives and integrals. We refer to the books [31–33] for
further background.

Definition 2.1 (Left and right Riemann–Liouville fractional integrals) Let u be defined
and integrable on an interval [a, b], and let Re(α) > 0. Then
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(i) The left Riemann–Liouville integral of order α is defined by

(
aIαu

)
(t) =

1
�(α)

∫ t

a
(t – s)α–1u(s) ds.

(ii) The right Riemann–Liouville integral of order α is defined by

(
Iα

b u
)
(t) =

1
�(α)

∫ b

t
(s – t)α–1u(s) ds.

Definition 2.2 (Left and right Riemann–Liouville fractional derivatives) Let u be defined
on an interval [a, b], and let 0 < α ≤ 1.

(i) The left Riemann–Liouville fractional derivative of order α is defined by

(
aDα

t u
)
(t) =

1
�(1 – α)

d
dt

∫ t

a
(t – s)–αu(s) ds.

(ii) The right Riemann–Liouville fractional derivative of order α is defined by

(
tDα

b u
)
(t) = –

1
�(1 – α)

d
dt

∫ b

t
(s – t)–αu(s) ds.

Let AC([a, b];R) be the set of absolutely continuous functions.

Definition 2.3 (Left and right Liouville–Caputo fractional derivatives) Let u be defined
and absolutely continuous on an interval [a, b], that is, u ∈ AC([a, b];R), and let 0 < α ≤ 1.

(i) The left Liouville–Caputo fractional derivative of order α is defined by

(LC
a Dα

t u
)
(t) =

1
�(1 – α)

∫ t

a
(t – s)–αu′(s) ds.

(ii) The right Liouville–Caputo fractional derivative of order α is defined by

(LC
t Dα

b u
)
(t) = –

1
�(1 – α)

∫ b

t
(s – t)–αu′(s) ds.

Proposition 2.4 Let 0 < α < 1 and u ∈ AC([a, b];R). Then the Riemann–Liouville and
Liouville–Caputo fractional derivatives satisfy

(LC
a Dα

t u
)
(t) =

(
aDα

t u
)
(t) –

u(a)
(t – a)α�(1 – α)

,

(LC
t Dα

b u
)
(t) =

(
tDα

b u
)
(t) –

u(b)
(b – t)α�(1 – α)

.

Lemma 2.5 ([34] Integration by parts for Liouville–Caputo fractional derivatives) Let 0 <
α < 1, u ∈ Lp(a, b), and v ∈ AC([a, b];R). Then

∫ b

a
u(t)

(LC
a Dα

t v
)
(t) dt =

∫ b

a
v(t)

(
tDα

b u
)
(t) dt +

(
I1–α

b u
)
(t)v(t)|ba,

∫ b

a
u(t)

(LC
t Dα

b v
)
(t) dt =

∫ b

a
v(t)

(
aDα

t u
)
(t) dt –

(
aI1–αu

)
(t)v(t)|ba.
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Lemma 2.6 ([34] Integration by parts for Riemann–Liouville fractional derivatives) Let
0 < α ≤ 1, u ∈ Lp(a, b), and v ∈ AC([a, b];R). Then

∫ b

a
u(t)

(
aDα

t v
)
(t) dt =

∫ b

a
v(t)

(
tDα

b u
)
(t) dt + v(b)

(
I1–α

b u
)(

b–)
,

∫ b

a
u(t)

(
tDα

b v
)
(t) dt =

∫ b

a
v(t)

(
aDα

t u
)
(t) dt + v(a)

(
aI1–αu

)(
a+)

.

The following product rule can be obtained from the corresponding Riemann–Liouville
version in [35, 36].

Lemma 2.7 For the Liouville–Caputo derivative, we have

LC
0 Dα

t (uv)(t) = u(t)
(LC

0 Dα
t v

)
(t) + v(t)

(LC
0 Dα

t u
)
(t)

–
α

�(1 – α)

∫ t

0

(u(s) – u(t))(v(s) – v(t))
(t – s)α+1 ds

+
1

tα�(1 – α)
(
u(t)v(0) + v(t)u(0) – u(0)v(0) – u(t)v(t)

)
. (3)

Moreover, if u = v, then we have

2u(t)
(LC

0 Dα
t u

)
(t) = LC

0 Dα
t u2(t) +

α

�(1 – α)

∫ t

0

(u(t) – u(s))2

(t – s)α+1 ds

+
1

tα�(1 – α)
(
u(t) – u(0)

)2. (4)

Lemma 2.8 ([37]) Let 0 < α < 1, and let u be absolutely continuous on [0, T]. Then

2u(t)LC
0 Dα

t u(t) ≥ LC
0 Dα

t u2(t).

Lemma 2.9 Let u = u(x, t) be a solution of the following problem subject to the Dirichlet
boundary condition on a bounded open set � ⊂ R

n for u : � × [0, T] → R such that u ∈
L2(0, T ; H2(�) ∩ H1

0 (�)) with LC
0 Dα

t u ∈ L2(Q) and

LC
0 Dα

t u – �u = f (x, t) for x ∈ � and 0 < t ≤ T ,

u(x, t) = 0 for x ∈ ∂� and 0 < t ≤ T ,

u(x, 0) = u0(x) for x ∈ �,

where f : � × (0, T) →R in L2(Q) and u0 in H1
0 (�) are a given nonhomogeneous term and

initial condition. Then there is a constant C > 0 such that

∥∥LC
0 Dα

t u
∥∥

L2(Q) + sup
0≤t≤T

‖∇u‖L2(�) + ‖�u‖L2(Q) ≤ C
(‖f ‖L2(Q) + ‖∇u0‖L2(�)

)
.

Proof For 0 ≤ t ≤ T , we use Lemma 2.8 to obtain

∫

Q
f 2 dx dt =

∫

Q

(LC
0 Dα

t u
)2 – 2�u

(LC
0 Dα

t u
)

+ (�u)2 dx dt
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=
∫

Q

(LC
0 Dα

t u
)2 + 2∇u · ∇(LC

0 Dα
t u

)
+ (�u)2 dx dt

≥
∫

Q

(LC
0 Dα

t u
)2 + LC

0 Dα
t |∇u|2 + (�u)2 dx dt

=
∥∥LC

0 Dα
t u

∥∥2
L2(Q) +

∫ T

0

LC
0 Dα

t ‖∇u‖2
L2(�) dt + ‖�u‖2

L2(Q).

By Proposition 2.4 we have

∫ T

0

LC
0 Dα

t ‖∇u‖2
L2(�) dt =

∫ T

0

[

0Dα
t ‖∇u‖2

L2(�) –
t–α‖∇u0‖2

L2(�)

�(1 – α)

]
dt

= 0I1–α
T ‖∇u‖2

L2(�) –
T1–α

(1 – α)�(1 – α)
‖∇u0‖2

L2(�).

Then we obtain

∥∥LC
0 Dα

t u
∥∥2

L2(Q) + 0I1–α
T ‖∇u‖2

L2(�) + ‖�u‖2
L2(Q)

≤
∫

Q
f 2 dx dt +

T1–α

(1 – α)�(1 – α)
‖∇u0‖2

L2(�),

and hence

∥∥LC
0 Dα

t u
∥∥2

L2(Q) +
T1–α

(1 – α)�(1 – α)
sup

0≤t≤T
‖∇u‖2

L2(�) + ‖�u‖2
L2(Q)

≤ ‖f ‖2
L2(Q) +

T1–α

(1 – α)�(1 – α)
‖∇u0‖2

L2(�).

It follows that

∥∥LC
0 Dα

t u
∥∥

L2(Q) + sup
0≤t≤T

‖∇u‖L2(�) + ‖�u‖L2(Q) ≤ C
(‖f ‖L2(Q) + ‖∇u0‖L2(�)

)
. �

3 Existence of an optimal control
To establish the existence of an optimal control, we approximate the time fractional-order
variational inequality (1) by a time fractional-order semilinear partial differential equa-
tion. The approximate equation will provide a priori estimates for solutions of the original
variational inequality (1).

Define

V =
{

u ∈ L2(0, T ; H2(�) ∩ H1
0 (�)

) | LC
0 Dα

t u ∈ L2(Q) and u(x, 0) = u0(x)
}

.

Assume that the function f belongs to L2(Q). We first observe that for u ∈Kα(ψ) or u ∈ V ,
we have u ∈ C([0, T]; L2(�)). Hence the initial condition can be considered as a function
in V .

For δ > 0, we consider the time fractional-order semilinear parabolic approximation
problem:

find uδ ∈ V such that LC
0 Dα

t uδ – �uδ + βδ

(
uδ – ψ

)
= f in Q, (5)
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where

βδ(s) =
1
δ
β(s), β(s) = 0 for all s ≥ 0, 0 ≤ β ′(s) ≤ 1 for all s,

and β ∈ C1(R). We denote the solution of (5) by uδ = T δ(ψ). We next prove an estimate
and convergence property of uδ .

Proposition 3.1 For ψ ∈ U , the solution uδ = T δ(ψ) of (5) satisfies

sup
0≤t≤T

∥∥∇uδ
∥∥

L2(�) +
∥∥LC

0 Dα
t uδ

∥∥
L2(Q) +

∥∥�uδ
∥∥

L2(Q)

≤ C
[
1 + ‖∇u0‖L2(�) +

∥∥�ψ(t)
∥∥

L2(Q) +
∥∥LC

0 Dα
t ψ(t)

∥∥
L2(Q) + ‖f ‖L2(Q)

]
. (6)

Proof We start by giving an estimation of βδ term in the L2-norm:
∫

�

[
βδ

(
uδ – ψ

)]2(x, t) dx

=
∫

�

βδ

(
uδ – ψ

)[
f – LC

0 Dα
t uδ + �uδ

]
(x, t) dx

=
∫

�

βδ

(
uδ – ψ

)
�ψ(x, t) dx +

∫

�

βδ

(
uδ – ψ

)[
f – LC

0 Dα
t ψ

]
(x, t) dx

+
∫

�

βδ

(
uδ – ψ

)[
�

(
uδ – ψ

)
– LC

0 Dα
t
(
uδ – ψ

)]
(x, t) dx

≤
∫

�

βδ

(
uδ – ψ

)
�ψ(x, t) dx +

∫

�

βδ

(
uδ – ψ

)[
f – LC

0 Dα
t ψ

]
(x, t) dx

–
∫

�

βδ

(
uδ – ψ

)[LC
0 Dα

t
(
uδ – ψ

)]
dx

≤
∫

�

βδ

(
uδ – ψ

)
�ψ(x, t) dx +

∫

�

βδ

(
uδ – ψ

)[
f – LC

0 Dα
t ψ

]
(x, t) dx

–
∫

�

βδ

(
uδ – ψ

) t–α

�(1 – α)
[(

uδ – ψ
)
(x, t) –

(
uδ – ψ

)
(x, 0)

]
dx. (7)

This implies
∫

�

[
βδ

(
uδ – ψ

)]2(x, t) dx ≤
∫

�

βδ

(
uδ – ψ

)
�ψ(x, t) dx

+
∫

�

βδ

(
uδ – ψ

)[
f – LC

0 Dα
t ψ

]
(x, t) dx

+
t–α

�(1 – α)

∫

�

βδ

(
uδ – ψ

)
uδ(x, 0) dx.

Thus we obtain

∥∥βδ

(
uδ – ψ

)∥∥
L2(Q) ≤ C

(
1 + ‖�ψ‖L2(Q) +

∥∥LC
0 Dα

t ψ
∥∥

L2(Q) + ‖f ‖L2(Q)
)
. (8)

By Lemma 2.9 it follows that

sup
0≤t≤T

∥∥∇uδ
∥∥

L2(�) +
∥∥LC

0 Dα
t uδ

∥∥
L2(Q) +

∥∥�uδ
∥∥

L2(Q)
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≤ C
(∥∥βδ

(
uδ – ψ

)∥∥
L2(Q) + ‖f ‖L2(Q) + ‖∇u0‖L2(�)

)
, (9)

which, together with (8), gives estimate (6). �

The main result for the existence and uniqueness of solution of the obstacle problem via
the approximated problem can be proved by letting δ → 0 as shown in the theorem below.

Proposition 3.2 For ψ ∈ U , there exists u ∈ Kα such that u = T (ψ), and as δ → 0, the
solutions uδ = Tδ(ψ) of (6) satisfy

uδ → u strongly in L2(Q),

∇uδ → ∇u strongly in L2(Q),
LC
0 Dα

t uδ ⇀ LC
0 Dα

t u weakly in L2(Q),

�uδ ⇀ �u weakly in L2(Q).

Moreover, we obtain the estimate

sup
0≤t≤T

∥∥∇uδ(t)
∥∥

L2(�) +
∥∥LC

0 Dα
t uδ(t)

∥∥
L2(Q) +

∥∥�uδ(t)
∥∥

L2(Q)

≤ C
[
1 + ‖∇u0‖L2(�) +

∥∥�ψ(t)
∥∥

L2(Q) +
∥∥LC

0 Dα
t ψ(t)

∥∥
L2(Q) + ‖f ‖L2(Q)

]
. (10)

Proof Using estimate (6), we have the weak convergences above. However, for each t, we
have

∥∥∇(
uδ – u

)∥∥2
L2(�) ≤ ∥∥�

(
uδ – u

)∥∥
L2(�)

∥∥uδ – u
∥∥

L2(�). (11)

Then the H1(Q) estimate on the {uδ} approximations implies the strong convergence uδ →
u in L2(Q), and inequality (11) implies the strong convergence ∇uδ → ∇u in L2(Q). Next,
we can see that the approximation uδ satisfies

∫

Q

[LC
0 Dα

t u
(
v – uδ

)
+ ∇u · ∇(

v – uδ
)

dx dt
] ≥

∫

Q
f
(
v – uδ

)
dx dt

for all v ∈Kα(ψ). It follows from the strong convergence of {uδ} and the weak convergences
that

∫

Q

[LC
0 Dα

t u(v – u) + ∇u · ∇(v – u) dx dt
] ≥

∫

Q
f (v – u) dx dt

for all v ∈Kα(ψ). Using

1
δ

∥∥β
(
uδ – ψ

)∥∥
L2(Q) ≤ C(α,ψ , f ),

we obtain ‖β(uδ – ψ)‖L2(Q) = 0 and u ≥ ψ a.e. on Q. Hence we conclude that u = T (ψ) and
u satisfies (10). �

We now prove that there exists an optimal control that minimizes the objective func-
tional (2).
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Theorem 3.3 There exists an optimal control ψ∗ ∈ U such that J(ψ∗) is the minimal value
of the objective functional (2).

Proof Let {ψk}∞k=1 be a minimizing sequence of obstacles in U , that is,

inf
ψ∈U

J(ψ) = lim
k→∞

J(ψk)

For the functional (2), bounds on {J(ψk)}∞k=1 imply that there is an obstacle ψ∗ ∈ U such
that for a subsequence denoted again by {ψk}),

ψk → ψ∗ strongly in L2(Q),

ψk ⇀ ψ∗ weakly in L2(0, T ; H1
0 (�)

)
,

LC
0 Dα

t ψk ⇀ LC
0 Dα

t ψ∗ weakly in L2(Q).

Using estimate (10) for ψk and uk = T (ψk), there is u∗ ∈ V such that

uk → u∗ strongly in L2(Q),
LC
0 Dα

t uk ⇀ LC
0 Dα

t u∗ weakly in L2(Q),

�uk ⇀ �u∗ weakly in L2(Q).

By a similar argument as in Proposition 3.1 we see that ∇uk → ∇u∗ strongly in L2(Q).
Let v ∈ Kα(ψ∗) and set vk = max(v,ψk). We observe that vk ∈ K(ψk) are such that vk → v
weakly in L2(0, T ; H1

0 (�)) and

∫

Q

[LC
0 Dα

t u(vk – uk) + ∇uk · ∇(vk – uk) dx dt
] ≥

∫

Q
f (vk – uk) dx dt.

Letting k → ∞ in this inequality, we have

∫

Q

[LC
0 Dα

t u(v – u) + ∇u · ∇(v – u) dx dt
] ≥

∫

Q
f (v – u) dx dt

for all v ∈Kα(ψ∗).
Since ψk ≤ uk a.e. on �, the strong convergence with respect to L2 yields ψ∗ ≤ u∗. Hence

u∗ ∈Kα(ψ∗) and u∗ = T (ψ∗).
By the lower semicontinuity of the functional J with respect to weak L2 convergence and

limk→∞ T (ψk) = T (ψ∗), we have J(ψ∗) ≤ limk→∞ J(ψk). Thus ψ∗ is an optimal control that
minimizes the functional (2). �

4 Necessary conditions
In this section, we identify necessary conditions of the optimal pair (ψ∗, u∗) where u∗ =
T (ψ∗). For this, we establish conditions on the approximations uδ = Tδ(ψδ) and then de-
rive conditions for (ψ∗, u∗) by passing to the limit as δ → 0.

Theorem 4.1 For δ > 0, the solution map ψ → uδ = Tδ(ψ) of (5) in V is differentiable in
the following sense:
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Given ψ ∈ U and l ∈ L2(Q) with ψ + εl ∈ U , there is ξ δ in L2(0, T ; H1
0 (�)) such that

uδ(ψ + εl) – uδ(ψ)
ε

⇀ ξδ weakly in L2(0, T ; H1
0 (�)

)

as ε → 0. In addition, we have LC
0 Dα

t ξ δ ∈ L2(0, T ; H–1(�)), and ξ δ satisfies

LC
0 Dα

t ξ δ – �ξδ + β ′
δ

(
uδ – ψ

)(
ξ δ – l

)
= 0 in Q,

ξ δ(x, 0) = 0 in �.
(12)

Proof Denote uδ,ε = Tδ(ψ + εl) and uδ = Tδ(ψ). Consider the fractional PDE on Qt = � ×
(0, t),

LC
0 Dα

t uδ,ε – LC
0 Dα

t uδ – �
(
uδ,ε – uδ

)
+ βδ

(
uδ,ε – (ψ + εl)

)
– β

(
uδ – ψ

)
= 0. (13)

Multiplying this equation by uδ,ε – uδ and integrating both sides with respect to x, we get

∫

�

[LC
0 Dα

t
(
uδ,ε – uδ

)(
uδ,ε – uδ

)
+

∣∣∇(
uδ,ε – uδ

)∣∣2]dx

= –
1
δ

∫

�

[
β
(
uδ,ε – (ψ + εl)

)
– β

(
uδ – ψ

)](
uδ,ε – uδ

)
dx

= –
1
δ

∫

�

∫ 1

0
β ′(θ̃ )

(
uδ,ε – ψ – εl

)(
uδ,ε – uδ

)
dθ dx,

where θ̃ := θ (uδ,ε – ψ – εl) + (1 – θ )(uδ – εl). Applying equality (4), we have

∫

�

LC
0 Dα

t
(
uδ,ε – uδ

)(
uδ,ε – uδ

)
dx

=
1
2

LC
0 Dα

t
∥∥uδ,ε(·, t) – uδ(·, t)

∥∥2
L2(�)

+
α

2�(1 – α)

∫ t

0
(t – s)–α–1

∫

�

∣∣(uδ,ε(x, t) – uδ(x, t)
)

–
(
uδ,ε(x, s) – uδ(x, s)

)∣∣2 dx ds

+
t–α

2�(1 – α)

∫

�

∣∣(uδ,ε(x, t) – uδ(x, t)
)∣∣2 dx.

It follows that
∫

�

∣∣uδ,ε(x, t) – uδ(x, t)
∣∣2 ds + 2tα�(1 – α)

∫

�

∣∣∇(
uδ,ε – uδ

)∣∣2 dx

= –
2tα�(1 – α)

δ

∫

�

∫ 1

0
β ′(θ̃ )

(
uδ,ε – uδ – εl

)(
uδ,ε – uδ

)
dθ dx

– tα�(1 – α)LC
0 Dα

t
∥∥uδ,ε(·, t) – uδ(·, t)

∥∥2
L2(�)

– αtα

∫ t

0
(t – s)–α–1

∫

�

∣∣(uδ,ε(x, t) – uδ(x, t)
)

–
(
uδ,ε(x, s) – uδ(x, s)

)∣∣2 dx ds

≤ 2εtα�(1 – α)
δ

∫

�

∫ 1

0
β ′(θ̃ )l(x, t)

(
uδ,ε – uδ

)
dθ dx
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– tα�(1 – α)
1

�(1 – α)

∫ t

0
(t – s)–α d

ds
∥∥uδ,ε(·, s) – uδ(·, s)

∥∥
2

L2(�)
ds

≤ 2εtα�(1 – α)
δ

∫

�

l(x, t)
(
uδ,ε – uδ

)
dx –

∥∥uδ,ε(·, t) – uδ(·, t)
∥∥2

L2(�)

≤ 2εtα�(1 – α)
δ

∥∥uδ,ε(·, t) – uδ(·, t)
∥∥

L2(�)

∥∥l(·, t)
∥∥

L2(�) –
∥∥uδ,ε(·, t) – uδ(·, t)

∥∥2
L2(�)

≤ ε2t2α(�(1 – α))2

δ2

∥∥l(·, t)
∥∥2

L2(�).

This implies the following two inequalities:

∫ t

0

∫

�

∣∣uδ,ε(x, t) – uδ(x, t)
∣∣2 ds dt,≤ ε2T2(�(1 – α))2

δ2 ‖l‖2
L2(Qt ),

∫ t

0

∫

�

∣∣∇(
uδ,ε – uδ

)∣∣2 dx ds ≤ ε2T�(1 – α)
2δ2 ‖l‖2

L2(Qt ).

Thus we obtain

∥∥∥∥
uδ,ε – uδ

ε

∥∥∥∥
L2(0,T ;H1

0 (�))
≤ C

δ
‖l‖L2(Q) (14)

for all ε > 0, which implies that there is ξ δ in L2(0, T ; H1
0 (�)) such that

uδ,ε – uδ

ε
⇀ ξδ weakly in L2(0, T ; H1

0 (�)
)

and

∥∥∇ξ δ
∥∥

L2(Q) ≤ C
δ

‖l‖L2(Qt ). (15)

To estimate LC
0 Dα

t ξ δ , consider

∫

Q

[
βδ

(
uδ,ε – ψ – εl

)
– βδ

(
uδ – ψ

)]2 1
ε2 dx dt

=
1

δ2ε2

∫

Q

[∫ 1

0
β ′(θ̃ ) dθ

(
uδ,ε – uδ – εl

)]2

dx dt

≤ 1
δ2

∫

Q

(
uδ,ε – uδ – εl

ε

)2

dx dt

≤ 2
δ2

∫

Q

[(
uδ,ε – uδ

ε

)2

+ l2
]

dx dt ≤ C
δ2 ‖l‖2

L2(Q). (16)

From (13) we obtain

∥∥∥∥
LC
0 Dα

t

(
uδ,ε – uδ

ε

)∥∥∥∥
L2(0,T ;H–1(�))

≤
∥∥
∥∥�

(
uδ,ε – uδ

ε

)∥∥∥∥
L2(0,T ;H–1(�))

+
∥∥
∥∥
βδ(uδ,ε – ψ – εl) – βδ(uδ – ψ)

ε

∥∥∥∥
L2(Q)

.
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By estimates (14)–(16) we conclude

∥∥LC
0 Dα

t ξ δ
∥∥

L2(0,T ;H–1(�)) ≤ ∥∥∇ξ δ
∥∥

L2(0,T ;H–1(�)) +
C
δ

‖l‖2
L2(Q) ≤ C1

δ
‖l‖2

L2(Q).

Therefore the function ξ δ satisfies (12). �

Let W = {v ∈ H1(Q)|v = 0 on (∂� × (0, T)) ∪ (� × {0})}, and let W ′ be the dual space of
W .

To establish necessary conditions for the optimal control and state for the functional (2),
we study the approximation problem

inf
ψ∈U

Jδ(ψ) with Jδ(ψ) =
∫

Q

[(
Tδ(ψ) – z

)2 + |�ψ |2 +
(LC

0 Dα
t ψ

)2]dx dt,

where Tδ(ψ) is the solution of the time fractional partial differential equation (5) for obsta-
cle ψ . We obtain the existence of an obstacle ψδ and the corresponding state uδ = Tδ(ψδ),
which is the minimizer of Jδ(ψ) by using a similar argument as in the proof of Theorem 3.3.

To establish the PDE for which ψδ is a solution, we state the following:

Definition 4.2 The function ψδ in U is a weak solution of

tDα
T

LC
0 Dα

t ψδ + �2ψδ + β ′
δ

(
uδ – ψδ

)
pδ = 0 in Q,

ψδ(x, 0) = 0 in �,
LC
0 Dα

t ψδ(x, T) = 0 in �,

�ψδ = 0 on ∂� × (0, T)

(17)

if ψδ ∈ L2(0, T ; H3(�) ∩ H1
0 (�)), LC

0 Dα
t ψδ ∈ L2(Q), tDα

T
LC
0 Dα

t ψδ ∈ W ′, and for all φ ∈ W ,

∫

Q

[(LC
0 Dα

t ψδ
)(LC

0 Dα
t φ

)
+ ∇�ψδ · ∇φ + β ′

δ

(
uδ – ψδ

)
pδφ

]
dx dt = 0.

Theorem 4.3 Let ψδ ∈ U be an optimal control that minimizes Jδ(ψ). There exists pδ in
L2(0, T ; H1

0 (�)) with LC
t Dα

T pδ ∈ L2(0, T ; H–1(�)) such that

LC
t Dα

T pδ – �pδ + β ′
δ

(
uδ – ψδ

)
pδ = uδ – z in Q,

pδ(x, T) = 0 in �.
(18)

Furthermore ψδ satisfies (17) in the sense defined above with uδ = Tδ(ψδ), and

sup
0≤t≤T

∥∥pδ(t)
∥∥

L2(�) +
∥∥∇pδ(t)

∥∥
L2(�) +

∥∥β ′
δ

(
uδ – ψδ

)
pδ

∥∥
W ′ +

∥∥LC
t Dα

T pδ
∥∥

W ′ ≤ C1,

∥∥∇(LC
0 Dα

t ψδ
)∥∥

L2(Q) +
∥∥∇�ψδ

∥∥
L2(Q) +

∥∥tDα
T

LC
0 Dα

t ψδ
∥∥

W ′ ≤ C2,

where C1 and C2 are independent of δ.
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Proof Since the approximate adjoint time fractional partial differential equation (18) is lin-
ear in pδ , there exists a solution such that pδ ∈ L2(0, T ; H1

0 (�)), LC
t Dα

T pδ ∈ L2(0, T ; H–1(�)),
and pδ(x, T) = 0 in �.

Consider the estimate of ∇pδ on Qt = � × (t, T),
∫

Qt

[(LC
t Dα

T pδ
)
pδ +

∣∣∇pδ
∣∣2 + β ′

δ

(
uδ – ψ

)(
pδ

)2]dx dt =
∫

Qt

pδ
(
uδ – z

)
dx dt.

By Proposition 2.4 and pδ(x, T) = 0 we get by integration by parts that

∫ T

t

(LC
t Dα

T pδ
)
pδ dτ

=
∫ T

t

(
tDα

T pδ
)
pδ dτ

= –
1

�(1 – α)

∫ T

t
pδ(τ )

(
d

dτ

∫ T

τ

(s – τ )–αpδ(s) ds
)

dτ

=
1

�(1 – α)

[
pδ(t)

∫ T

t
(s – t)–αpδ(s) ds +

∫ T

t
pδ

τ (τ )
∫ T

τ

(s – τ )–αpδ(s) dsdτ

]

≥ 1
�(1 – α)

[
pδ(t)(T – t)–α

∫ T

t
pδ(s) ds +

∫ T

t
(T – τ )–αpδ

τ (τ )
∫ T

τ

pδ(s) ds dτ

]

≥ 1
�(1 – α)

[
pδ(t)(T – t)–α

∫ T

t
pδ(s) ds + (T – t)–α

∫ T

t
pδ

τ (τ )
∫ T

τ

pδ(s) dsdτ

]

≥ (T – t)–α

�(1 – α)

∫ T

t

(
pδ(τ )

)2 dτ .

This implies

(T – t)–α

�(1 – α)

∫

Qt

(
pδ(x, t)

)2 dx dt +
∫

Qt

∣∣∇pδ
∣∣2(x, t) dx dt ≤

∫

Qt

pδ
(
uδ – z

)
dx dt

since the term β ′ is nonnegative. It follows that
∫

Q

(
pδ(x, t)

)2 dx dt +
∫

Q

∣∣∇pδ
∣∣2(x, t) dx dt ≤ C

∥∥uδ – z
∥∥2

L2(Q). (19)

Next, we consider the estimate of β ′(·)pδ in W ′: for φ ∈ W ,
∣∣∣∣

∫

Q
β ′

δ

(
uδ – ψ

)
pδφ dx dt

∣∣∣∣ =
∣∣∣∣

∫

Q

[(
uδ – z

)
φ –

(LC
t Dα

T pδ
)
φ + ∇pδ · ∇φ

]
dx dt

∣∣∣∣

=
∣∣∣∣

∫

Q

[(
uδ – z

)
φ + pδLC

0 Dα
t φ + ∇pδ · ∇φ

]
dx dt

∣∣∣∣

≤ C
∥∥uδ – z

∥∥
L2(Q)‖φ‖W

using estimate (19). We conclude

∥∥β ′
δ

(
uδ – φδ

)
pδ

∥∥
W ′ ≤ C

∥∥uδ – z
∥∥

L2(Q), (20)

which gives an estimate ‖LC
t Dα

T pδ‖W ′ .
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Denote uδ = Tδ(ψδ) and uδ,ε = Tδ(ψδ + εl) with l ∈ W ∩ U . Since ψδ is a minimizer for
Jδ(ψ),

0 ≤ lim
ε→0+

Jδ(ψδ + εl) – Jδ(ψδ)
ε

= 2
∫

Q

[
ξ δ

(
uδ – z

)
+ �ψδ · �l +

(LC
0 Dα

t ψδ
)(LC

0 Dα
t l

)]
dx dt

= 2
∫

Q

[
ξ δ

(LC
t Dα

T pδ
)

+ ∇ξ δ · ∇pδ + β ′
δ

(
uδ – ψδ

)
pδξ δ

+ �ψδ�l +
(LC

0 Dα
t ψδ

)(LC
0 Dα

t l
)]

dx dt

= 2
∫

Q

[(LC
0 Dα

t ξ δ
)
pδ + ∇ξ δ · ∇pδ + β ′

δ

(
uδ – ψδ

)
pδξ δ

+ �ψδ�l +
(LC

0 Dα
t ψδ

)(LC
0 Dα

t l
)]

dx dt

= 2
∫

Q

[
β ′

δ

(
uδ – ψδ

)
lpδ + �ψδ�l +

(LC
0 Dα

t ψδ
)(LC

0 Dα
t l

)]
dx dt

by using the pδ and ξ δ PDE, (17) and (18). We conclude that ψδ satisfies PDE (17) subject
to the indicated boundary conditions. Indeed, the condition l(x, 0) = 0 is used in the step
of integration by parts on ψδ

t lt term. Moreover, �ψδ = 0 on ∂� × (0, T) arrives from the
weak formulation of the solution ψδ for the time fractional PDE and integration by parts
on �ψδ�l.

For the estimate of ∇�ψδ and tDα
T

LC
0 Dα

t ψδ , we have

∫

Q

[(
–tDα

T
LC
0 Dα

t ψδ
)
�ψδ +

∣∣∇�ψδ
∣∣2]dx dt =

∫

Q
β ′

δ

(
uδ – ψδ

)
pδ�ψδ dx dt,

∫

Q

[∣∣∇(LC
0 Dα

t ψδ
)∣∣2 +

∣∣∇�ψδ
∣∣2]dx dt =

∫

Q

(
uδ – z – LC

t Dα
T pδ + �pδ

)
�ψδ dx dt.

Using the Poincaré inequality to estimate

∫

Q

∣∣�ψδ
∣∣2 dx dt ≤ C1

∫

Q

∣∣∇�ψδ
∣∣2 dx dt,

we obtain
∫

Q

[∣∣∇(LC
0 Dα

t ψδ
)∣∣2 +

∣∣∇�ψδ
∣∣2]dx dt

≤ C
(∫

Q

((
uδ – z

)2 +
∣∣∇pδ

∣∣2)dx dt +
∥∥LC

t Dα
T pδ

∥∥2
W ′

)
.

For the solution ψδ of the time fractional PDE (17), the estimate of |∇�ψδ| in L2 and the
estimate of β ′(uδ – ψδ)pδ under W ′ norm in (20) give the required estimate of tDα

T
LC
0 Dα

t ψ

in W ′ norm. �

Letting δ → 0, we establish necessary conditions on ψ∗, an optimal control for J(ψ). We
state our definition of a solution for the equation for ψ∗ and the limiting adjoint function p.
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Definition 4.4 Functions ψ∗ and p satisfy

LC
t Dα

T p – �p – tDα
T

LC
0 Dα

t ψ∗ – �2ψ∗ = u∗ – z in Q,

ψ∗(x, 0) = LC
0 Dα

t ψ∗(x, T) = 0 in �,

p(x, T) = 0 in �,

�ψ∗ = 0 on ∂� × (0, T),

(21)

where u∗ = T(ψ∗), if ψ∗ ∈ U ,ψ∗ ∈ L2(0, T ; H3(�)), LC
0 Dα

t ψ∗ ∈ L2(0, T ; H1
0 (�)),

tDα
T

LC
0 Dα

t ψ∗ ∈ W ′,�2ψ∗ ∈ L2(0, T ; H–1(�)), p ∈ L2(0, T ; H1
0 (�)), LC

t Dα
T p ∈ W ′, and for all

φ ∈ W ,

∫

Q

[
p
(LC

t Dα
Tφ

)
+ ∇φ · ∇p + ∇�ψ∗ · ∇φ –

(LC
0 Dα

t ψ∗)(LC
0 Dα

t φ
)]

dx dt

=
∫

Q

(
u∗ – z

)
φ dx dt.

Theorem 4.5 There exist a sequence of minimizers {ψδn} in U for the functionals Jδn (ψ),
the corresponding adjoint {pδn},ψ∗ ∈ U with the corresponding state u∗ = T (ψ∗), and the
adjoint p in L2(0, T ; H1

0 (�)) such that, as δn → 0,

ψδn → ψ∗ weakly in L2(0, T ; H3(�)
)
,

tDα
T

LC
0 Dα

t ψδn → tDα
T

LC
0 Dα

t ψ∗ weak∗ in W ′,

pδn → p weakly in L2(0, T ; H1
0 (�)

)
,

LC
0 Dα

t pδn → LC
0 Dα

t p weak∗ in W ′.

Moreover, ψ∗ is an optimal control for J(ψ), ψ∗ and p satisfy (21) in the sense defined above,
and the state u∗ = T (ψ∗) satisfies the time fractional variational inequality (1).

Proof The a priori estimates obtained in Theorem 4.3 imply the convergences and the
existence of ψ∗, u∗, and p. It remains to verify that u∗ = T (ψ∗). For v ∈ Kα(ψ∗), we see
that

∫

Q

[LC
0 Dα

t uδ
(
vδ – uδ

)
+ ∇uδ · ∇(

vδ – uδ
)]

dx dt ≥
∫

Q
f
(
vδ – uδ

)
dx dt

for vδ = max(v,ψδ). Letting δn → 0, we have vδn → v weakly in L2(0, T ; H1
0 (�)) and

∫

Q

[LC
0 Dα

t u∗(v – u∗) + ∇u∗ · ∇(
v – u∗)]dx dt ≥

∫

Q
f
(
v – u∗)dx dt.

By estimate (8) we get

∥∥βδ

(
uδn – ψδn

)∥∥
L2(Q) ≤ C �= C(δ),

which gives u∗ ∈Kα(ψ∗). We conclude u∗ = T (ψ∗). The convergences of ψδn and pδn from
Theorem 4.3 justify that ψ∗ and p satisfy (21) in the defined weak sense. Finally, we show
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ψ∗ is an optimal control for J(ψ). As ψδn is a minimizer for Jδ(ψ),

Jδ
(
ψ∗) ≥ Jδ

(
ψδn

)
for all δ > 0.

By the strong convergence Tδn (ψ∗) → u∗ = T (ψ∗) in L2(Q), as δn → 0, we get

J
(
ψ∗) = lim

δn→0
Jδ

(
ψ∗) ≥ lim

δn→0
Jδ

(
ψδ

)
.

Since the functional is lower semicontinuous with respect to the weak L2 convergence and
u∗ = T (ψ∗), it follows that

lim
δn→0

Jδn

(
ψδn

) ≥ J
(
ψ∗).

Therefore the functional J(ψ) attains its minimum value over ψ ∈ U at J(ψ∗), and hence
ψ∗ is an optimal control. �

5 Discussion
To illustrate our main results, we consider the following example. Let Q = �×(0, T), where
� is an open bounded set inR

n with C1 boundary ∂�. Consider the fractional diffusion in-
equality with Liouville–Caputo fractional derivatives (similar to fractional diffusion equa-
tion given in Example 2 in [15])

LC
0 Dα

t u(x, t) + �u(x, t) ≥ f (x, t), (x, t) ∈ Q,

u(x, t) = 0, x ∈ ∂�, t ∈ (0, T),

u(x, 0) = u0(x), x ∈ �,

(22)

where u0 ∈ H1
0 (�) and f ∈ L2(Q). We seek for the solution u of (22) that lies above an

obstacle ψ ∈ L2(0, T ; H2(�) ∩ H1
0 (�)) with LC

0 Dα
t (ψ) ∈ L2(Q) and ψ(x, 0) = 0, that is,

u(x, t) ≥ ψ(x, t) for a.e. (x, t) ∈ Q. (23)

The solution u satisfying (22) and (23) can be formulated as a solution of variational in-
equality (1), denoted by u = T (ψ).

Hence, given a target profile z ∈ L2(Q), we get from Theorem 3.3 that the optimal control
problem for the obstacle equation with objective functional (2) has a solution (ψ∗, u∗ =
T (ψ∗)). Moreover, by Theorem 4.5 the optimal solution ψ∗ satisfies the adjoint problem
(21).

Analogous results could be obtained in the context of Riemann–Liouville fractional
derivative by using the relation between the Riemann–Liouville and Liouville–Caputo
derivatives. In particular, the a priori estimate for a solution of the time fractional-order
diffusion equation in Lemma 2.9 needs to be adjusted. Moreover, the initial condition
should be replaced by some nonlocal conditions.
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6 Conclusion
In this work, we establish the existence of the optimal control for obstacle variational in-
equalities involving Liouville–Caputo fractional derivatives. Necessary conditions of the
optimal solutions were obtained through the adjoint problem in weak formulation. Fu-
ture research in optimal control of obstacle problem for time fractional-order variational
inequalities can be extended under various assumptions such as the time delay problem,
nonlocal and nonsingular kernels, or under different boundary conditions, which would
extend the results for fractional diffusion equations in the literature. In addition, numeri-
cal algorithms should be investigated to visualize the optimal solution.
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