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1 Introduction
In this manuscript, the following coupled system of fractional differential equations is dis-
cussed:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dθ [x(t) – f (t, x(t))] = h(t, y(t), Iαy(t)), t ∈ [0, 1],

Dθ [y(t) – f (t, y(t))] = h(t, x(t), Iαx(t)), t ∈ [0, 1],

x′(0) = y′(0) = 0,

a1x(0) – b1x(η) – c1x(1) = 1
�(θ )

∫ 1
0 (1 – s)θ–1φ(s, x(s)) ds,

a2y(0) – b2y(ξ ) – c2y(1) = 1
�(θ )

∫ 1
0 (1 – s)θ–1ψ(s, y(s)) ds,

(1.1)

where 1 < θ ≤ 2, α > 0, η, ξ ∈ (0, 1], aj, bj, cj (j = 1, 2) are real numbers with aj �= bj + cj

(j = 1, 2). Further f ,φ,ψ : [0, 1] ×R → [0, 1], and h : [0, 1] ×R×R → [0, 1] are continuous
functions, f (0, x(0)) = 0, ∂ if (t,x(t))

∂ti |t=0 = 0 for i = 1, 2, . . . , n – 1. Dθ represents the Caputo
fractional derivative of order θ .

Fractional differential equations are widely used in many fields such as chemistry,
physics, biology, and optimization theory [1–4]. In addition, coupled systems of fractional
differential equations have attracted particular concern from scholars considering their
appearance in the mathematical modeling of physical phenomena like chaos synchroniza-
tion [5], anomalous diffusion [6], disease models [7], and so on. The existence theory to
fractional differential equations with integral boundary conditions has widespread appli-
cations in optimization theory, many researchers have studied [8–13], and the existence
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of solutions is the basis of studying the stability and numerical solutions of differential
equations [14]. For the existence of solutions of fractional differential equations, the au-
thors use diverse methods, such as fixed point theory [15–19], upper and lower solutions
method [20], monotone iterative technique and Mawhin’s continuation theorem [21], and
topological degree theory [22]. When studying the existing literature, we find that frac-
tional differential equations with integral boundary conditions are not properly tested via
topological degree theory. Thus we investigate the existence result to a coupled system of
fractional differential equations(1.1) through applying topological degree theory.

Bashiri et al. [23]investigated the existence of solutions for fractional differential equa-
tions by means of the coupled fixed point theorem of Krasnoselskii type

⎧
⎪⎪⎨

⎪⎪⎩

Dθ [x(t) – f (t, x(t))] = h(t, y(t), Iαy(t)),

Dθ [y(t) – f (t, y(t))] = h(t, x(t), Iαx(t)),

x(0) = y(0) = 0,

where Dθ denotes the Riemann–Liouville fractional derivative, θ ∈ (0, 1), α > 0.
Ahmad et al. [24]established existence results as well as studied qualitative aspects of

the proposed coupled system of fractional hybrid delay differential equations

⎧
⎪⎪⎨

⎪⎪⎩

CDκ
+0(r(t) – P1(t, r(t), h(t))) = Q1(t, r(νt), h(νt)), t ∈A,

CDσ
+0(h(t) – P2(t, r(t), h(t))) = Q2(t, r(νt), h(νt)), t ∈A,

r(t)|t=0 = r0, h(t)|t=0 = h0,

where A = [0, τ ], CD+0, τ > 0 is Caputo’s derivative, and r0, h0 are real numbers, while the
delay parameter is denoted by ν ∈ (0, 1).

Muthaiah et al. [25]considered the existence and Hyers–Ulam type stability results for
the nonlinear coupled system of Caputo–Hadamard type fractional differential equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

CD�y(τ ) = f (τ , y(τ ), z(τ )), τ ∈ [1, T] := K,
CDς z(τ ) = g(τ , y(τ ), z(τ )), τ ∈ [1, T] := K,

y(1) = 0, y′(1) = 0, y(T) = α1
∑k–2

j=1 ξjz(ζj) + β1
HIς1 z(ϑ),

z(1) = 0, z′(1) = 0, z(T) = α2
∑k–2

j=1 υjz(ωj) + β2
HI�1 y(ϕ),

1 < ϑ < ϕ < ξ1 < ω1 < ξ2 < ω2 < · · · < ξk–2 < ωk–2 < T ,

where CD(·) denotes the Caputo–Hadamard fractional derivative, HI(·) denotes the
Hadamard fractional integrals, 2 < �,ς ≤ 3, 0 < �1,ς1 < 1, α1, α2, β1, β2 are real constants
and ζj, υj, j = 1, 2, . . . , k – 2, are positive real constants. The consequence of existence is ob-
tained by employing the alternative of Leray–Schauder and Krasnoselskii’s, whereas the
uniqueness result is based on the principle of Banach contraction mapping.

Motivated especially by the aforementioned work, we consider the existence of solutions
to a coupled system of fractional differential equations (1.1). According to our literature
review, no scholars have studied equation (1.1), the results are entirely new. The remain-
der of this paper is as follows. In the second part, we display some definitions, facts, and
results. We confirm the existence of solutions for system (1.1) in the third part. Finally, we
provide an example to prove our results.
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2 Preliminaries
In this part, we recollect a number of facts, definitions, and conclusions. Let C([0, 1] ×
R, [0, 1]) represent the space of all continuous functions f ,φ,ψ : [0, 1]×R → [0, 1], and let
C([0, 1] ×R×R, [0, 1]) express the class of functions h : [0, 1] ×R×R → [0, 1] such that

(1) the map t → h(t, x, y) is measurable for each x, y ∈R,
(2) the map x → h(t, x, y) is continuous for each x ∈R],
(3) the map y → h(t, x, y) is continuous for each y ∈ R.
Let X be a Banach space and B ⊂ P(X), where P(X) stands for the family of all bounded

subsets of X. Next, we introduce some concepts.

Definition 2.1 ([26]) The Kuratowski measure of noncompactness α : B →R+ is defined
as

α(B) = inf{d > 0, where B ∈ B admits a finite cover by set of diameter ≤ d}.

Definition 2.2 ([26]) Let F : � → X be a continuous bounded map, where � ⊆ X. Then
F is

(1) α-Lipschitz if there exists k ≥ 0, therefore α(F (S)) ≤ kα(S) for all bounded subsets
S ⊆ �;

(2) strict α-contraction if there exists 0 ≤ k < 1 such that α(F (S)) ≤ kα(S) for all bounded
subsets S ⊆ �;

(3) α-condensing if α(F (S)) < α(S) for all bounded subsets S ⊆ � with α(S) > 0. In other
words, α(F (S)) ≥ α(S) implies α(S) = 0.

All classes of strict α-contraction F : � → X and all classes of α-condensing maps F :
� → X are represented by �Cα(�) and Cα(�), respectively. Then �Cα(�) ⊂ Cα(�) and
each F ∈ Cα(�) is α-Lipschitz with constant k = 1. Moreover, F : � → X is Lipschitz
whenever there is k > 0, therefore

∥
∥F (x) – F (y)

∥
∥ ≤ k‖x – y‖ for all x, y ∈ �.

Further, F will be a strict contraction if k < 1.

Proposition 2.3 ([27]) If F ,G : � → X are α-Lipschitz with respective constants k1 and
k2, then F + G is α-Lipschitz with constant k1 + k2.

Proposition 2.4 ([27]) If F : � → X is Lipschitz with constant k, then F is α-Lipschitz
with the equal constant k.

Proposition 2.5 ([27]) If F : � → X is compact, then F is α-Lipschitz with constant k = 0.

Theorem 2.6 ([27]) If F : X → X is α-condensing and

� = {x ∈ X : there exists 0 ≤ ν ≤ 1 such that x = νFx}.

If � is a bounded set in X, so we have r > 0 such that � ⊂ Br(0), then

D
(
I – νF , Br(0), 0

)
) = 1 for all ν ∈ [0, 1].
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Consequently, F has at least one fixed point, and the set of the fixed points of F lies in
Br(0).

Definition 2.7 ([28]) The fractional integral of order θ (θ > 0) of function f : [0,∞) → R
is defined as

Iθ f (t) =
1

�(θ )

∫ t

0
(t – s)θ–1f (s) ds,

provided that the right-hand side is pointwise defined on (0,∞).

Definition 2.8 ([28]) The Caputo fractional derivative of order θ (θ > 0) of the function
f : [0,∞) → R is defined by

Dθ f (t) =
1

�(n – θ )

∫ t

0
(t – s)n–θ–1f (n)(s) ds,

where t > 0, n = [θ ] + 1.

Lemma 2.9 ([28]) Let θ > 0, then the following result holds for fractional differential equa-
tions:

Iθ
[
Dθ f (t)

]
= f (t) + C0 + C1t + C2t2 + · · · + Cn–1tn–1

for arbitrary n = [θ ] + 1, [θ ] indicates the integer part of the real number θ > 0, Ci ∈ R,
i = 0, 1, 2, . . . , n – 1. Dθ is a Caputo fractional derivative.

3 Main results
In this part, we discuss the existence result for (1.1).

The space X = C([0, 1],R) of all continuous functions is a Banach space under the topo-
logical norm ‖x‖ = sup{|x(t)| : t ∈ [0, 1]} and the product space X × X is a Banach space
under the norm ‖(x, y)‖ = ‖x‖ + ‖y‖ or ‖(x, y)‖ = max{‖x‖,‖y‖}.

In order to get the result of our result, we need the following hypotheses.
(H1) For each (t, x), (t, x̄), (t, y), (t, ȳ) ∈ [0, 1] ×R, there exist constants λ1,λ2 ∈ [0, 1) such

that

∣
∣f (t, x) – f (t, x̄)

∣
∣ ≤ λ1‖x – x̄‖,

∣
∣f (t, y) – f (t, ȳ)

∣
∣ ≤ λ2‖y – ȳ‖.

(H2) For each (t, x, y) ∈R, there exist positive constants l1
h, l2

h, Mh and q1 ∈ [0, 1) such that

∣
∣h(t, x, y)

∣
∣ ≤ l1

h‖x‖q1 + l2
h‖y‖q1 + Mh.

(H3) For each (t, x) ∈ [0, 1] × R, there exist positive constants lf , Mf and q2 ∈ [0, 1) such
that

∣
∣f

(
t, x(t)

)∣
∣ ≤ lf ‖x‖q2 + Mf .
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(H4) For each (t, x), (t, y) ∈ [0, 1] × R, there exist positive constants cφ , cψ , Mφ , Mψ , and
q2 ∈ [0, 1) such that

∣
∣φ(t, x)

∣
∣ ≤ cφ‖x‖q2 + Mφ ,

∣
∣ψ(t, y)

∣
∣ ≤ cψ‖y‖q2 + Mψ .

(H5) For each (t, x), (t, x̄), (t, y), (t, ȳ) ∈ [0, 1] ×R, we have positive constants bφ , bψ ∈ [0, 1)
such that

∣
∣φ(t, x) – φ(t, x̄)

∣
∣ ≤ bφ‖x – x̄‖,

∣
∣ψ(t, y) – ψ(t, ȳ)

∣
∣ ≤ bψ‖y – ȳ‖.

Lemma 3.1 If f (0, x(0)) = 0, ∂ if (t,x(t))
∂ti |t=0 = 0 for i = 1, 2, . . . , n – 1, then the consequence of

fractional differential equations (1.1) is a conclusion of the following system of integral
equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t) = f (t, x(t)) + 1
�(θ )

∫ t
0 (t – s)θ–1h(s, y(s), Iαy(s)) ds

+ 1
a1–(b1+c1)

1
�(θ )

∫ 1
0 (1 – s)θ–1φ(s, x(s)) ds

+ b1
a1–(b1+c1) f (η, x(η)) + c1

a1–(b1+c1) f (1, x(1))

+ b1
a1–(b1+c1)

1
�(θ )

∫ η

0 (η – s)θ–1h(s, y(s), Iαy(s)) ds

+ c1
a1–(b1+c1)

1
�(θ )

∫ 1
0 (1 – s)θ–1h(s, y(s), Iαy(s)) ds,

y(t) = f (t, y(t)) + 1
�(θ )

∫ t
0 (t – s)θ–1h(s, x(s), Iαx(s)) ds

+ 1
a2–(b2+c2)

1
�(θ )

∫ 1
0 (1 – s)θ–1φ(s, y(s)) ds

+ b2
a2–(b2+c2) f (ξ , y(ξ )) + c2

a2–(b2+c2) f (1, y(1))

+ b2
a2–(b2+c2)

1
�(θ )

∫ ξ

0 (ξ – s)θ–1h(s, x(s), Iαx(s)) ds

+ c2
a2–(b2+c2)

1
�(θ )

∫ 1
0 (1 – s)θ–1h(s, x(s), Iαx(s)) ds.

(3.1)

Proof Applying the fractional integrable operator Iθ on the equation of system (1.1) and
through applying Lemma 2.9, we get

x(t) = f
(
t, x(t)

)
+

1
�(θ )

∫ t

0
(t – s)θ–1h

(
s, y(s), Iαy(s)

)
ds + C0 + C1t.

By applying the initial conditions x′(0) = 0 and ∂ if (t,x(t))
∂ti |t=0 = 0, we obtain C1 = 0 and

x(t) = f
(
t, x(t)

)
+

1
�(θ )

∫ t

0
(t – s)θ–1h

(
s, y(s), Iαy(s)

)
ds + C0. (3.2)

Now, applying the boundary conditions a1x(0) – b1x(η) – c1x(1) = 1
�(θ )

∫ 1
0 (1 – s)θ–1φ(s,

x(s)) ds to (3.2), we have

(a1 – b1 – c1)C0 = b1f
(
η, x(η)

)
+ c1f

(
1, x(1)

)
+

1
�(θ )

∫ 1

0
(1 – s)θ–1φ

(
s, x(s)

)

+
b1

�(θ )

∫ η

0
(η – s)θ–1h

(
s, y(s), Iαy(s)

)
ds
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+
c1

�(θ )

∫ 1

0
(1 – s)θ–1h

(
s, y(s), Iαy(s)

)
ds.

By rearranging, we obtain

C0 =
b1

a1 – (b1 + c1)
f
(
η, x(η)

)
+

c1

a1 – (b1 + c1)
f
(
1, x(1)

)

+
1

a1 – (b1 + c1)
1

�(θ )

∫ 1

0
(1 – s)θ–1φ

(
s, x(s)

)

+
b1

a1 – (b1 + c1)
1

�(θ )

∫ η

0
(η – s)θ–1h

(
s, y(s), Iαy(s)

)
ds

+
c1

a1 – (b1 + c1)
1

�(θ )

∫ 1

0
(1 – s)θ–1h

(
s, y(s), Iαy(s)

)
ds.

Thus equation (3.2) becomes

x(t) = f
(
t, x(t)

)
+

1
�(θ )

∫ t

0
(t – s)θ–1h

(
s, y(s), Iαy(s)

)
ds

+
1

a1 – (b1 + c1)
1

�(θ )

∫ 1

0
(1 – s)θ–1φ

(
s, x(s)

)
ds

+
b1

a1 – (b1 + c1)
f
(
η, x(η)

)
+

c1

a1 – (b1 + c1)
f
(
1, x(1)

)

+
b1

a1 – (b1 + c1)
1

�(θ )

∫ η

0
(η – s)θ–1h

(
s, y(s), Iαy(s)

)
ds

+
c1

a1 – (b1 + c1)
1

�(θ )

∫ 1

0
(1 – s)θ–1h

(
s, y(s), Iαy(s)

)
ds.

Analogously, following the same steps in the process for the second equation of system
(1.1), we get

y(t) = f
(
t, y(t)

)
+

1
�(θ )

∫ t

0
(t – s)θ–1h

(
s, x(s), Iαx(s)

)
ds

+
1

a2 – (b2 + c2)
1

�(θ )

∫ 1

0
(1 – s)θ–1ψ

(
s, y(s)

)
ds

+
b2

a2 – (b2 + c2)
f
(
ξ , y(ξ )

)
+

c2

a2 – (b2 + c2)
f
(
1, y(1)

)

+
b2

a2 – (b2 + c2)
1

�(θ )

∫ ξ

0
(ξ – s)θ–1h

(
s, x(s), Iαx(s)

)
ds

+
c2

a2 – (b2 + c2)
1

�(θ )

∫ 1

0
(1 – s)θ–1h

(
s, x(s), Iαx(s)

)
ds. �

Define the operator F , H , T : X × X → X × X by

F(x, y)(t) =
(
F1x(t), F2y(t)

)
,

H(x, y)(t) =
(
H2y(t), H1x(t)

)
,

T(x, y)(t) = F(x, y)(t) + H(x, y)(t),
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here F1, F2, H1, H2 : X → X are

F1x(t) = f
(
t, x(t)

)
+

b1

a1 – (b1 + c1)
f
(
η, x(η)

)
+

c1

a1 – (b1 + c1)
f
(
1, x(1)

)

+
1

a1 – (b1 + c1)
1

�(θ )

∫ 1

0
(1 – s)θ–1φ

(
s, x(s)

)
ds,

F2y(t) = f
(
t, y(t)

)
+

b2

a2 – (b2 + c2)
f
(
ξ , y(ξ )

)
+

c2

a2 – (b2 + c2)
f
(
1, y(1)

)

+
1

a2 – (b2 + c2)
1

�(θ )

∫ 1

0
(1 – s)θ–1ψ

(
s, y(s)

)
ds,

H1x(t) =
1

�(θ )

∫ t

0
(t – s)θ–1h

(
s, x(s), Iαx(s)

)
ds

+
b2

a2 – (b2 + c2)
1

�(θ )

∫ ξ

0
(ξ – s)θ–1h

(
s, x(s), Iαx(s)

)
ds

+
c2

a2 – (b2 + c2)
1

�(θ )

∫ 1

0
(1 – s)θ–1h

(
s, x(s), Iαx(s)

)
ds,

H2y(t) =
1

�(θ )

∫ t

0
(t – s)θ–1h

(
s, y(s), Iαy(s)

)
ds

+
b1

a1 – (b1 + c1)
1

�(θ )

∫ η

0
(η – s)θ–1h

(
s, y(s), Iαy(s)

)
ds

+
c1

a1 – (b1 + c1)
1

�(θ )

∫ 1

0
(1 – s)θ–1h

(
s, y(s), Iαy(s)

)
ds.

Then the system of integral equations (3.1) can be written as an operator equation

(x, y) = T(x, y) = F(x, y) + H(x, y),

and fixed points of the operator equation are results of system (1.1).

Theorem 3.2 The operator F is Lipschitz with constant k. Therefore F is α-Lipschitz with
the equal constant k and meets the following growth condition:

∥
∥F

(
x(t), y(t)

)∥
∥ ≤ LF

∥
∥(x, y)

∥
∥q2 + MF .

Proof Now, we shall display that the operator F is Lipschitz with constant k. Let x1, x2 ∈ X,
then we get

∣
∣F1x1(t) – F1x2(t)

∣
∣

=
∣
∣
∣
∣

(
f
(
t, x1(t)

)
– f

(
t, x2(t)

))
+

b1

a1 – (b1 + c1)
(
f
(
η, x1(η)

)
– f

(
η, x2(η)

))

+
c1

a1 – (b1 + c1)
(
f
(
1, x1(1)

)
– f

(
1, x2(1)

))

+
1

a1 – (b1 + c1)
1

�(θ )

(∫ 1

0
(1 – s)θ–1φ

(
s, x1(s)

)
ds –

∫ 1

0
(1 – s)θ–1φ

(
s, x2(s)

)
ds

)∣
∣
∣
∣

≤ ∣
∣f

(
t, x1(t)

)
– f

(
t, x2(t)

)∣
∣
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+
|b1|

|a1 – (b1 + c1)|
∣
∣f

(
η, x1(η)

)
– f

(
η, x2(η)

)∣
∣

+
|c1|

|a1 – (b1 + c1)|
∣
∣f

(
1, x1(1)

)
– f

(
1, x2(1)

)∣
∣

+
1

|a1 – (b1 + c1)|�(θ )

∫ 1

0
(1 – s)θ–1∣∣φ

(
s, x1(s)

)
– φ

(
s, x2(s)

)∣
∣ds.

By using conditions (H1) and (H5), we can write

∥
∥F1x1(t) – F1x2(t)

∥
∥ ≤ λ1‖x1 – x2‖ +

|b1|λ1

|a1 – (b1 + c1)| ‖x1 – x2‖

+
|c1|λ1

|a1 – (b1 + c1)| ‖x1 – x2‖ +
bφ

|a1 – (b1 + c1)|�(θ + 1)
‖x1 – x2‖

=
[

λ1 +
(|b1| + |c1|)λ1

|a1 – (b1 + c1)| +
bφ

|a1 – (b1 + c1)|�(θ + 1)

]

‖x1 – x2‖

= k1‖x1 – x2‖,

where k1 = λ1 + (|b1|+|c1|)λ1
|a1–(b1+c1)| + bφ

|a1–(b1+c1)|�(θ+1) .
Similarly,

∥
∥F2y1(t) – F2y2(t)

∥
∥ ≤

[

λ2 +
(|b2| + |c2|)λ2

|a2 – (b2 + c2)| +
bψ

|a2 – (b2 + c2)|�(θ + 1)

]

‖y1 – y2‖

= k2‖y1 – y2‖,

where k2 = λ2 + (|b2|+|c2|)λ2
|a2–(b2+c2)| + bψ

|a2–(b2+c2)|�(θ+1) . Thus

∥
∥F(x1, y1) – F(x2, y2)

∥
∥ =

∥
∥F1x1(t) – F1x2(t)

∥
∥ +

∥
∥F2y1(t) – F2y2(t)

∥
∥

≤ k1‖x1 – x2‖ + k2‖y1 – y2‖
≤ k

∥
∥(x1, y1) – (x2, y2)

∥
∥,

where k = max(λ1 + (|b1|+|c1|)λ1
|a1–(b1+c1)| + bφ

|a1–(b1+c1)|�(θ+1) ,λ2 + (|b2|+|c2|)λ2
|a2–(b2+c2)| + bψ

|a2–(b2+c2)|�(θ+1) ). Then F
satisfies the Lipschitz condition, thus F is Lipschitz with constant k. According to Propo-
sition 2.4, F is α-Lipschitz with constant k.

Moreover, we get

∣
∣F1x(t)

∣
∣ ≤ ∣

∣f
(
t, x(t)

)∣
∣ +

|b1|
|a1 – (b1 + c1)|

∣
∣f

(
η, x(η)

)∣
∣ +

|c1|
|a1 – (b1 + c1)|

∣
∣f

(
1, x(1)

)∣
∣

+
1

|a1 – (b1 + c1)|
1

�(θ )

∫ 1

0
(1 – s)θ–1∣∣φ

(
s, x(s)

)∣
∣ds.

By (H3) and (H4), we have

∣
∣F1x(t)

∣
∣ ≤ lf ‖x‖q2 + Mf +

|b1|
|a1 – (b1 + c1)|

(
lf ‖x‖q2 + Mf

)

+
|c1|

|a1 – (b1 + c1)|
(
lf ‖x‖q2 + Mf

)
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+
1

|a1 – (b1 + c1)|
1

�(θ + 1)
(
cφ‖x‖q2 + Mφ

)

=
[

lf +
(|b1| + |c1|)lf

|a1 – (b1 + c1)| +
cφ

|a1 – (b1 + c1)|�(θ + 1)

]

‖x‖q2

+
[

Mf +
(|b1| + |c1|)Mf

|a1 – (b1 + c1)| +
Mφ

|a1 – (b1 + c1)|�(θ + 1)

]

.

Similarly,

∣
∣F2y(t)

∣
∣ ≤

[

lf +
(|b2| + |c2|)lf

|a2 – (b2 + c2)| +
cψ

|a2 – (b2 + c2)|�(θ + 1)

]

‖y‖q2

+
[

Mf +
(|b2| + |c2|)Mf

|a2 – (b2 + c2)| +
Mψ

|a2 – (b2 + c2)|�(θ + 1)

]

.

Hence it follows that

∥
∥F

(
x(t), y(t)

)∥
∥ =

∥
∥
(
F1(x), F2(y)

)∥
∥

=
∥
∥F1(x)

∥
∥ +

∥
∥F2(y)

∥
∥

≤
[

lf +
(|b1| + |c1|)lf

|a1 – (b1 + c1)| +
cφ

|a1 – (b1 + c1)|�(θ + 1)

]

‖x‖q2

+
[

lf +
(|b2| + |c2|)lf

|a2 – (b2 + c2)| +
cψ

|a2 – (b2 + c2)|�(θ + 1)

]

‖y‖q2

+
[

Mf +
(|b1| + |c1|)Mf

|a1 – (b1 + c1)| +
Mφ

|a1 – (b1 + c1)|�(θ + 1)

]

+
[

Mf +
(|b2| + |c2|)Mf

|a2 – (b2 + c2)| +
Mψ

|a2 – (b2 + c2)|�(θ + 1)

]

≤ LF
∥
∥(x, y)

∥
∥q2 + MF ,

where

LF = max

(

lf +
(|b1| + |c1|)lf

|a1 – (b1 + c1)| +
cφ

|a1 – (b1 + c1)|�(θ + 1)
,

lf +
(|b2| + |c2|)lf

|a2 – (b2 + c2)| +
cψ

|a2 – (b2 + c2)|�(θ + 1)

)

,

MF = 2 max

(

Mf +
(|b1| + |c1|)Mf

|a1 – (b1 + c1)| +
Mφ

|a1 – (b1 + c1)|�(θ + 1)
,

Mf +
(|b2| + |c2|)Mf

|a2 – (b2 + c2)| +
Mψ

|a2 – (b2 + c2)|�(θ + 1)

)

.

�

Theorem 3.3 The operator H : X × X → X × X is continuous and meets the following
growth condition:

∥
∥H

(
x(t), y(t)

)∥
∥ ≤ LH

∥
∥(x, y)

∥
∥q1 + MH .
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Proof Consider a bounded subset of X × X as

Br =
{∥
∥(x, y)

∥
∥ ≤ r : (x, y) ∈ X × X

} ⊆ X × X.

Let {(xn, yn)} be a sequence in Br such that (xn, yn) → (x, y) as n → ∞. To show that H is
continuous, we consider

∣
∣H1(xn) – H1(x)

∣
∣

≤ 1
�(θ )

∫ t

0
(t – s)θ–1∣∣h

(
s, xn(s), Iαxn(s)

)
– h

(
s, x(s), Iαx(s)

)∣
∣ds

+
|b2|

|a2 – (b2 + c2)|
1

�(θ )

∫ ξ

0
(ξ – s)θ–1∣∣h

(
s, xn(s), Iαxn(s)

)
– h

(
s, x(s), Iαx(s)

)∣
∣ds

+
|c2|

|a2 – (b2 + c2)|
1

�(θ )

∫ 1

0
(1 – s)θ–1∣∣h

(
s, xn(s), Iαxn(s)

)
– h

(
s, x(s), Iαx(s)

)∣
∣ds.

From the continuity of h, it follows that

h
(
s, xn(s), Iαxn(s)

) → h
(
s, x(s), Iαx(s)

)
as n → ∞.

For every t ∈ [0, 1], by applying (H2), and the Lebesgue dominated convergent theorem,
we can get

∫ t

0

(t – s)θ–1

�(θ )
∣
∣h

(
s, xn(s), Iαxn(s)

)
– h

(
s, x(s), Iαx(s)

)∣
∣ds → 0 as n → ∞.

The same as the other terms approach 0 as n → ∞, thus

∥
∥H1(xn) – H1(x)

∥
∥ → 0 as n → ∞. (3.3)

Then H1 is continuous. By the same steps as above, one lightly gets that

∥
∥H2(yn) – H2(y)

∥
∥ → 0 as n → ∞. (3.4)

That is, H2 is continuous. From (3.3) and (3.4), we have

∥
∥H(xn, yn) – H(x, y)

∥
∥ → 0 as n → ∞,

which means that H is continuous.
Moreover, by (H2), we have

∣
∣H1x(t)

∣
∣ =

∣
∣
∣
∣

1
�(θ )

∫ t

0
(t – s)θ–1h

(
s, x(s), Iαx(s)

)
ds

+
b2

a2 – (b2 + c2)
1

�(θ )

∫ ξ

0
(ξ – s)θ–1h

(
s, x(s), Iαx(s)

)
ds

+
c2

a2 – (b2 + c2)
1

�(θ )

∫ 1

0
(1 – s)θ–1h

(
s, x(s), Iαx(s)

)
ds

∣
∣
∣
∣
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≤ tθ

�(θ + 1)
(
l1
h‖x‖q1 + l2

h
∥
∥Iαx

∥
∥q1 + Mh

)

+
|b2|ξ θ

|a2 – (b2 + c2)|�(θ + 1)
(
l1
h‖x‖q1 + l2

h
∥
∥Iαx

∥
∥q1 + Mh

)

+
|c2|

|a2 – (b2 + c2)|�(θ + 1)
(
l1
h‖x‖q1 + l2

h
∥
∥Iαx

∥
∥q1 + Mh

)

≤
[

1
�(θ + 1)

+
|b2| + |c2|

|a2 – (b2 + c2)|�(θ + 1)

]
(
l1
h‖x‖q1 + l2

h
∥
∥Iαx

∥
∥q1 + Mh

)
.

Similarly,

∣
∣H2y(t)

∣
∣ ≤

[
1

�(θ + 1)
+

|b1| + |c1|
|a1 – (b1 + c1)|�(θ + 1)

]
(
l1
h‖y‖q1 + l2

h
∥
∥Iαy

∥
∥q1 + Mh

)
. (3.5)

Thus

∥
∥H

(
x(t), y(t)

)∥
∥ =

∥
∥H1x(t)

∥
∥ +

∥
∥H2y(t)

∥
∥

≤
[

1
�(θ + 1)

+
|b2| + |c2|

|a2 – (b2 + c2)|�(θ + 1)

]
(
l1
h‖x‖q1 + l2

h
∥
∥Iαx

∥
∥q1 + Mh

)

+
[

1
�(θ + 1)

+
|b1| + |c1|

|a1 – (b1 + c1)|�(θ + 1)

]
(
l1
h‖y‖q1 + l2

h
∥
∥Iαy

∥
∥q1 + Mh

)

≤
[

1
�(θ + 1)

+
|b2| + |c2|

|a2 – (b2 + c2)|�(θ + 1)

]
[
l
(‖x‖q1 +

∥
∥Iαx

∥
∥q1) + Mh

]

+
[

1
�(θ + 1)

+
|b1| + |c1|

|a1 – (b1 + c1)|�(θ + 1)

]
[
l
(‖y‖q1 +

∥
∥Iαy

∥
∥q1) + Mh

]

≤ Lh
[‖x‖q1 + ‖y‖q1 +

∥
∥Iαx

∥
∥q1 +

∥
∥Iαy

∥
∥q1 + 2Mh

]

≤ LH
∥
∥(x, y)

∥
∥q1 + MH ,

where l = max{l1
h, l2

h} ∈ [0, 1), Lh = max( 1
�(θ+1) + |b2|+|c2|

|a2–(b2+c2)|�(θ+1) , 1
�(θ+1) + |b1|+|c1|

|a1–(b1+c1)|�(θ+1) ),
LH = (1 + ( 1

�(α+1) )q1 )Lh, MH = 2LhMh. Hence H satisfies the growth condition. �

Theorem 3.4 The operator H : X × X → X × X is compact.

Proof Let � be a bounded subset of Br ⊆ X × X and {(xn, yn)} be a sequence in �, through
applying the growth condition of H , it is obvious that H(�) is uniformly bounded in X ×X.
Now, we need to reveal that H is equicontinuous. Let 0 ≤ t ≤ τ ≤ 1, then we obtain

∣
∣H1xn(t) – H1xn(τ )

∣
∣ =

∣
∣
∣
∣

1
�(θ )

∫ t

0
(t – s)θ–1h

(
s, xn(s), Iαxn(s)

)
ds

–
1

�(θ )

∫ τ

0
(τ – s)θ–1h

(
s, xn(s), Iαxn(s)

)
ds

∣
∣
∣
∣

=
∣
∣
∣
∣

1
�(θ )

∫ t

0

[
(t – s)θ–1 – (τ – s)θ–1]h

(
s, xn(s), Iαxn(s)

)
ds

–
1

�(θ )

∫ τ

t
(τ – s)θ–1h

(
s, xn(s), Iαxn(s)

)
ds

∣
∣
∣
∣
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≤ 1
�(θ )

∫ t

0

[
(t – s)θ–1 – (τ – s)θ–1]∣∣h

(
s, xn(s), Iαxn(s)

)∣
∣ds

+
1

�(θ )

∫ τ

t
(τ – s)θ–1∣∣h

(
s, xn(s), Iαxn(s)

)∣
∣ds

≤ l1
h‖xn‖q1 + l2

h‖Iαxn‖q1 + Mh

�(θ + 1)
[
tθ – τ θ + 2(τ – t)θ

]
.

Similarly,

∣
∣H2yn(t) – H2yn(τ )

∣
∣ ≤ l1

h‖yn‖q1 + l2
h‖Iαyn‖q1 + Mh

�(θ + 1)
[
tθ – τ θ + 2(τ – t)θ

]
.

Taking limit as t → τ , we get

∥
∥H1xn(t) – H1xn(τ )

∥
∥ → 0

and

∥
∥H2yn(t) – H2yn(τ )

∥
∥ → 0,

which implies that

∥
∥H(xn, yn)(t) – H(xn, yn)(τ )

∥
∥ → 0.

This reveals that H(x, y) is equicontinuous. H(x, y) is compact by the Arzelá–Ascoli theo-
rem. Hence, according to Proposition 2.5, H is α-Lipschitz with constant zero. �

Theorem 3.5 If (H1)–(H5) hold and

k = max

(

λ1 +
(|b1| + |c1|)λ1

|a1 – (b1 + c1)| +
bφ

|a1 – (b1 + c1)|�(θ + 1)
,

λ2 +
(|b2| + |c2|)λ2

|a2 – (b2 + c2)| +
bψ

|a2 – (b2 + c2)|�(θ + 1)

)

∈ [0, 1),

then coupled system (1.1) has at least one solution (x, y) ∈ X × X. And the solution set of
(1.1) is bounded in X × X.

Proof From Theorem 3.2 and k ∈ [0, 1), F is α-Lipschitz with constant k ∈ [0, 1), according
to Theorem 3.4, H is α-Lipschitz with constant 0. By Proposition 2.3 and Definition 2.2, T
is a strict α-contraction with constant k. Hence, T is α-condensing. Then, we think over
the following set:

R =
{

(x, y) ∈ X × X : there exist ζ ∈ [0, 1], (x, y) = ζT(x, y)
}

.

We have to reveal that R is bounded in X × X. Let (x, y) ∈ R, then by applying the growth
conditions of Theorem 3.2 and Theorem 3.3, we have

(x, y) = ζT(x, y) = ζ
(
F(x, y) + H(x, y)

)
,
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thus

∥
∥(x, y)

∥
∥ = ζ

∥
∥T(x, y)

∥
∥

≤ ζ
(∥
∥F(x, y)

∥
∥ +

∥
∥H(x, y)

∥
∥
)

≤ ζ
[
LF

∥
∥(x, y)

∥
∥q2 + MF + LH

∥
∥(x, y)

∥
∥q1 + MH

]

= ζ
(
LF

∥
∥(x, y)

∥
∥q2 + LH

∥
∥(x, y)

∥
∥q1) + ζ (MF + MH ),

where q1, q2 ∈ [0, 1). Thus R is bounded in X × X. According to Theorem 2.6, there exists
r > 0 such that R ⊂ Br(0), then

D
(
I – ζT , Br(0), 0

)
) = 1, for all ζ ∈ [0, 1].

Therefore, T has at least one fixed point, then coupled system (1.1) has at least one solu-
tion. �

4 Examples
This part, we have the following example account for our main results.

Example 4.1 Give thought to the following equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D 3
2 [x(t) – sin2(t)|x(t)|

5(2+|x(t)|) ] = e–π t

10 + cos |y(t)|+sin |y(t)|
51+t2 , t ∈ [0, 1],

D 3
2 [y(t) – sin2(t)|y(t)|

5(2+|y(t)|) ] = e–π t

10 + cos |x(t)|+sin |x(t)|
51+t2 , t ∈ [0, 1],

x′(0) = y′(0) = 0,
1
4 x(0) – 1

2 x( 1
2 ) – 6x(1) = 1

�( 3
2 )

∫ 1
0 (1 – s) 1

2 sin x(s)
2 ds,

1
5 y(0) – 1

7 y( 1
2 ) – 8y(1) = 1

�( 3
2 )

∫ 1
0 (1 – s) 1

2 cos y(s)
5 ds,

(4.1)

where h = e–π t

10 + cos |y(t)|+sin |y(t)|
51+t2 , θ = 3

2 , a1 = 1
4 , b1 = 1

2 , c1 = 6, a2 = 1
5 , b2 = 1

7 , c2 = 8, η = ξ = 1
2 .

Let ζ = 1
5 , then by routine calculation, we can have cφ = bφ = 1

2 , cψ = bψ = 1
5 , Mφ = Mψ = 0,

l1
h = l2

h = 1
51 , Mh = 1

10 , lf = 1
10 , Mf = 0, λ1 = λ2 = 1

10 . Thus assumptions (H1) – (H5) hold, and

λ1 +
(|b1| + |c1|)λ1

|a1 – (b1 + c1)| +
bφ

|a1 – (b1 + c1)|�(θ + 1)
≈ 0.389,

λ2 +
(|b2| + |c2|)λ2

|a2 – (b2 + c2)| +
bψ

|a2 – (b2 + c2)|�(θ + 1)
) ≈ 0.221.

Next,

∣
∣F(x1, y1)(t) – F(x2, y2)(t)

∣
∣ ≤ 1

10
∣
∣x1(t) – x2(t)

∣
∣ +

1
10

∣
∣y1(t) – y2(t)

∣
∣

+
1

11.078

∫ 1

0
(1 – s)

1
2
∣
∣sin(x1) – sin(x2)

∣
∣ds

+
1

35.196

∫ 1

0
(1 – s)

1
2
∣
∣cos(y1) – cos(y2)

∣
∣ds

≤ 0.160‖x1 – x2‖ + 0.119‖y1 – y2‖
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≤ 0.160
∥
∥(x1, y1) – (x2, y2)

∥
∥,

thus F is α-Lipschitz with the constant 0.160, and thus H is α-Lipschitz with the constant
zero, which means that T is α-Lipschitz with the constant 0.160. Since

R =
{

(x, y) ∈ X × X : there exist ζ ∈ [0, 1], (x, y) = ζT(x, y)
}

,

then, by routine calculation, we obtain LF = 0.216, LH = 2.380, MF = 0, MH = 0.238.
Thus

∥
∥(x, y)

∥
∥ ∼= 0.703 ≤ 1,

then R is bounded, through Theorem 3.5, then problem (4.1) has at least one solution.
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