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1 Introduction and preliminaries
The notion of metric has been extended in several ways by changing the axioms of the met-
ric notion: quasi-metric, symmetric, dislocated metric, b-metric, 2-metric, D-metric, S-
metric, G-metric, partial metric, ultra-metric, etc. We shall focus on cone metric space or
more precisely, Banach-valued metric space. The idea of Banach-valued metric space was
considered by several authors in distinct periods of the last century. This notion became
popular and raised interest among researchers after the paper of Huang and X. Zhang [1]
in 2007. Since then, a number of authors got the characterization of several known fixed
point theorems in the context of Banach-valued metric space, such as, [2–20].

In this paper, we consider common fixed point theorems in the framework of the refined
cone metric space, namely, quasi-cone metric space.

In what follows, we shall recall the basic notions and notations as well as the fundamental
results.

Definition 1.1 ([21]) Suppose E is a real Banach algebra, that is, for v ,ω,η ∈ E , a ∈ R,
(a) v(ωz) = (vω)z;
(b) v(ω + z) = vω + vz, (v + ω)z = vz + ωz;
(c) a(vω) = (av)ω = (aω)v ;
(d) ‖vω‖ ≤ ‖v‖‖ω‖.

If Banach algebra E with unit element e, i.e. multiplicative identity e, is with ve = ev = v

for v ∈ E , then ‖e‖ = 1.
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An element v ∈ E is said to be invertible if there exists v–1 ∈ E such that vv–1 = v–1v = e.
Moreover, if every non-zero element of E has an inverse in E , then E is called a divisible
Banach algebra.

Proposition 1.2 ([22]) Let E be a Banach algebra, v an element in E and ρ(v) the spectral
radius of v . If ρ(v) < 1 then (e – v) is invertible in E and

(e – v)–1 =
∞∑

p=0

vp. (1)

Remark 1.3 ([2]) ρ(v) ≤ ‖v‖ for all v in a Banach algebra E .

Let (E ,‖ · ‖) be a real algebra and P a closed subset of E .
The set P is a cone if the following conditions hold:
(c1) P is non-empty and P �= {θ};
(c2) a1v + a2ω ∈ P for all v ,ω ∈ P and a1, a2 ∈ (0,∞);
(c3) P ∩ (–P) = {θ}.
Moreover, for a given cone P ⊆ E we can consider a partial ordering ≤ such that v ≤ ω

if and only if ω – v ∈ P. We write v 	 ω for ω – v ∈ intP and v < ω indicates that v ≤ ω

and v �= ω. The cone P is called normal if there exists a constant N > 0 such that 0 ≤ v ≤ ω

implies ‖v‖ ≤ N‖ω‖, for v ,ω ∈ E and is called solid if intP �= ∅.

Definition 1.4 ([3]) Let {vm} be a sequence in a solid cone P. We say that {vm} is a c-
sequence, if for any c ∈ P with θ 	 c there exists m0 ∈N such that vm 	 c for all m > m0.

Lemma 1.5 ([3]) If {vm} is a c-sequence in a solid cone P and κ is arbitrary (but given) in
P, then {κvm} is also a c-sequence.

Lemma 1.6 ([4]) On a real Banach algebra E with a solid cone E , the following statements
hold:

1 ς 	 ω if ς ≤ v 	 ω;
2 ς = θ if ς 	 ω for every ω � θ .

Let E be a Banach algebra and P ⊂ E be a cone. Then (e – v) is an invertible element in
P for any v ∈ P with ρ(v) < 1.

Definition 1.7 ([23]) Suppose E is a Banach algebra with unit e and P ⊆ E is a cone. P is
called algebra cone if e ∈ P and for v ,ω ∈ P, vω ∈ P.

In what follows we consider that E (Ed) represents a real (divisible) Banach algebra with
a unit e and θ be its zero element, P is a solid cone in E , PEd a normal algebra cone in Ed

with a normal constant N and X is a non-empty set.

Definition 1.8 (see [24]) A mapping d : X × X → E is a cone metric on X if
(a) 0 ≤ d(v ,ω) for all v ,ω ∈ X and d(v ,ω) = 0 if and only if v = ω,
(b) d(v ,ω) = d(ω, v) for all v ,ω ∈ X,
(c) d(v ,ω) ≤ d(v ,η) + d(η,ω),
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for all v ,ω,η ∈ X. The pair (X, d) is said to be a cone metric space over Banach algebra, in
short, CMS.

Definition 1.9 (see [25]) A mapping q : X × X → E is said to be a quasi-cone metric if
(a) 0 ≤ q(v ,ω) for all v ,ω ∈ X,
(b) q(v ,ω) = 0 = q(ω, v) if and only if v �= ω,
(c) q(v ,ω) ≤ q(v ,η) + q(η,ω),

for all v ,ω,η ∈ X. The triplet (X, q,E) is said to be a quasi-cone metric space over Banach
algebra, in short, qCMS.

A quasi-cone metric space is called 
-symmetric, if there exists an invertible element

 ∈ E such that


–1q(v ,ω) ≤ q(ω, v) ≤ 
q(v ,ω)

for all v ,ω ∈ X.

Definition 1.10 Suppose (X, q,E) is a qCMS, v ∈ X and {vm}m≥1 is a sequence in X. Then
(a) {vm}m≥1 (bi)-converges to v if for c ∈ E with θ 	 c, there is a natural number N

satisfying q(vm, v) 	 c and q(v , vm) 	 c for m ≥ N . We denote limm→∞ vm = v or
vm → v .

(b) {vm}m≥1 is a (l)(left)-Cauchy ((r)(right)-Cauchy)) if for c ∈ E with θ 	 c, there exists
a natural number N satisfying q(vm, vp) 	 c (respectively, q(vp, vm) 	 c for
m > p ≥ N .

(c) {vm}m≥1 is a bi-Cauchy if for c ∈ E with θ 	 c, there exists a natural number N
satisfying q(vm, vp) 	 c for m, p ≥ N .

(d) (X, q,E) is (l)-complete ((r)-complete) if every (l)-Cauchy((r)-Cauchy) sequence is
(bi)-convergent and is complete if it is (l) and (r)-complete.

Definition 1.11 We say that the mapping ψ : PEd → PEd is a ψ-operator if
(a) ψ is an increasing;
(b) ψ is a continuous bijection and has an inverse mapping ψ–1 which is also

continuous and increasing;
(c) ψ(v + ω) ≤ ψ(v) + ψ(ω) for all v ,ω ∈ PEd ;
(d) ψ(vω) = ψ(v)ψ(ω) for all v ,ω ∈ PEd .

Remark 1.12 By Definition 1.11, the part of (c), we can obtain ψ–1(v) + ψ–1(ω) ≤ ψ–1(v +
ω) for all v ,ω ∈ bPEd . In fact, note that ψ(v + ω) ≤ ψ(v) + ψ(ω) for all v ,ω ∈ PEd and ψ–1

is also a continuous and increasing operator, then

ψ–1(ψ(v + ω)
) ≤ ψ–1(ψ(v) + ψ(ω)

)
,

which yields

v + ω ≤ ψ–1(ψ(v) + ψ(ω)
)
.

Hence,

ψ–1(ψ(v)
)

+ ψ–1(ψ(ω)
) ≤ ψ–1(ψ(v) + ψ(ω)

)
.
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Since ψ : PEd → PEd is a continuous bijection, thus ψ–1(v) + ψ–1(ω) ≤ ψ–1(v + ω), for all
v ,ω ∈ PEd .

Remark 1.13 By Definition 1.11, the part of (d), we can obtain ψ–1(vω) = ψ–1(v)ψ–1(ω),
for v ,ω ∈ PEd .

Indeed, from ψ(vω) = ψ(v)ψ(ω) for v ,ω ∈ PE and ψ–1 : PE → PE is also continuous, we
get

ψ–1(ψ(vω)
)

= ψ–1(ψ(v)ψ(ω)
)
,

which yields

vω = ψ–1(ψ(v)ψ(ω)
)
.

Then we obtain

ψ–1(ψ(v)
)
ψ–1(ψ(ω)

)
= ψ–1(ψ(v)ψ(ω)

)
.

Thanks to that ψ : PE → PE is a continuous bijection, ψ–1(vω) = ψ–1(v)ψ–1(ω), for all
v ,ω ∈ PEd .

Remark 1.14 For example, let Ed = R be a divisible Banach algebra, PEd = {v ∈ E | v ≥ 0} be
a normal cone in Ed , suppose ψ : PEd → PEd , defined by ψ(v) = v

1
5 and then ψ–1(v) = v5,

for all v ∈ PEd .

2 Main results
Lemma 2.1 Let (X, q,Ed) be a 
-symmetric qCMS over a divisible Banach algebra, {vm}
a sequence in X. If there exists κ ∈ PEd , with ρ(κ) < 1 such that

q(vm, vm+1) ≤ κq(vm–1, vm), (2)

for all m ∈N, then {vm} is a (bi)-Cauchy sequence.

Proof First of all, we remark that, successively applying Eq. (2), we have

q(vm+1, vm) ≤ κmq(v1, v0).

Let m > p ≥ N . Thereupon,

q(vm, vp) ≤ q(vm, vm–1) + q(vm–1, vm–2) + · · · + q(vp+1, vp)

≤ (
κm–1 + κm–2 + · · · + κp)q(v1, v0)

≤ κp
m–p–1∑

j=0

κ jq(v1, v0)

≤ κp
∞∑

j=0

κ jq(v1, v0).
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Now, since ρ(κ) < 1, and taking into account Proposition 1.2, we see that (e – κ) is an
invertible element and (e – κ)–1 =

∑∞
j=0 κ j and the above inequality becomes

q(vm, vp) ≤ κp(e – κ)–1q(v1, v0).

For a given c , with θ 	 c , we choose δ > 0 such that c + Nδ(θ ) ⊆ PEd . (Here Nδ(θ ) = {ω ∈
Ed : ‖ω‖} < δ}.) Letting p0 ∈ N such that κpq(v1, v0) ∈ Nδ(θ ) for all p ≥ p0 we get κp(e –
κ)–1q(v1, v0) 	 c , for all p ≥ p0. Therefore,

q(vm, vp) ≤ κp(e – κ)–1q(v1, v0) 	 c, for all m > p.

Then by (b) in Definition 1.10 it follows that the sequence {vm} is (l)-Cauchy. On the other
hand, from Definition 1.4, we see that the sequence {q(vm, vp)} is c-convergent and more-
over in view of Lemma 1.5 the sequence {
q(vm, vp)}, where 
 ∈ PEd , is also a c-sequence,
that is,


q(vm, vp) 	 c, (3)

for all m > p > p0. But, since the space (X, q,Ed) is supposed to be 
-symmetric, we have

q(vp, vm) ≤ 
q(vm, vp), (4)

and taking Lemma 1.5 into account we get q(vp, vm) 	 c , for all m > p ≥ p0, which means
the sequence {vm} is (r)-Cauchy. Obviously, in view of statement (c) in Definition 1.10, it
follows that {vm} is a (bi)-Cauchy sequence. �

Let (Ed) be a real (divisible) Banach algebra with a unit e and θ be its zero element and
P1
Ed

be a normal algebra cone with constant N = 1 in Ed .

Theorem 2.2 Let (X, q,Ed) be a complete 
-symmetric qCMS over Ed and P1
Ed

. Suppose
that ψ : P1

Ed
→ P1

Ed
is a ψ-operator and U ,V : X → X are mappings satisfying the condi-

tions

ψ
(
q(v ,Uv)

)
+ ψ

(
q(ω,Vω)

) ≤ kψ
(
q(v ,ω)

)
, (5)

ψ
(
q(v ,Vv)

)
+ ψ

(
q(ω,Uω)

) ≤ kψ
(
q(v ,ω)

)
, (6)

for all v ,ω ∈ X with q(v ,ω) > θ , where ψ(e) ≤ k < ψ(2e) in PE1
d

. Then U and V have a
common fixed point.

Proof Let v0 ∈ D be an arbitrary point and the sequence {vm} defined by

v2m+1 = Uv2m, v2m+2 = Vv2m+1, for m ∈N. (7)

Then, setting v = v2m and ω = v2m+1, we get

ψ
(
q(v2m, v2m+1)

)
+ ψ

(
q(v2m+1, v2m+2)

)
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= ψ
(
q(v2m,Uv2m)

)
+ ψ

(
q(v2m+1,Vv2m+1)

)

≤ kψ
(
q(v2m, v2m+1)

)
,

and then

ψ
(
q(v2m, v2m+1)

)
+ ψ

(
q(v2m+1, v2m+2)

) ≤ kψ
(
q(v2m, v2m+1)

)
. (8)

Also if we put v = v2m–1 and ω = v2m, then we have

ψ
(
q(v2m–1, v2m)

)
+ ψ

(
q(v2m, v2m+1)

)

= ψ
(
q(v2m–1,Vv2m–1)

)
+ ψ

(
q(v2m,Uv2m)

)

≤ kψ
(
q(v2m–1, v2m)

)
.

Thus,

ψ
(
q(v2m–1, v2m)

)
+ ψ

(
q(v2m, v2m+1)

) ≤ kψ
(
q(v2m–1, v2m)

)
. (9)

Moreover, applying ψ–1 in (8), (9) and keeping in mind the properties of the operator ψ–1,
it follows

q(v2m, v2m+1) + q(v2m+1, v2m+2) ≤ ψ–1(k)q(v2m, v2m+1),

q(v2m–1, v2m) + q(v2m, v2m+1) ≤ ψ–1(k)q(v2m–1, v2m),

or by simplifying, we obtain

q(v2m+1, v2m+2) ≤ (
ψ–1(k) – e

)
q(v2m, v2m+1),

q(v2m, v2m+1) ≤ (
ψ–1(k) – e

)
q(v2m–1, v2m).

Denoting κ = ψ–1(k) – e, the above inequalities pass into

q(vm, vm+1) ≤ κq(vm–1, vm),

for any positive integer m. Now, by hypothesis ψ(e) ≤ k < ψ(2e) it follows that θ ≤
ψ–1(k) – e < e and since the cone PEd is normal (with N = 1),

‖κ‖ ≤ ‖e‖ = 1,

and then ρ(κ) < 1. Thereupon, by Lemma 2.1 we see that the sequence {vm} is (bi)-Cauchy.
Further, we can find v∗ ∈ X such that the sequence {vm} converges to v∗. That is, for every
c � θ there exists m1 ∈N such that q(v2m, v∗) 	 c and q(v2m–1, v∗) 	 c , for m ≥ m1. Thus,
replacing in (5) v by v2m and ω by v∗ we have

ψ
(
q(v2m,Uv2m)

)
+ ψ

(
q(v∗,Vv∗)

) ≤ kψ
(
q(v2m, v∗)

)
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and from (c), Definition 1.11,

ψ
(
q(v2m,Uv2m) + q(v∗,Vv∗)

) ≤ kψ
(
q(v2m, v∗)

)
.

Moreover, by Definition 1.9 and Remark 1.13, we have

q(v∗,Vv∗) ≤ q(v2m,Uv2m) + q(v∗,Vv∗) ≤ ψ–1(k)q(v2m, v∗)

	 ψ–1(k)c

and from Lemma 1.6 we obtain q(v∗,Vv∗) = θ . Therefore, Vv∗ = v∗. Similarly, choosing in
(6) v = v2m–1 and ω = v∗, and taking into account the properties of ψ we have

ψ
(
q(v2m–1,Vv2m–1) + q(v∗,Uv∗)

) ≤ ψ
(
q(v2m–1,Vv2m–1)

)
+ ψ

(
q(v∗,Uv∗)

)

≤ kψ
(
q(v2m–1, v∗)

)
,

which leads us to

q(v∗,Uv∗) ≤ q(v2m–1,Vv2m–1) + q(v∗,Uv∗) ≤ ψ–1(k)q(v2m–1, v∗)

	 ψ–1(k)c.

Consequently, Uv∗ = v∗ = Vv∗. �

Example 2.3 Let Ed = R
2, P1

E = {(v ,ω) : v ,ω ≥ 0} and for any (v1,ω1), (v2,ω2) ∈ Ed we define
the multiplication as (v1,ω1)(v2,ω2) = (v1v2,ω1ω2). Then Ed is a Banach algebra with a unit
e = (1, 1). Let X = {1, 3, 4, 5} and q : X × X → E defined by

q(v ,ω) =

⎧
⎨

⎩
(v – ω, v–ω

2 ) if v ≥ ω,

(2(v – ω), v – ω) if v < ω,

be a 2-symmetric quasi-metric on X. Consider also the mappings U ,V : X → X defined by
U1 = 1, U3 = 3, U4 = 3, U5 = 5 and V1 = 1, V3 = 3, V4 = 4, V5 = 4. Then we have

q(1, 3) = (4, 2), q(1, 4) = (6, 3), q(1, 5) = (8, 4), q(3, 4) = (2, 1),

q(3, 5) = (4, 2), q(4, 5) = (2, 1), q(1,U1) = (0, 0), q(3,U3) = (0, 0),

q(4,U4) =
(

1,
1
2

)
, q(5,U5) = (0, 0), q(1,V1) = (0, 0),

q(3,V3) = (0, 0), q(4,V4) = (0, 0), q(5,V5) =
(

1,
1
2

)
.

Let ψ : P1E → P1E , ψ((v ,ω)) = ( 3√v , 3√ω) and k = ( 9
8 , 9

8 ).
Therefore:

1 v = 1, ω = 3

ψ
(
q(1,U1)

)
+ ψ

(
q(3,V3)

)
= (0, 0) ≤

(
9
2

,
9
4

)
= kψ

(
q(1, 3)

)
,
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ψ
(
q(1,V1)

)
+ ψ

(
q(3,U3)

)
= (0, 0) ≤

(
9
2

,
9
4

)
= kψ

(
q(1, 3)

)

2 v = 1, ω = 4

ψ
(
q(1,U1)

)
+ ψ

(
q(4,V4)

)
= (0, 0) ≤

(
27
4

,
27
8

)
= kψ

(
q(1, 4)

)
,

ψ
(
q(1,V1)

)
+ ψ

(
q(4,U4)

)
=

(
1,

1
2

)
≤

(
27
4

,
27
8

)
= kψ

(
q(1, 4)

)

3 v = 1, ω = 5

ψ
(
q(1,U1)

)
+ ψ

(
q(5,V5)

)
=

(
1,

1
2

)
≤

(
9,

9
2

)
= kψ

(
q(1, 5)

)
,

ψ
(
q(1,V1)

)
+ ψ

(
q(5,U5)

)
= (0, 0) ≤

(
9,

9
2

)
= kψ

(
q(1, 5)

)

4 v = 3, ω = 4

ψ
(
q(3,U3)

)
+ ψ

(
q(4,V4)

)
= (0, 0) ≤

(
9
4

,
9
8

)
= kψ

(
q(3, 4)

)
,

ψ
(
q(3,V3)

)
+ ψ

(
q(4,U4)

)
=

(
1,

1
2

)
≤

(
9
4

,
9
8

)
= kψ

(
q(3, 4)

)

5 v = 3, ω = 5

ψ
(
q(3,U3)

)
+ ψ

(
q(5,V5)

)
=

(
1,

1
2

)
≤

(
9
2

,
9
4

)
= kψ

(
q(3, 5)

)
,

ψ
(
q(3,V3)

)
+ ψ

(
q(5,U5)

)
= (0, 0) ≤

(
9
2

,
9
4

)
= kψ

(
q(3, 5)

)

6 v = 4, ω = 5

ψ
(
q(4,U4)

)
+ ψ

(
q(5,V5)

)
= (2, 1) ≤

(
9
2

,
9
4

)
= kψ

(
q(3, 5)

)
,

ψ
(
q(4,V4)

)
+ ψ

(
q(5,U5)

)
= (0, 0) ≤

(
9
2

,
9
4

)
= kψ

(
q(3, 5)

)
.

Consequently, the assumptions of Theorem 2.2 are verified and the mappings U , V have
2 common fixed points, these being v = 1, v = 3.

Corollary 2.4 Let (X, q,Ed) be a complete 
-symmetric qCMS over Ed and P1
Ed

. Suppose
that ψ : P1

Ed
→ P1

Ed
is a ψ-operator and U : X → X is a mapping satisfying the condition

ψ
(
q(v ,Uv)

)
+ ψ

(
q(ω,Uω)

) ≤ kψ
(
q(v ,ω)

)
, (10)

for all v ,ω ∈ X with q(v ,ω) > θ , where ψ(e) ≤ k < ψ(2e) in PE1
d

. Then U has a fixed point.

Proof Put U = V in Theorem 2.2. �
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Theorem 2.5 Let (X, q,Ed) be a complete 
-symmetric qCMS over Ed and P1
Ed

. Suppose
that ψ : P1

Ed
→ P1

Ed
is a ψ-operator and U ,V : X → X are mappings satisfying the condi-

tions

α1ψ(q(Uv ,Vω) + α2ψ
(
q(v ,Uv)

)
+ α3ψ

(
q(ω,Vω)

) ≤ βψ
(
q(v ,ω)

)
, (11)

α1ψ(q(Vv ,Uω) + α2ψ
(
q(v ,Vv)

)
+ α3ψ

(
q(ω,Uω)

) ≤ βψ
(
q(v ,ω)

)
, (12)

for all v ,ω ∈ X with q(v ,ω) > θ , where

θ < ψ–1(α2), θ ≤ ψ–1(β) < ψ–1(α1) + ψ–1(α2) + ψ–1(α3),

in P1
Ed

. Then U and V have a common fixed point. Moreover, if ψ–1(β) < ψ–1(α1) then the
common fixed point is unique.

Proof Let {vm} be the sequence in X defined by (7). Letting v = v2m and ω = v2m+1 in (11)
we have

α1ψ
(
q(Uv2m,Vv2m+1)

)
+ α2ψ

(
q(v2m,Uv2m)

)
+ α3ψ

(
q(v2m+1,Vv2m+1)

)

≤ βψ
(
q(v2m, v2m+1)

)
,

or

α1ψ
(
q(v2m+1, v2m+2)

)
+ α2ψ

(
q(v2m, v2m+1)

)
+ α3ψ

(
q(v2m+1, v2m+2)

)

≤ βψ
(
q(v2m, v2m+1)

)
.

Taking into account the properties of ψ–1, we have

ψ–1(α1)q(v2m+1, v2m+2) + ψ–1(α2)q(v2m, v2m+1) + ψ–1(α3)α3q(v2m+1, v2m+2)

≤ ψ–1[α1ψ(q(v2m+1, v2m+2) + α2ψ
(
q(v2m, v2m+1)

)
+ α3ψ

(
q(v2m+1, v2m+2)

)

≤ ψ–1[βψ
(
q(v2m, v2m+1)

)]
= ψ–1(β)q(v2m, v2m+1)

and moreover

(
ψ–1(α1) + ψ–1(α3)

)
q(v2m+1, v2m+2) ≤ (

ψ–1(β) – ψ–1(α2)
)
q(v2m, v2m+1).

Therefore, since the Banach algebra is divisible, we get

q(v2m+1, v2m+2) ≤ (
ψ–1(α1) + ψ–1(α3)

)–1(
ψ–1(β) – ψ–1(α2)

)
q(v2m, v2m+1).

If we denote κ = (ψ–1(α1) + ψ–1(α3))–1(ψ–1(β) – ψ–1(α2)), we can easily see that θ ≤ κ < e
and

q(v2m+1, v2m+2) ≤ κq(v2m, v2m+1). (13)
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In the same way, for v = v2m–1 and ω = v2m, (12) becomes

α1ψ
(
q(Vv2m–1,Uv2m)

)
+ α2ψ

(
q(v2m–1,Vv2m–1)

)
+ α3ψ

(
q(v2m,Uv2m)

)

≤ βψ
(
q(v2m–1, v2m)

)
,

or, equivalent

α1ψ
(
q(v2m, v2m+1)

)
+ α2ψ

(
q(v2m–1, v2m)

)
+ α3ψ

(
q(v2m, v2m+1)

) ≤ βψ
(
q(v2m–1, v2m)

)
.

Thereupon,

(
ψ–1(α1) + ψ–1(α3)

)
q(v2m, v2m+1) ≤ (

ψ–1(β) – ψ–1(α2)
)
q(v2m–1, v2m),

which yields

q(v2m, v2m+1) ≤ (
ψ–1(α1) + ψ–1(α3)

)–1(
ψ–1(β) – ψ–1(α2)

)
q(v2m–1, v2m)

= κq(v2m–1, v2m) (14)

(here we took into account that the Banach algebra is divisible). Now, by (13) and (14) we
have

q(vm, vm+1) ≤ κq(vm–1, vm),

for all m ∈N, where θ ≤ κ < e. Then, by using Lemma 2.1, we see that the sequence {vm} is
(bi)-Cauchy and since the qCMS (X, q,Ed) is complete, we can have v∗ ∈ X such that {vm}
converges to v∗. Thus, there exists m2 ∈ N such that for any c � θ we have q(v2m, v∗) 	 c ,
q(v2m–1, v∗) 	 c and also q(v2m, v2m+1) 	 c , q(v2m+1, v2m+2) 	 c , for any m ≥ m1. Hence, by
(11), respectively, (12) we have

α3ψ
(
q(v∗,Vv∗)

) ≤ α1ψ
(
q(Uv2m),Vv∗

)
) + α2ψ

(
q(v2m,Uv2m)

)

+ α3ψ
(
q(v∗,Vv∗)

) ≤ βψ
(
q(v2m, v∗)

)
,

α3ψ
(
q(v∗,Uv∗)

) ≤ α1ψ
(
q(Vv2m–1,Uv∗)

)
+ α2ψ

(
q(v2m–1,Vv2m–1)

)

+ α3ψ
(
q(v∗,Uv∗)

) ≤ βψ
(
q(v2m–1, v∗)

)
,

for m ≥ m2. Moreover, applying ψ–1 in the above inequalities,

ψ–1(α3)q(v∗,Vv∗) ≤ ψ–1(β)q(v2m, v∗),

ψ–1(α3)q(v∗,Uv∗) ≤ ψ–1(β)q(v2m–1),

which are equivalent (since the Banach algebra is divisible) with

q(v∗,Vv∗) ≤ (
ψ–1(α2)

)–1
ψ–1(β)q(v2m, v∗) 	 (

ψ–1(α2)
)–1

ψ–1(β)c,

q(v∗,Uv∗) ≤ (
ψ–1(α3)

)–1
ψ–1(β)q(v2m–1, v∗) 	 (

ψ–1(α2)
)–1

ψ–1(β)c,
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for all m ≥ m2 and any c � θ . Therefore, by Lemma 1.6, it follows that q(v∗,Vv∗) = v∗ and
also q(v∗,Vv∗) = v∗, which means that v∗ is a common fixed point of the mappings V , U .

Finally, considering the additional hypothesis, we will prove the uniqueness of the com-
mon fixed point. Supposing, on the contrary, that there exists another point, let us say
ω∗ ∈ X different from v∗, such that Vv∗ = v∗ = Uv∗, we have, by (11), for example,

α1ψ
(
q(Uv∗,Vω∗)

)
+ α2ψ

(
q(v∗,Uv∗)

)
+ α3ψ

(
q(ω∗,Vω∗)

) ≤ βψ
(
q(v∗,ω∗)

)
.

Thus,

ψ–1(α1)q(v∗,ω∗) + ψ–1(α2)q(v∗, v∗) + ψ–1(α3)q(ω∗,ω∗)

≤ ψ–1(α1ψ
(
q(Uv∗,Vω∗)

)
+ α2ψ

(
q(v∗,Uv∗)

)
+ α3ψ

(
q(ω∗,Vω∗)

))

≤ ψ–1(βψ
(
q(v∗,ω∗)

))

= ψ–1(β)q(v∗,ω∗),

and we obtain

q(v∗,ω∗) ≤ (
ψ–1(α1)

)–1
ψ–1(β)q(v∗,ω∗) ≤ [(

ψ–1(α1)
)–1

ψ–1(β)
]2q(v∗,ω∗)

≤ [(
ψ–1(α1)

)–1
ψ–1(β)

]nq(v∗,ω∗),

for any n ∈ N. Further, since (ψ–1(α1))–1ψ–1(β) < e, we get

∥∥[(
ψ–1(α1)

)–1
ψ–1(β)

]n∥∥ ≤ ∥∥(
ψ–1(α1)

)–1
ψ–1(β)

∥∥n → θ ,

as n → ∞, which means that for any c � θ we can have n0 ∈N such that

q(v∗,ω∗) ≤ [(
ψ–1(α1)

)–1
ψ–1(β)

]nq(v∗,ω∗) 	 c.

Thereby, by Lemma 1.6 it follows that q(v∗,ω∗) = θ , and v∗ is the unique fixed point of the
mappings U and V . �

Corollary 2.6 Let (X, q,Ed) be a complete 
-symmetric qCMS over Ed and P1
Ed

. Suppose
that ψ : P1

Ed
→ P1

Ed
is a ψ-operator and U : X → X is a mapping satisfying the condition

α1ψ(q(Uv ,Uω) + α2ψ
(
q(v ,Uv)

)
+ α3ψ

(
q(ω,Uω)

) ≤ βψ
(
q(v ,ω)

)
, (15)

for all v ,ω ∈ X with q(v ,ω) > θ , where

θ < ψ–1(α2), θ ≤ ψ–1(β) < ψ–1(α1) + ψ–1(α2) + ψ–1(α3),

in P1
Ed

. Then U has a fixed point. Moreover, if ψ–1(β) < ψ–1(α1) then the fixed point is
unique.

Proof Put U = V in Theorem 2.5. �
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Theorem 2.7 Let (X, q,Ed) be a complete 
-symmetric qCMS over Ed and P1
Ed

be a normal
algebra cone in Ed . Suppose that ψ : P1

Ed
→ P1

Ed
is a ψ-operator and U ,V : X → X are

mappings satisfying the conditions

α1ψ(q(Uv ,Vω) + α2ψ
(
q(ω,Uv)

)
+ α3ψ

(
q(v ,Vω)

) ≤ βψ
(
q(v ,ω)

)
, (16)

α1ψ(q(Vv ,Uω) + α2ψ
(
q(ω,Vv)

)
+ α3ψ

(
q(v ,Uω)

) ≤ βψ
(
q(v ,ω)

)
, (17)

for all v ,ω ∈ X with q(v ,ω) > θ , where θ ≤ ψ–1(β) + (
 – e)ψ–1(α3) ≤ ψ–1(α1) in P1
Ed

. Then
U and V have a common fixed point.

Proof Let {vm} be the sequence in X defined by (7). Letting v = v2m and ω = v2m+1, by (16),
we have

α1ψ
(
q(Uv2m,Vv2m+1)

)
+ α2ψ

(
q(v2m+1,Uv2m)

)
+ α3ψ

(
q(v2m,Vv2m+1)

)

≤ βψ
(
q(v2m,Vv2m+1)

)
.

Moreover, by applying ψ–1, and taking into account the properties of it,

ψ–1(α1)q(v2m+1, v2m+2) + ψ–1(α2)q(v2m+1, v2m+1) + ψ–1(α3)q(v2m, v2m+2)

≤ ψ–1(β)q(v2m, v2m+1)

and using the triangle inequality we get

q(v2m+1, v2m+2) – q(v2m+1, v2m) ≤ q(v2m, v2m+2)

and then

ψ–1(α1)q(v2m+1, v2m+2) + ψ–1(α3)
[
q(v2m+1, v2m+2) – q(v2m+1, v2m)

]

≤ ψ–1(β)q(v2m, v2m+1),

which is equivalent with

(
ψ–1(α1) + ψ–1(α3)

)
q(v2m+1, v2m+2) ≤ ψ–1(β)q(v2m, v2m+1) + ψ–1(α3)q(v2m+1, v2m).

Further, since the qCMS is 
-symmetric, there exists an invertible element 
 ∈ E such
that q(v2m+1, v2m) ≤ 
q(v2m, v2m+1), for all m ∈N and then we have

(
ψ–1(α1) + ψ–1(α3)

)
q(v2m+1, v2m+2) ≤ (

ψ–1(β) + 
ψ–1(α3)
)
q(v2m, v2m+1).

Therefore,

q(v2m+1, v2m+2) ≤ (
ψ–1(α1) + ψ–1(α3)

)–1(
ψ–1(β) + 
ψ–1(α3)

)
q(v2m, v2m+1). (18)

On the other hand, with v = v2m–1 and ω = v2m, the inequality (17) becomes

α1ψ
(
q(Vv2m–1,Uv2m)

)
+ α2ψ

(
q(v2m,Vv2m–1)

)
+ α3ψ

(
q(v2m–1,Uv2m)

)
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≤ βψ
(
q(v2m–1, v2m)

)
.

Applying ψ–1 and keeping in mind its properties we get

ψ–1(α1)q(v2m, v2m+1) + ψ–1(α2)q(v2m, v2m) + ψ–1(α3)q(v2m–1, v2m+1)

≤ ψ–1(β)q(v2m–1, v2m).

Therefore, since

q(v2m, v2m+1) – q(v2m, v2m–1) ≤ q(v2m–1, v2m+1),

we have

ψ–1(α1)q(v2m, v2m+1) + ψ–1(α3)q(v2m, v2m+1) – ψ–1(α3)q(v2m, v2m–1)

≤ ψ–1(α1)q(v2m, v2m+1) + ψ–1(α3)q(v2m–1, v2m+1)

≤ ψ–1(β)q(v2m–1, v2m).

Thus,

(
ψ–1(α1) + ψ–1(α3)

)
q(v2m, v2m+1) ≤ (

ψ–1(β) + 
ψ–1(α3)
)
q(v2m–1, v2m)

and

q(v2m, v2m+1) ≤ (
ψ–1(α1) + ψ–1(α3)

)–1(
ψ–1(β) + 
ψ–1(α3)

)
q(v2m–1, v2m). (19)

Consequently, from (18) we conclude that

q(vm, vm+1) ≤ κq(vm–1, vm),

for any m ∈ N, where κ = (ψ–1(α1) + ψ–1(α3))–1(ψ–1(β) + 
ψ–1(α3)) < e. In this case we
get ρ(κ) < 1 and taking into account Lemma 2.1 we can conclude that the sequence {vm}
is Cauchy and moreover convergent to an element v∗ ∈ X. Therefore, for any c � θ , there
exists m1 ∈ N such that q(v2m, v∗) 	 c , q(v2m–1, v∗) 	 c . We claim that v∗ is a fixed point
of mappings V and U . Indeed, from (16) and (17) we have

α1ψ
(
q(v2m+1,Vv∗)

)
+ α2ψ

(
q(v∗, v2m+1)

)
+ α3ψ

(
q(v2m,Vv∗)

)

= α1ψ
(
q(Uv2m,Vv∗)

)
+ α2ψ

(
q(v∗,Uv2m)

)
+ α3ψ

(
q(v2m,Vv∗)

) ≤ βψ
(
q(v2m, v∗)

)
,

which becomes (by applying ψ–1)

ψ–1(α1)q(v2m+1,Vv∗) + ψ–1(α2)q(v∗, v2m+1) + ψ–1(α3))q(v2m,Vv∗)

≤ ψ–1(β)q(v2m, v∗).
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But since q(v∗,Vv∗) ≤ q(v∗, v2m) + q(v2m,Vv∗) and also

q(v∗,Vv∗) ≤ q(v∗, v2m+1) + q(v2m+1,Vv∗),

we get

(
ψ–1(α1) + ψ–1(α3)

)
q(v∗,Vv∗) – ψ–1(α1)q(v∗, v2m+1) – ψ–1(α3)q(v∗, v2m)

≤ ψ–1(β)q(v2m, v∗).

Thereupon,

q(v∗,Vv∗) ≤ (
ψ–1(α1) + ψ–1(α3)

)–1(
ψ–1(β) + 
ψ–1(α2) + 
ψ–1(α3)

)
c,

which (by taking into account Lemma 1.6) shows us that q(v∗,Vv∗) = θ .
Now, similarly, by (19), we have

α1ψ
(
q(v2m,Uv∗)

)
+ α2ψ

(
q(v∗, v2m)

)
+ α3ψ

(
q(v2m–1,Uv∗)

)

≤ α1ψ
(
q(Vv2m–1,Uv∗)

)
+ α2ψ

(
q(v∗,Vv2m–1)

)
+ α3ψ

(
q(v2m–1,Uv∗)

)

≤ βψ
(
q(v2m–1, v∗)

)
,

which is equivalent with

ψ–1(α1)q(v2m,Uv∗) + ψ–1(α2)q(v∗, v2m) + ψ–1(α3)q(v2m–1,Uv∗) ≤ ψ–1(β)q(v2m–1, v∗).

Moreover, by using the triangle inequality,

(
ψ–1(α1) + ψ–1(α3)

)
q(v∗,Uv∗) – ψ–1(α1)q(v∗, v2m) – ψ–1(α3)q(v∗, v2m–1)

≤ ψ–1(β)q(v2m–1, v∗),

then

q(v∗,Uv∗) ≤ (
ψ–1(α1) + ψ–1(α3)

)–1(
ψ–1(β) + 
ψ–1(α1) + 
ψ–1(α3)

)
q(v2m–1, v∗)

≤ (
ψ–1(α1) + ψ–1(α3)

)–1(
ψ–1(β) + 
ψ–1(α1) + 
ψ–1(α3)

)
c.

Thus, q(v∗,Uv∗) = θ and v∗ is a common fixed point of the mappings V and U . �

Corollary 2.8 Let (X, q,Ed) be a complete 
-symmetric qCMS over Ed and P1
Ed

be a normal
algebra cone in Ed . Assume ψ : P1

Ed
→ P1

Ed
is a ψ-operator and U : X → X is satisfying the

condition

α1ψ(q(Uv ,Uω) + α2ψ
(
q(ω,Uv)

)
+ α3ψ

(
q(v ,Uω)

) ≤ βψ
(
q(v ,ω)

)
, (20)

for all v ,ω ∈ X with q(v ,ω) > θ , where θ ≤ ψ–1(β) + (
 – e)ψ–1(α3) ≤ ψ–1(α1) in P1
Ed

. Then
U has a fixed point.
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