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Abstract
In this contribution, we investigate an initial-boundary value problem for a fractional
diffusion equation with Caputo fractional derivative of space-dependent variable
order where the coefficients are dependent on spatial and time variables. We
consider a bounded Lipschitz domain and a homogeneous Dirichlet boundary
condition. Variable-order fractional differential operators originate in anomalous
diffusion modelling. Using the strongly positive definiteness of the governing kernel,
we establish the existence of a unique weak solution in u ∈ L∞((0, T ), H1

0(�)) to the
problem if the initial data belongs to H1

0(�). We show that the solution belongs to
C([0, T ], H1

0(�)
∗
) in the case of a Caputo fractional derivative of constant order. We

generalise a fundamental identity for integro-differential operators of the form
d
dt (k ∗ v)(t) to a convolution kernel that is also space-dependent and employ this
result when searching for more regular solutions. We also discuss the situation that
the domain consists of separated subdomains.

Keywords: Time-fractional diffusion equation; Anomalous diffusion;
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1 Introduction
1.1 Mathematical setting and motivation
Let � ⊂R

d (d ∈ N) be a bounded domain with a Lipschitz continuous boundary ∂�. The
final time is denoted by T , QT := � × (0, T] and �T := ∂� × (0, T]. Consider a general
second-order linear differential operator given by

L(x, t)u(x, t) = –∇ · (A(x, t)∇u(x, t)
)

+ c(x, t)u(x, t), (1)

where ((x, t) ∈ QT )

A(x, t) =
(
ai,j(x, t)

)
i,j=1,...,d with AT = A.
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The goal of this contribution is to show the existence and uniqueness of u for given f and
ũ0 such that

⎧
⎪⎪⎨

⎪⎪⎩

∂t(g ∗ (u – ũ0))(x, t) + Lu(x, t) = f (x, t) (x, t) ∈ QT ,

u(x, t) = 0 (x, t) ∈ �T ,

u(x, 0) = ũ0(x) x ∈ �.

(2)

The symbol ‘∗’ stands for the convolution product defined by

(g ∗ z)(x, t) :=
(
g1–β(x) ∗ z(x)

)
(t) =

∫ t

0
g1–β(x)(t – s)z(x, s) ds, (3)

where the kernel g1–β(x) is defined by

g1–β(x)(t) =
t–β(x)

�(1 – β(x))
, t > 0, x ∈ �,

where � denotes the gamma function, and β ∈ C(�) satisfies

0 < β(x) ≤ β1 < 1, x ∈ �. (4)

The term Dβ(x)
t u := ∂t(g ∗ (u – ũ0)) in (2) represents the Caputo fractional derivative of

space-dependent variable order β(x), which arises in the modelling of anomalous dif-
fusion. Anomalous diffusion is a rapidly growing field of research with applications in
physics, chemistry, biology and several other branches of engineering [1]. A typical ex-
ample is heat conduction and fluid flow in porous media. We refer the reader to [2] for a
comprehensive overview on fractional calculus and anomalous diffusion. To model diffu-
sion processes in a homogeneous medium, the constant-order (β is constant over �) frac-
tional diffusion model is sufficient. But in complex media, the presence of heterogeneous
regions causes variations of permeability in different spatial positions. In this situation, the
space-dependent variable-order model is more suitable to describe location-dependent
diffusion processes, see e.g. [3–11]. We mention also the existence of time-dependent
variable-order models when diffusion behaviour changes with the time evolution [12–16]
and some other recent interesting applications of fractional calculus [17–20].

1.2 Literature overview
Existence and uniqueness of a regular solution to autonomous (time-independent elliptic
part L) constant-order fractional diffusion equation, i.e. β(x) = β) is studied in [21–23].
The results in these papers are build on the method of eigenfunction expansion and the
solution is expressed in terms of the Mittag-Leffler functions, which implies that the so-
lution is analytic on (0, T). In [21], the authors searched for a solution u(·, t) ∈ dom(L) =
H2(�)∩H1

0(�) of problem (2) such that the governing partial differential equation (PDE) is
satisfied in L2((0, T), L2(�)). The authors establish in Theorem 2.1 the unique existence of
a solution u ∈ L2((0, T), H2(�) ∩ H1

0(�)) with g ∗ ∂tu ∈ L2((0, T), L2(�)) if ũ0 ∈ H1
0(�) and

f = 0. In the article [22], the maximum principle for PDEs of parabolic type is extended
to the time-fractional diffusion equation. It is used to show the uniqueness of solution to
problem (2). Moreover, the generalised solution in sense of Vladimirov is constructed in
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the form of a Fourier series with respect to the eigenfunctions of a certain Sturm–Liouville
eigenvalue problem. In the one-dimensional case, it is shown that the generalised solution
is a solution in the classical sense (a twice differentiable function with respect to the spa-
tial variables and β-differentiable with respect to the time variable) under some additional
conditions. In [23], the authors give an interpretation of the Caputo derivative in the frac-
tional Sobolev space H̃

β (0, T) = {u ∈ Hβ (0, T) : u(0) = 0} (see [24, Chapter VII]) and prove
some important norm equivalences. These results are used to show the maximum regu-
larity u ∈ L2((0, T), H2(�)∩H1

0(�))∩ H̃
β ((0, T), L2(�)) of the solution to problem (2) when

ũ0 = 0 and f ∈ L2((0, T), L2(�)).
Existence and uniqueness results for weak solutions (using classical integration by parts

formula for L) to the non-autonomous (so time-dependent elliptic part) constant-order
fractional diffusion equation are derived in [25, 26] by Galerkin method. In [25, Corol-
lary 4.1] and [26, Theorem 1], the authors showed that there exists a unique weak so-
lution u to (2) satisfying u ∈ L2((0, T), H1

0(�)) with ∂t(g ∗ (u – ũ0)) ∈ L2((0, T), H1
0(�)∗)

if ũ0 ∈ L2(�) and f ∈ L2((0, T), H1
0(�)∗). In particular, in [26, Theorem 2] the authors

proved that the solution belongs to C([0, T], H1
0(�)∗) if β > 1

2 . Moreover, if ũ0 ∈ H1
0(�)

and f ∈ L2((0, T), L2(�)), the solution is more regular and belongs to L2((0, T), H2(�))
under some appropriate conditions on the coefficients in L. Furthermore, u belongs to
C([0, T], L2(�)) if β > 1

2 , cf. [26, Theorem 4].
Moreover, we refer for multi-term constant-order time fractional diffusion equations

to [27, 28] and for distributed-order time fractional diffusion problems to [29–31] for
the well-posedness and asymptotic behaviour of the solution (again using the method of
eigenfunction expansion and Mittag-Leffler analysis). For completeness, we also provide
some key literature works related to mild solutions of abstract dynamic equations [32–36].

In the recent works [37, 38], using a classical variational approach, the author established
the existence of a unique weak solution to a non-autonomous time-fractional diffusion
(respectively, wave) equation of constant and distributed order. The solution is continu-
ous on [0, T] without restriction on the order of the fractional derivative and thus under
low regularity assumptions. It is important to note here that weakly singular solutions are
included in the class of admissible solutions.

The existence of a solution to non-autonomous variable-order fractional differential
equation is proved in [39]. However, to the best of our knowledge there is only one re-
sult available in the literature related to the well-posedness of the time-fractional diffu-
sion equation with space-dependent variable order. In [40], the authors investigated the
existence and uniqueness result for problem (2) in the case that the elliptic operator L is
autonomous. The authors do not use the usual definition of weak solution but they char-
acterise the weak solution to (2) as the original of the solution to the Laplace transform
(of tempered distributions) of (2) with respect to the time variable.

1.3 New aspects and outline
We study a more general multi-dimensional case for a governing PDE with time-
dependent coefficients (non-autonomous system). This implies that the Mittag-Leffler
analysis or the approach by means of the Laplace transform is not appropriate and one
has to use other tools to succeed. The approach in this paper follows the standard pro-
cedure for classical parabolic problems: first we discretize the problem in time using a
convolution quadrature, next we obtain a priori estimates, and on the basis of these es-
timates we show the existence of a solution. In problem (2), we consider a homogeneous
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Dirichlet boundary condition. Throughout the paper we discuss also the situation wherein
a homogeneous Neumann boundary condition is considered on the boundary. We assume
that β is continuous on � as for instance in [4, 7]. However, in Sect. 8, we discuss the sit-
uation where � consists of separated regions and thus β can be discontinuous, see e.g.
[3, 5, 7].

The Caputo fractional time derivative of order β ∈ (0, 1) is a special case of the variable-
order fractional derivative (i.e. β(x) = β in �). The authors in [41] noted that the smooth-
ness of ũ0 and f in (2) does not always imply the smoothness of the exact solution. The
solution of such a problem is shown in general to have a weak singularity near the ini-
tial time t = 0. It is important to take this behaviour of the solution into account when
studying the well-posedness of problem (2). This implies that compatibility condition as
L(·, 0)ũ0(x) = f (·, 0) should be avoided as ∂t(g ∗ (u – ũ0))(0) is not necessarily equal to zero
in general [42]. Such a compatibility condition would restrict the class of admissible solu-
tions.

One of the main points in the analysis is the property that the kernel g in the analysis
is strongly positive definite. This and other properties of g are discussed in Sect. 2. The
strongly positive definiteness of g is used in Theorem 6.2 to show the uniqueness of a
solution to problem (2).

In Sect. 3, we generalise a fundamental identity for integro-differential operators of the
form d

dt (k ∗ v)(t) by Zacher [25] to a convolution kernel k that depends on both the time-
and space-variable, see Sect. 3 and in particular Lemma 3.1. Using this generalisation,
we can show Corollary 3.1, which is in particular helpful for showing the uniqueness of
a solution if we know that ∂t(g ∗ u)(t) ∈ L2(�) for a.a. t ∈ (0, T). Moreover, we explain
how to discretize the convolution in time (see Eq. (17)), and we derive a discrete estimate
(see Lemma 3.3), which will be useful when establishing the a priori estimates later in the
article.

In Sect. 4, the assumptions on the data are discussed and the weak formulation of (2)
is derived. Afterwards, in Sect. 5, we propose a time-discrete scheme to approximate the
solution at a single timestep. Moreover, a priori estimates are derived in the remainder of
this section.

Then, the existence of a solution to the variational problem is discussed in Sect. 6.
Under low regularity assumptions on the data (we suppose that ũ0 ∈ H1

0(�) and con-
sider natural assumptions on f ), we show in Theorem 6.1 the existence of a solution
to problem (2) in L2((0, T), H1

0(�)). Then, using the strongly positive definiteness of the
kernel, we establish the uniqueness of a solution in Theorem 6.2. However, we are not
able to show that u(0) = ũ0 for the Caputo fractional derivative with variable order. Next,
in Sect. 7, we show how to overcome this problem if β(x) = β with β ∈ (0, 1) by show-
ing that u ∈ C([0, T], H1

0(�)∗) in this situation independent of the order of the fractional
derivative. We slightly improve the results stated in [37], see Remark 1.1 for more de-
tails. Moreover, we study under which assumptions we can obtain a solution to problem
(2) in L2((0, T), H2(�) ∩ H1

0(�)) if β(x) = β and A = a. The advantage here is that we can
use Corollary 3.1 when establishing the uniqueness of a solution. Next, we show that if
ũ0 ∈ H2(�)∩H1

0(�) the solution can belong to C([0, T], L2(�)) under appropriate assump-
tions. We conclude this section with a discussion of the performance of the proposed
scheme in the constant-order case. To improve the computational results, we consider a
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convolution quadrature on a graded mesh and compare the results with the well-known
L1-algorithm.

Finally, in Sect. 8, we consider a domain � consisting of multiple disjunct regions. The
existence results obtained before are still valid in the case that ũ0 ∈ H1

0(�) but some inter-
face conditions are needed. We also discuss in this section the L2((0, T), H2(�) ∩ H1

0(�))
regularity of the solution in this setting.

Remark 1.1 (Comparison with [37]) In this paper, the positive definiteness of the kernel
and the theory on Volterra equations is used to establish the uniqueness of a solution to
problem (2). This approach is more careful than using [26, Corollary 16] as is done in [37,
Theorem 2.1] (for constant and distributed order of the fractional derivative) since it is
not clear that ∂t(g ∗ u)(t) ∈ L2(�) for t ∈ (0, T) and that u is absolutely continuous under
the assumptions of [37, Theorem 2.1]. This is the reason why we consider ∂t(g ∗ (u – ũ0))
in the formulation of problem (2) instead of g ∗ ∂tu in [37, Eq. (2)]. Moreover, although the
constant-order fractional derivative is a special case, the space-dependent variable order
considered in this contribution leads to a more complicated analysis in comparison with
[37].

We conclude this introduction by stating the function spaces used in the paper.

Remark 1.2 (Additional notations) Consider an abstract Banach space X with norm ‖ ·‖X .
Let p ≥ 1.

• (·, ·): standard inner product in L2(�) with induced norm ‖ · ‖;
• Lp((0, T), X): space of measurable functions u : (0, T) → X such that

‖u‖Lp((0,T),X) =
(∫ T

0

∥∥u(t)
∥∥p

X dt
)1/p

< ∞;

• L2
loc((0,∞), X): space of functions belonging to L2((0, T), X) for any T ∈ (0,∞);

• C([0, T], X): space of continuous functions u : [0, T] → X satisfying

‖u‖C([0,T],X) = max
t∈[0,T]

∥∥u(t)
∥∥

X < ∞;

• L∞((0, T), X): space of measurable functions u : (0, T) → X that are essentially
bounded, which is

‖u‖L∞((0,T),X) = inf
{

B :
∥∥u(t)

∥∥
X ≤ B for almost all t ∈ (0, T)

}
< +∞.

• H1((0, T), X): space of functions u : (0, T) → X such that the weak derivative u′ exists
and

‖u‖H1((0,T),X) =
(∫ T

0

∥
∥u(t)

∥
∥2

X +
∥
∥u′(t)

∥
∥2

X dt
) 1

2
< ∞.

• The values C, ε and Cε considered throughout the paper are generic and positive
constants (independent of the discretization parameter), where ε is arbitrarily small
and Cε arbitrarily large, i.e. Cε = C(1 + ε + 1

ε
).
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2 Properties of the singular kernel g
In this section, we give the properties of g that will be used throughout the paper. First,
note that

0 ≤ min{1, t–β1}
�(1 – β1)

≤ g(x, t) =
t–β(x)

�(1 – β(x))
≤ max

{
1, t–β1

}
, t > 0, (5)

since �(z) ≥ �(1) = 1 for all z ∈ (0, 1). Thus

g(·, t) ∈ L∞(�), t > 0.

We also obtain that g(x, ·) ∈ L1(0, T) for all x ∈ � as follows:

∫ T

0

∣∣g(x, t)
∣∣dt =

1
�(1 – β(x))

∫ T

0
t–β(x) dt

=
T1–β(x)

�(2 – β(x))
≤ 2 max{1, T}, (6)

since �(z) ≥ 1
2 for z ∈ (1, 2). It is also clear that g(x, ·) ∈ L1

loc(0,∞) for all x ∈ �. Moreover,
consider [t1, t2] ⊂ (0, T), then

∫ t2

t1

∣
∣∂tg(x, t)

∣
∣dt =

β(x)
�(1 – β(x))

∫ t2

t1

t–β(x)–1 dt

=
t–β(x)
1 – t–β(x)

2
�(1 – β(x))

≤ max
{

1, t–β1
1

}
–

min{1, t–β1
2 }

�(1 – β1)
, (7)

i.e. ∂tg(x, ·) ∈ L1
loc(0, T). Moreover, as g is decreasing in time, we have the existence of g̃

such that

g(x, t) ≥ min{1, T–β1}
�(1 – β1)

=: g̃ > 0, t ∈ (0, T], x ∈ �. (8)

We note also that the following shift formula is valid for s > 0:

∫ T

0

∣∣g(x, t + s) – g(x, t)
∣∣dt ≤ 4 max

{
s1–β1 , s

}
, x ∈ �, (9)

since
∫ T

0

∣
∣g(x, t + s) – g(x, t)

∣
∣dt =

1
�(1 – β(x))

∫ T

0

(
t–β(x) – (t + s)–β(x))dt

=
1

�(2 – β(x))
[
T1–β(x) – (T + s)1–β(x) + s1–β(x)]

≤ 4s1–β(x),

using that the function f (x) = xα with α ∈ (0, 1] is α-Hölder continuous.
Another important property of g is contained in the following lemma.
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Lemma 2.1 (Strongly positive definiteness) For all v ∈ L2
loc((0,∞), L2(�)), the kernel g

satisfies

∫ t

0

(
(g ∗ v)(s), v(s)

)
ds ≥

∫

�

γ (x)
∫ t

0
(e ∗ v)2(x, s) ds dx

with

e(t) = e–t and γ (x) = cos

([
1 – β(x)

]π
2

)
.

Proof First, we note that we can interchange the order of integration as

∣
∣∣
∣

∫

�

∫ t

0
(g ∗ v)(x, s)v(x, s) ds dx

∣
∣∣
∣≤

∫

�

∥∥(g ∗ v)(x)
∥∥

L2(0,T)

∥∥v(x)
∥∥

L2(0,T) dx

(�)≤
∫

�

∥
∥g(x)

∥
∥

L1(0,T)

∥
∥v(x)

∥
∥2

L2(0,T) dx

(6)≤ 2 max{1, T}‖v‖L2((0,T),L2(�)),

where we used Young’s inequality for convolutions at position (�):

‖f1 ∗ f2‖Lr(0,T) ≤ ‖f1‖Lp(0,T)‖f2‖Lq(0,T) for
1
p

+
1
q

=
1
r

+ 1 with 1 ≤ p, q ≤ r ≤ ∞.

The function g is a strongly positive definite kernel for every x ∈ � since it satisfies

g(x, t) ≥ 0, ∂tg(x, t) ≤ 0, ∂ttg(x, t) ≥ 0, ∀t > 0; ∂tg(x, t) �≡ 0, (10)

see [43, Corollary 2.2] or [44], i.e. for any x ∈ �, there exists a constant γ > 0 (varying with
x) such that g(x, t) – γ exp(–t) is of positive type and thus

∫

�

∫ t

0

(∫ s

0

[
g(x, t – ξ ) – γ (x) exp

(
–(t – ξ )

)]
v(x, ξ ) dξ

)
v(x, s) ds dx ≥ 0,

which is valid for all v ∈ L2
loc((0,∞), L2(�)). From [43, Corollary 2.1], it follows that γ (x) =

cos([1 – β(x)] π
2 ) since for any y ∈ (–∞,∞) and a.a. x ∈ � we have that

lim inf
x↘0

�[L{g(x, t)
}

(x + iy)
]

= �[(iy)β(x)–1]

= |y|β(x)–1 cos

([
1 – β(x)

]π
2

)

≥ 1
1 + y2 cos

(
[
1 – β(x)

]π
2

)
,

where we used that

ln(iy) =

⎧
⎨

⎩
ln(y) + iπ

2 y > 0,

ln(–y) – iπ
2 y < 0.
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We conclude the proof by noting that for a.a. x ∈ � it holds that

∫ t

0
(e ∗ v)(x, s)v(x, s) ds =

1
2

(e ∗ v)2(x, t) +
∫ t

0
(e ∗ v)2(x, s) ds ≥ 0. �

Remark 2.1 If β(x) = β ∈ (0, 1), then we have for all v ∈ L2
loc((0,∞), L2(�)) that

∫ t

0

(
(g ∗ v)(s), v(s)

)
ds ≥ γ̃

∫ t

0

((
e–t ∗ v

)
(s), v(s)

)
ds, γ̃ := cos

(
[1 – β]

π

2

)
. (11)

3 Technical lemmas
First, we generalise a fundamental identity for integro-differential operators of the form
d
dt (k ∗v)(t) from Zacher (see [25, Lemma 2.1] or [45, Lemma 2.3.2]) to a convolution kernel
that depends on the time- and space-variable.

Lemma 3.1 Let � ⊂ R
d be a bounded Lipschitz domain and T > 0. Then, for any v ∈

L2((0, T), L2(�)) and any k : � × [0, T] →R satisfying1

∣
∣k(x, 0)

∣
∣≤ C1,

∣
∣∂tk(x, t)

∣
∣≤ C2, for a.a. x ∈ � and for a.a. t ∈ [0, T],

it holds for all t ∈ (0, T) that

(
∂t(k ∗ v)(t), v(t)

)
=

1
2
∂t

∫

�

(
k ∗ v2)(x, t) dx +

1
2
(
k(t)v(t), v(t)

)

–
1
2

∫ t

0

(
∂tk(t)

[
v(t) – v(t – s)

]
, v(t) – v(t – s)

)
ds.

Proof First note that from

k(x, t) = k(x, 0) +
∫ t

0
∂tk(x, s) ds,

it follows for a.a. x ∈ � and all t ∈ [0, T] that

∣∣k(x, t)
∣∣≤ C1 + C2T .

From Leibniz’s rule for differentiation under the integral sign, we get that

(
∂t(k ∗ v)(t), v(t)

)
=
(
k(0)v(t), v(t)

)
+
(∫ t

0
(∂tk)(s)v(t – s) ds, v(t)

)
,

which is valid and well-defined for all t ∈ (0, T). The second term on the right-hand side
(RHS) can be handled as follows:

∫ t

0

(
(∂tk)(s)v(t – s), v(t)

)
ds

=
∫ t

0

([
–(∂tk)(s)

][
v(t) – v(t – s)

]
, v(t)

)
ds +

∫ t

0

(
(∂tk)(s)v(t), v(t)

)
ds

1Only the right-hand and the left-hand derivatives need to exist at the boundary points t = 0 and t = T , respectively.
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=
∫ t

0

([
–(∂tk)(s)

][
v(t) – v(t – s)

]
, v(t) – v(t – s)

)
ds

+
([

k(t) – k(0)
]
v(t), v(t)

)
+
∫ t

0

([
–(∂tk)(s)

][
v(t) – v(t – s)

]
, v(t – s)

)
ds,

where we switched the order of integration twice, which is allowed since ∂tk is uniformly
bounded. The last integral on the RHS of the previous equation can be rewritten as follows:

–
∫ t

0

(
v(t) – v(t – s), (∂tk)(s)v(t – s)

)
ds

= –
(
v(t), (∂tk ∗ v)(t)

)±
∫

�

k(x, 0)v2(x, t) dx +
∫ t

0

∫

�

(∂tk)(x, s)v2(x, t – s) ds

= –
(
v(t), ∂t(k ∗ v)(t)

)
+
∫

�

∂t
(
k ∗ v2)(x, t) dx,

where we again exchanged the order of integration two times and used Leibniz’s rule two
times. Combining the previous results concludes the proof. �

The function g does not satisfy the conditions in the previous lemma, and therefore the
lemma cannot be applied directly. It is the following lemma that will lead to the useful
Corollary 3.1. Note that a similar result for a solely time-dependent kernel can be found
in [46, Lemma 2.1].

Lemma 3.2 Let � ⊂ R
d be a bounded Lipschitz domain and T > 0. Then, for any v :

[0, T] → L2(�) satisfying v ∈ H1((0, T), L2(�)) and any k : � × (0, T] →R with

∥∥k(x, ·)∥∥L1(0,T) ≤ C1, for a.a. x ∈ �,

∂tk(x, ·) ∈ L1
loc(0, T), for a.a. x ∈ �,

and

k(x, t) ≥ 0, and ∂tk(x, t) ≤ 0, for all (x, t) ∈ � × (0, T),

it holds for all η ∈ [0, T] that

∫ η

0

(
∂t(k ∗ v)(t), v(t)

)
dt ≥ 1

2

∫

�

(
k ∗ v2)(x,η) dx +

1
2

∫ η

0

∥
∥
√

k(t)v(t)
∥
∥2 dt

≥ 1
2

∫

�

(
k ∗ v2)(x,η) dx +

1
2

∫ η

0

∥∥
√

k(η)v(t)
∥∥2 dt.

Proof From ∂tk(x, ·) ∈ L1
loc(0, T) it follows that k(x, ·) is continuous on (0, T). The only

singularity of k(x, ·) is in t = 0 since it is a decreasing function in the time variable, i.e.

lim
t↘0

k(x, t) = +∞ for all x ∈ �.

Hence, we can define the sequence (kn)n∈N by

kn(x, t) = min
{

n, k(x, t)
}

, (x, t) ∈ � × [0, T], n ∈N.
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We obtain from the properties of k that

0 ≤ kn(x, t) ≤ n, –C(n) ≤ ∂tkn(x, t) ≤ 0 for a.a. (x, t) ∈ � × [0, T]

and

kn(x, t) → k(x, t) for all (x, t) ∈ � × (0, T) as n → ∞.

Hence, the function kn satisfies the conditions of Lemma 3.1. Moreover, we also have
the uniform boundedness in L2(�) and the continuity of v in the time variable, i.e. v ∈
C([0, T], L2(�)). Indeed, from v(·, t) = v(·, 0) +

∫ t
0 ∂sv(·, s) ds, we see that

∥
∥v(t)

∥
∥≤ ∥

∥v(0)
∥
∥ +

∫ t

0

∥
∥∂sv(s)

∥
∥ds

≤ ∥∥v(0)
∥∥ +

√
t

√∫ t

0

∥∥∂sv(s)
∥∥2 ds ≤ C̃ for a.a. t ∈ [0, T]

and

∥
∥v(t) – v(s)

∥
∥≤ C|t – s| 1

2 , ∀t, s ∈ [0, T].

Hence, we have that

lim
t↘0

∫

�

(
kn ∗ v2)(x, t) dx = 0, ∀n ∈ N.

Therefore, integrating the result of Lemma 3.1 over (0,η) ⊂ (0, T) gives that

∫ η

0

(
∂t(kn ∗ v)(t), v(t)

)
dt ≥ 1

2

∫

�

(
kn ∗ v2)(x,η) dx +

1
2

∫ η

0

∥∥
√

kn(t)v(t)
∥∥2 dt. (12)

Next, we want to pass to the limit n → ∞ in (12). First, note that

∫ η

0

(
∂t(kn ∗ v)(t), v(t)

)
dt =

∫ η

0

(
(kn ∗ ∂tv)(t) + kn(t)v(0), v(t)

)
dt. (13)

The sequence fn : QT →R defined by

fn(x, t) =
(∫ t

0
kn(x, t – s)∂tv(x, s) ds

)
v(x, t)

converges almost everywhere pointwise to (k ∗ ∂tv)(x, t)v(x, t), and it is dominated by

f̃ : QT →R : (x, t) �→ f̃ (x, t) =
(∫ t

0
k(x, t – s)

∣
∣∂tv(x, s)

∣
∣ds

)∣
∣v(x, t)

∣
∣.

The function f̃ is absolutely integrable on (0,η) × � since

0 ≤
∫

�

∫ η

0

(∫ t

0
k(x, t – s)

∣
∣∂tv(x, s)

∣
∣ds

)∣
∣v(x, t)

∣
∣dt dx
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≤
∫

�

√∫ η

0

(
k ∗ |∂tv|

)2(x, t) dt

√∫ η

0
v2(x, t) dt dx

(�)≤
∫

�

∥∥k(x)
∥∥

L1(0,η)

∥∥∂tv(x)
∥∥

L2(0,η)

∥∥v(x)
∥∥

L2(0,η) dx

≤ C1‖∂tv‖L2((0,T),L2(�))‖v‖L2((0,T),L2(�)),

where we have used Young’s inequality for convolutions (in the time variable) at position
(�). Therefore, we can apply the Lebesgue dominated theorem to obtain for the first term
on RHS of (13) that

lim
n→∞

∫ η

0

(
(kn ∗ ∂tv)(t), v(t)

)
dt = lim

n→∞

∫ η

0

∫

�

fn(x, t) dx dt =
∫ η

0

(
(k ∗ ∂tv)(t), v(t)

)
dt.

We perform integration by parts in the time variable on the second term in the RHS of
(13) and then pass to the limit n → ∞ in this term, i.e. we consider

∫

�

v(x, 0)
∫ η

0
kn(x, t)v(x, t) dt dx

=
∫

�

v(x, 0)
[(∫ η

0
kn(x, s) ds

)
v(x,η)

–
∫ η

0

(∫ t

0
kn(x, s) ds

)
∂tv(x, t) dt

]
dx. (14)

The dominating functions are absolutely integrable since

0 ≤
∫

�

∣
∣v(x, 0)

∣
∣
(∫ η

0
k(x, s) ds

)∣
∣v(x,η)

∣
∣dx ≤ C1

∥
∥v(0)

∥
∥
∥
∥v(η)

∥
∥≤ C1C̃

∥
∥v(0)

∥
∥

and

0 ≤
∫

�

∣
∣v(x, 0)

∣
∣
∫ η

0

(∫ t

0
k(x, s) ds

)∣
∣∂tv(x, t)

∣
∣dt dx

≤ C1
√

T
∥
∥v(0)

∥
∥‖∂tv‖L2((0,T),L2(�)).

Hence, again by the Lebesgue dominated theorem, we can take the limit n → ∞ in the
RHS of (14). Therefore, we obtain for the second term on the RHS of (13) that

lim
n→∞

∫ η

0

(
kn(t)v(0), v(t)

)
dt =

∫ η

0

(
k(t)v(0), v(t)

)
.

Finally, we need to pass to the limit n → ∞ in the RHS of (12). We apply integration by
parts on both terms to obtain that

∫

�

(
kn ∗ v2)(x,η) dx =

∫

�

(∫ η

0
kn(x,η – s) ds

)
v2(x,η) dx

– 2
∫

�

∫ η

0

(∫ t

0
kn(x,η – s) ds

)
v(x, t)∂tv(x, t) dt dx



Van Bockstal Advances in Difference Equations        (2021) 2021:314 Page 12 of 43

and
∫

�

∫ η

0
kn(x, t)v2(x, t) dt dx =

∫

�

(∫ η

0
kn(x, s) ds

)
v2(x,η) dx

– 2
∫

�

∫ η

0

(∫ t

0
kn(x, s) ds

)
v(x, t)∂tv(x, t) dt dx.

We only point out the limit transition for the first term by checking that the dominating
functions are absolutely integrable as the second term can be handled similarly. Indeed,
we get that

0 ≤
∫

�

(∫ η

0
k(x,η – s) ds

)
v2(x,η) dx ≤ C1

∥∥v(η)
∥∥2 ≤ C1C̃2

and

0 ≤
∫

�

∫ η

0

(∫ t

0
k(x, s) ds

)∣
∣v(x, t)

∣
∣
∣
∣∂tv(x, t)

∣
∣dx dt

≤ C1‖v‖L2((0,T),L2(�))‖∂tv‖L2((0,T),L2(�)).

Using the results above, we can pass to the limit n → ∞ in (12), which concludes the
proof. �

The function g defined in (3) satisfies the properties of the kernel in the previous lemma,
see Eq. ((6)–(10)). However, the solution u does not satisfy ∂tu ∈ L2(0, T). Fortunately, we
can use [23, Definition 3.1] to obtain the following result, which will be helpful later in
showing the uniqueness of a solution to problem (2).

Corollary 3.1 For any v : [0, T] → L2(�) satisfying

v ∈ L2((0, T), L2(�)
)

with g ∗ v ∈ H1((0, T), L2(�)
)
,

it holds for all η ∈ [0, T] that

∫ η

0

(
∂t(g ∗ v)(t), v(t)

)
dt ≥ g̃

2

∫ η

0

∥
∥v(t)

∥
∥2 dt.

Proof For any x ∈ �, by [23, Definition 3.1], we have the existence of a sequence {vn(x, ·)} ⊂
H2(0, T) such that vn(x, 0) = 0, vn(x, ·) → v(x, ·) in L2(0, T) and ∂t(g ∗vn)(x, ·) → ∂t(g ∗v)(x, ·)
in L2(0, T). We consider v = vn and k = g in Lemma 3.2, i.e.

∫

�

∫ η

0
∂t(g ∗ vn)(x, t)vn(x, t) dt dx

(8)≥ g̃
2

∫

�

∫ η

0
vn(x, t)2 dt dx.

Next, we can pass to the limit n → ∞ and obtain the result. �

In order to be able to show the well-posedness of problem (2), we prove a discrete ver-
sion of Lemma 3.2, which is crucial to establishing a priori estimates in Sect. 5. First, we
discretize the time interval [0, T] into n ∈ N equidistant subintervals [ti–1, ti] with length
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τ = T
n . The approximation of a function z at time t = ti, 0 ≤ i ≤ n, is denoted by zi. The same

notation is also used for a given function. Moreover, we approximate ∂tz(x, ti), 1 ≤ i ≤ n,
by the backward Euler difference δzi(x) = zi(x)–zi–1(x)

τ
. Finally, for k : � × (0, T] → R and

v : � × [0, T] →R satisfying

(k ∗ v)(x, 0) = lim
t↘0

(k ∗ v)(x, t) = 0, a.a. x ∈ �, (15)

and
∫

�

(
k ∗ v2)(x, 0) dx = lim

t↘0

∫

�

(
k ∗ v2)(x, t) dx = 0, (16)

the time-discrete convolution is defined as follows (a.a. x ∈ �):

(k ∗ v)(x, ti) ≈ (k ∗ v)i(x) :=
i∑

l=1

ki+1–l(x)vl(x)τ , (17)

with

(k ∗ v)0(x) := 0 and
∫

�

(
k ∗ v2)

0(x) dx := 0.

In (17), a possible singularity of k at t = 0 is avoided. The proof of the following lemma
follows the same lines as the proof of [46, Lemma 3.2] for a solely time-dependent kernel.

Lemma 3.3 Let � ⊂ R
d be a bounded Lipschitz domain. Let (vi)i∈N and (ki)i∈N be se-

quences of real-valued functions defined on �. Suppose that (vi)i∈N in L2(�) and that the
sequence (ki)i∈N is positive, uniformly bounded and decreasing, i.e. for a.a. x ∈ � it holds
that

0 ≤ k1(x) ≤ C, ki+1(x) ≤ ki(x), ∀i ∈N.

Then

j∑

i=1

(
δ(k ∗ v)i, vi

)
τ ≥ 1

2

∫

�

(
k ∗ v2)

j(x) dx +
1
2

j∑

i=1

‖√kivi‖2τ , j ∈N,

where (k ∗ v)i is the time-discrete convolution defined in (17).

Proof The result follows from multiplying the following inequality with τ , integrating it
over � and summing up the result over i = 1, . . . , j (note that

∫
�

(k ∗ v2)0(x) dx = 0):

2δ(k ∗ v)i(x)vi(x) ≥ δ
(
k ∗ v2)

i(x) + ki(x)v2
i (x), i ∈N, x ∈ �.

We prove that this inequality is satisfied. First, notice that for a.a. x ∈ � and i ≥ 1, it holds
that

δ(k ∗ v)i(x)

= k1(x)vi(x) +
i–1∑

l=1

δki+1–l(x)vl(x)τ as (k ∗ v)0 = 0 in �, (18)
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= ki(x)v0(x) +
i∑

l=1

ki+1–l(x)δvl(x)τ = ki(x)v0(x) + (k ∗ δv)i(x). (19)

From the properties of the sequence (ki)i∈N, it follows for a.a. x ∈ � that

δ
(
k ∗ v2)

i(x) + ki(x)v2
i (x)

≤ δ
(
k ∗ v2)

i(x) + ki(x)v2
i (x) –

i–1∑

l=1

δki+1–l(x)︸ ︷︷ ︸
≤0

(
vi(x) – vl(x)

)2
τ

(18)=
(
k1(x) + ki(x)

)
v2

i (x) +
i–1∑

l=1

δki+1–l(x)
[
v2

l (x) –
(
vi(x) – vl(x)

)2]
τ

=
(
k1(x) + ki(x)

)
v2

i (x) + 2vi(x)
i–1∑

l=1

δki+1–l(x)vl(x)τ – v2
i (x)

i–1∑

l=1

δki+1–l(x)τ

︸ ︷︷ ︸
=ki(x)–k1(x)

(18)= 2δ(k ∗ v)i(x)vi(x). �

4 Assumptions, weak formulation and uniqueness of a solution
In this section, we first summarise all assumptions that are necessary to obtain the well-
posedness result in Theorem 6.1. We assume that

• AS-1: A = (aij(x, t)) is a d × d matrix-valued function such that

A ∈ (L∞(QT )
)d×d and AT = A;

• AS-2: The matrix A is uniformly elliptic, i.e. there exists a constant α > 0 such that

d∑

i,j=1

aij(x, t)ξiξj ≥ α|ξ |2 for a.a. (x, t) ∈ QT and for all ξ ∈R
d;

• AS-3: c ∈ L∞(QT ) and

c(x, t) ≥ 0, (x, t) ∈ QT ;

• AS-4: ∂tA ∈ (L∞(QT ))d×d and ∂tc ∈ L∞(QT );
• AS-5: f ∈ H1((0, T), L2(�)) or

∥
∥∥
∥

∂�

∂t�
f (t)

∥
∥∥
∥≤ C

(
1 + tγ –�

)
for � = 0, 1 and γ ∈ (0, 1);

• AS-6: ũ0 ∈ H1
0(�).

Further, we associate a bilinear form L with the differential operator L defined in (1) as
follows:

L(t)
(
u(t),ϕ

)
:= (Lu,ϕ) =

(
A(t)∇u(t),∇ϕ

)
+
(
c(t)u(t),ϕ

)
,
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with u(t),ϕ ∈ H1
0(�). Using the properties above, we obtain that

L(t)(u,ϕ) ≤ C‖u‖H1(�)‖ϕ‖H1(�), ∀u,ϕ ∈ H1
0(�),

and

L(t)(ϕ,ϕ) ≥ α‖∇ϕ‖2, ∀ϕ ∈ H1
0(�), (20)

i.e. the bilinear form L is continuous, and H1
0(�)-elliptic due to Friedrichs’s inequality.

Now, we define the variational formulation of problem (2).

Definition 4.1 (Weak formulation) Let assumptions AS-(1–6) be fulfilled. Search u ∈
L∞((0, T), H1

0(�)) with ∂t(g ∗ (u – ũ0)) ∈ L2((0, T), H1
0(�)∗) such that for a.a. t ∈ (0, T) it

holds that

〈
∂t
(
g ∗ (u – ũ0)

)
(t),ϕ

〉
H1

0(�)∗×H1
0(�) + L(t)

(
u(t),ϕ

)
=
(
f (t),ϕ

)
, ∀ϕ ∈ H1

0(�). (21)

Next, we show that conditions (15) and (16) with k = g are satisfied for v = u when the
solution u satisfies the regularity assumptions in Definition 4.1. First, we have by Hölder’s
inequality that

lim
t↘0

∥
∥(g ∗ u)(t)

∥
∥2

= lim
t↘0

∫

�

∣
∣∣
∣

∫ t

0
g(x, t – s)u(x, s) ds

∣
∣∣
∣

2

dx

(5)≤ lim
t↘0

1
�(1 – β1)2

∫

�

(∫ t

0
(t – s)–β1

∣∣u(x, s)
∣∣ds

)2

dx

≤ lim
t↘0

∫

�

(∫ t

0
(t – s)–β1 ds

)(∫ t

0
(t – s)–β1

∣
∣u(x, s)

∣
∣2 ds

)
dx

≤ lim
t↘0

(∫ t

0
(t – s)–β1 ds

)(∫ t

0
(t – s)–β1

(∫

�

∣∣u(x, s)
∣∣2 dx

)
ds
)

≤ ‖u‖L∞((0,T),L2(�)) lim
t↘0

(∫ t

0
r–β1 dr

)2

= 0. (22)

Secondly, we see that

lim
t↘0

∣∣
∣∣

∫

�

(
g ∗ u2)(x, t) dx

∣∣
∣∣

(5)≤ lim
t↘0

1
�(1 – β1)

∫

�

∫ t

0
(t – s)–β1

∣
∣u(x, s)

∣
∣2 ds dx

≤ 1
�(1 – β1)

‖u‖L∞((0,T),L2(�)) lim
t↘0

∫ t

0
r–β1 dr = 0. (23)

Thus, conditions (22) and (23) are satisfied for v = u.

5 Time discretization
In this section, a time-discrete numerical scheme to solve problem (21) is presented. The
time interval [0, T] is discretized into n ∈ N equidistant subintervals [ti–1, ti] with length
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τ = T
n < 1. The approximation of u at time t = ti (0 ≤ i ≤ n) is denoted by ui. Moreover,

the time derivative at time t = ti is approximated by the backward Euler finite-difference
formula

∂tu(ti) ≈ δui = (ui – ui–1)/τ , 1 ≤ i ≤ n.

These notations are also used for any function z �= u. We propose the following time-
discrete variational problem:

Find ui ∈ H1
0(�), i = 1, 2, . . . , n, such that

(
(g ∗ δu)i,ϕ

)
+ Li(ui,ϕ) = (fi,ϕ), ∀ϕ ∈ H1

0(�). (24)

Using the time-discrete convolution (17), the discrete problem can be equivalently written
as

ai(ui,ϕ) = 〈Fi,ϕ〉, ∀ϕ ∈ H1
0(�), (25)

with

ai(ui,ϕ) :=
(
g(τ )ui,ϕ

)
+ Li(ui,ϕ)

and

〈Fi,ϕ〉 := (fi,ϕ) +
(
g(τ )ui–1,ϕ

)
–

i–1∑

k=1

(gi+1–kδuk ,ϕ)τ .

The summation occurring in Fi is not contributing for i = 1. The well-posedness of this
problem under appropriate assumptions on the data is stated in the following lemma.

Lemma 5.1 Suppose that AS-1, AS-2 and AS-3 are satisfied. Moreover, assume that ũ0 ∈
L2(�) and f ∈ L2([0, T], L2(�)). Then, for any i = 1, 2, . . . , n, there exists unique ui ∈ H1

0(�)
solving (24).

Proof From the properties of L and g , it follows that the bilinear form ai is H1
0(�)-elliptic

and continuous. If ũ0, . . . , ui–1 ∈ L2(�), then the linear functional Fi is bounded since

∣∣〈Fi,ϕ〉∣∣ (5)≤ ‖fi‖‖ϕ‖ + τ–β1‖ui–1‖‖ϕ‖ + τ–β1‖ϕ‖
i–1∑

k=1

‖uk – uk–1‖

≤ C
(
τ–β1

)‖ϕ‖H1(�).

The existence and uniqueness of ui ∈ H1
0(�) to problem (25) follows from the Lax–

Milgram lemma. �

We prove some a priori estimates in the following two lemmas. These are required to
ensure the existence of a solution to (21) and to prove the convergence of approximations
towards this solution.
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Lemma 5.2 Let the assumptions of Lemma 5.1 be fulfilled. Then a positive constant C
exists such that, for every j = 1, 2, . . . , n, the following relation holds:

∫

�

(
g ∗ u2)

j(x) dx +
j∑

i=1

‖√giui‖2τ +
j∑

i=1

‖∇ui‖2τ ≤ C.

Proof We set ϕ = uiτ in (24) and sum it up for i = 1, . . . , j with 1 ≤ j ≤ n. Using relation
(19), we obtain that

j∑

i=1

(
δ(g ∗ u)i, ui

)
τ +

j∑

i=1

Li(ui, ui)τ =
j∑

i=1

(fi, ui)τ +
j∑

i=1

(giũ0, ui)τ .

Using the ε-Young inequality, we estimate the second term in the RHS as follows:

∣∣
∣∣∣

j∑

i=1

(giũ0, ui)τ

∣∣
∣∣∣
≤ Cε1

∫

�

ũ2
0(x)

( j∑

i=1

gi(x)τ

)

dx + ε1

j∑

i=1

τ

∫

�

gi(x)u2
i (x) dx

(6)≤ Cε1‖ũ0‖2 + ε1

j∑

i=1

‖√giui‖2τ .

Using Friedrichs’s inequality, we obtain that

∣∣∣
∣∣

j∑

i=1

(fi, ui)τ

∣∣∣
∣∣
≤ Cε2 + ε2

j∑

i=1

‖∇ui‖2τ .

Employing Lemma 3.3 and Eq. (20) implies

1
2

∫

�

(
g ∗ u2)

j(x) dx +
(

1
2

– ε1

) j∑

i=1

‖√giui‖2τ +
(

α

2
– ε2

) j∑

i=1

‖∇ui‖2τ

≤ Cε1‖ũ0‖2 + Cε2 .

Fixing ε1 > 0 and ε2 > 0 sufficiently small gives the result. �

Lemma 5.3 Let assumptions AS-(1–6) be fulfilled. Then positive constants C and τ0 exist
such that, for any τ < τ0 and for every j = 1, 2, . . . , n, the following relation holds:

‖∇uj‖2 +
j∑

i=1

‖∇ui – ∇ui–1‖2 ≤ C.

Proof We set ϕ = δuiτ (here ũ0 ∈ H1
0(�) is needed) in (24) and sum the result up for i =

1, . . . , j with 1 ≤ j ≤ n. We obtain that

j∑

i=1

(
(g ∗ δu)i, δui

)
τ +

j∑

i=1

Li(ui, δui)τ =
j∑

i=1

(fi, δui)τ . (26)
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The first term on the left-hand side is positive since we can apply [47, Eq. 3.2]. Next, we
recall the following per partes formula for a symmetric bilinear form [48, Eq. 3.16]:

j∑

i=1

r(ti; zi, zi – zi–1)

=
1
2

r(tj; zj, zj) –
1
2

r(0; z0, z0) +
1
2

j∑

i=1

(
r(ti; δzi, δzi)τ 2 – δr(ti; zi–1, zi–1)τ

)
. (27)

Hence, due to the symmetry of A, we have that

j∑

i=1

(Ai∇ui,∇δui)τ

=
1
2

(Aj∇uj,∇uj) –
1
2

(A0∇ũ0,∇ũ0)

–
1
2

j∑

i=1

(δAi∇ui–1,∇ui–1)τ +
1
2

j∑

i=1

(
Ai(∇ui – ∇ui–1),∇ui – ∇ui–1

)
,

and thus by Lemma 5.2 we get that

j∑

i=1

(Ai∇ui,∇δui)τ ≥ α

2
‖∇uj‖2 – C +

α

2

j∑

i=1

‖∇ui – ∇ui–1‖2.

Similarly, using the conditions on c and Lemma 5.2, we get that

j∑

i=1

(ciui, δui)τ ≥ –C.

The term on the RHS of (26) can be estimated by using the partial summation rule

j∑

i=1

(fi, δui)τ = (fj, uj) – (f0, ũ0) –
j∑

i=1

(δfi, ui–1)τ . (28)

If f ∈ H1((0, T), L2(�)) ⊂ C([0, T], L2(�)), then by the ε-Young inequality, Friedrichs’s in-
equality and Lemma 5.2, we get that

∣∣
∣∣
∣

j∑

i=1

(fi, δui)τ

∣∣
∣∣
∣
≤ Cε + ε‖∇uj‖2.

The result of the lemma follows by fixing ε sufficiently small.
If ‖ ∂�

∂t� f (t)‖ ≤ C(1 + tγ –�) for � = 0, 1 and γ ∈ (0, 1), then

∥
∥f (t)

∥
∥≤ ∥

∥f (0)
∥
∥ +

∫ T

0

∥
∥∂t f (s)

∥
∥ds ≤ C for all t ∈ [0, T].



Van Bockstal Advances in Difference Equations        (2021) 2021:314 Page 19 of 43

Moreover, we have that

‖δf1‖ =
1
τ

‖f1 – f0‖ ≤ Cτ–1,

and by the mean value theorem

‖δfi‖ =
1
τ

‖fi – fi–1‖ ≤ C
(
1 + tγ –1

i–1
)
, i ≥ 2.

Hence, we obtain by (28), the ε-Young inequality, Friedrichs’s inequality and tγ –1 ∈
L1(0, T) that

∣∣
∣∣∣

j∑

i=1

(fi, δui)τ

∣∣
∣∣∣

(28)≤ Cε + ε‖∇uj‖2 + ‖δf1‖‖ũ0‖τ +
j∑

i=2

‖δfi‖‖ui–1‖τ

≤ Cε + ε‖∇uj‖2 + C
j∑

i=2

(
1 + tγ –1

i–1
)‖ui–1‖τ

≤ Cε + ε‖∇uj‖2 + C

(

1 +
j∑

i=2

tγ –1
i–1 ‖∇ui–1‖2τ

)

≤ Cε + ε‖∇uj‖2 + C
j–1∑

i=1

tγ –1
i ‖∇ui‖2τ .

Now, the estimate follows from the discrete Grönwall lemma [49, Corollary 15.5]. �

Corollary 5.1 Let the assumptions of Lemma 5.2 be fulfilled. Then positive constants C
and τ0 exist such that, for any τ < τ0 and for every j = 1, 2, . . . , n, the following relation
holds:

∥
∥(g ∗ δu)j

∥
∥

H1
0(�)∗ ≤ C.

Proof The estimate follows from

∥∥(g ∗ δu)i
∥∥

H1
0(�)∗ = sup

‖ϕ‖
H1

0(�)=1

∣∣〈(g ∗ δu)i,ϕ
〉
H1

0(�)∗×H1
0(�)

∣∣

= sup
‖ϕ‖

H1
0(�)=1

∣∣((g ∗ δu)i,ϕ
)∣∣

(24)= sup
‖ϕ‖

H1
0(�)=1

∣
∣(fi,ϕ) – Li(ui,ϕ)

∣
∣

≤ ‖fi‖ + C‖∇ui‖,

and the result of Lemma 5.2. �
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6 Existence
Before showing the existence of a solution in Theorem 6.1, we introduce Rothe’s functions
un and un:

un : [0, T] → L2(�) : t �→
⎧
⎨

⎩
ũ0 t = 0,

ui–1 + (t – ti–1)δui t ∈ (ti–1, ti],
1 ≤ i ≤ n,

un : [0, T] → L2(�) : t �→
⎧
⎨

⎩
ũ0 t = 0,

ui t ∈ (ti–1, ti],
1 ≤ i ≤ n.

Similarly, we define gn, Ln and f n. Moreover, we define

(g ∗ u)n : [0, T] → L2(�) : t �→
⎧
⎨

⎩
0 t = 0,

(g ∗ u)i–1 + (t – ti–1)δ(g ∗ u)i t ∈ (ti–1, ti],

(g ∗ u)n : [0, T] → L2(�) : t �→
⎧
⎨

⎩
0 t = 0,

(g ∗ u)i t ∈ (ti–1, ti].

Further, we use also the notation �t�τ = ti when t ∈ (ti–1, ti]. Now, using Eq. (19), we can
rewrite Eq. (24) on the whole time frame as follows:

(
∂t(g ∗ u)n(t) – gn(t)ũ0,ϕ

)
+ Ln(t)

(
un(t),ϕ

)
=
(
f n(t),ϕ

)
, ∀ϕ ∈ H1

0(�), (29)

where

Ln(t)
(
un(t),ϕ

)
=
(

An(t)∇un(t),∇ϕ
)

+
(
cn(t)un(t),ϕ

)
.

Theorem 6.1 (Existence) Let assumptions AS-(1–6) be fulfilled. Then there exists a
weak solution u to problem (21) with u ∈ L∞((0, T), H1

0(�)) and ∂t(g ∗ (u – ũ0)) ∈
L∞((0, T), H1

0(�)∗).

Proof From Lemmas 5.2 and 5.3, we get that the sequence (un)n∈N is uniformly bounded
and 2-mean equicontinuous in L2((0, T), QT ) = L2((0, T), L2(�)). Therefore, from the
Riesz–Frechét–Kolmogorov [50, Theorem 2.13.1] and the reflexivity of the space L2((0, T),
H1

0(�)), we have the existence of an element u in L2((0, T), L2(�)) and a subsequence
(unl )l∈N of (un)n∈N such that

unl → u in L2((0, T), L2(�)
)

as l → ∞ (30)

and

unl ⇀ u in L2((0, T), H1
0(�)

)
as l → ∞.

Moreover, Lemma 5.3 gives that

unl (t) ⇀ u(t) in H1
0(�) as l → ∞ for all t ∈ (0, T).
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Therefore, u ∈ L∞((0, T), H1
0(�)). Now, we integrate Eq. (29) in time over (0,η) ⊂ (0, T) for

the resulting subsequence to get that

(
(g ∗ u)nl (η),ϕ

)
–
∫ η

0

(
gnl

(t)ũ0,ϕ
)

dt

+
∫ η

0
Lnl (t)

(
unl (t),ϕ

)
dt =

∫ η

0

(
f nl

(t),ϕ
)

dt. (31)

If ∂t f ∈ L2((0, T), L2(�)), then for t ∈ (ti–1, ti], we have that

∥
∥fnl (t) – f (t)

∥
∥

L2(�) ≤ C
√

τ .

If ‖∂t f (t)‖ ≤ C(1 + tγ –1) with γ ∈ (0, 1), then we have that

∥∥fnl (t) – f (t)
∥∥

L2(�) ≤ Cτ + C
∫ ti

t
sγ –1 ds ≤ Cτ γ

by the α-Hölder continuity of f (x) = xα with α ∈ (0, 1). Therefore,

lim
l→∞

∥∥f nl
(t) – f (t)

∥∥ = 0 for all t ∈ (0, T).

Similarly, we have that ‖Anl (t) – A(t)‖(L∞(�))d×d → 0 and ‖cnl (t) – c(t)‖L∞(�) → 0 for all
t ∈ [0, T] as l → ∞. Hence, employing the results above, for η ∈ (0, T), we see that

∣∣
∣∣

∫ η

0
Lnl (t)

(
unl (t),ϕ

)
dt –

∫ η

0
L(t)

(
u(t),ϕ

)
dt
∣∣
∣∣→ 0 as l → ∞,

and
∣
∣∣∣

∫ η

0

(
f nl

(t),ϕ
)

dt –
∫ η

0

(
f (t),ϕ

)
dt
∣
∣∣∣→ 0 as l → ∞.

At this moment we are not able to perform the limit transition in the first term of (31).
Hence, we integrate Eq. (31) once more in time over η ∈ (0, ξ ) ⊂ (0, T). We get that

∫ ξ

0

(
(g ∗ u)nl (η),ϕ

)
dη –

∫ ξ

0

(
ũ0

∫ η

0
gnl

(t) dt,ϕ
)

dη

+
∫ ξ

0

∫ η

0
Lnl (t)

(
unl (t),ϕ

)
dt dη =

∫ ξ

0

∫ η

0

(
f nl

(t),ϕ
)

dt dη. (32)

We make the limit transition in three steps:

(i) lim
l→∞

∣
∣∣
∣

∫ T

0

(
(g ∗ u)nl (η),ϕ

)
dη –

∫ T

0

(
(g ∗ u)nl

(η),ϕ
)

dη

∣
∣∣
∣ = 0;

(ii) lim
l→∞

∣∣
∣∣

∫ T

0

(
(g ∗ u)nl

(η),ϕ
)

dη –
∫ T

0

(
(g ∗ unl )(η),ϕ

)
dη

∣∣
∣∣ = 0;

(iii) lim
l→∞

∣
∣∣
∣

∫ T

0

(
(g ∗ unl )(η),ϕ

)
dη –

∫ T

0

(
(g ∗ u)(η),ϕ

)
dη

∣
∣∣
∣ = 0.
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We employ Corollary 5.1 to obtain that

∣∣
∣∣

∫ T

0

(
(g ∗ u)nl (η),ϕ

)
dη –

∫ T

0

(
(g ∗ u)nl

(η),ϕ
)

dη

∣∣
∣∣

=

∣∣
∣∣∣

nl∑

i=1

∫ ti

ti–1

(
(t – ti)δ(g ∗ u)i,ϕ

)
dt

∣∣
∣∣∣

(19)=

∣∣∣
∣∣

nl∑

i=1

∫ ti

ti–1

(t – ti) × (
(g ∗ δu)i – giũ0,ϕ

)
dt

∣∣∣
∣∣

ϕ∈H1
0(�)

≤
nl∑

i=1

τ 2
nl

∣∣〈(g ∗ δu)i,ϕ
〉
H1

0(�)∗×H1
0(�)

∣∣ +
nl∑

i=1

τ 2
nl

∫

�

∣∣gi(x, t)
∣∣∣∣ũ0(x)

∣∣∣∣ϕ(x)
∣∣dt

(5)≤ Cτnl + Cτ 1–β1
nl

→ 0 as l → ∞.

So the first limit transition is satisfied. For the second limit transition, we first note that
(g ∗ u)nl

(t) = (gnl
∗ unl )(�t�τnl

) for any t ∈ (0, T). Moreover, we have that

(
(gnl

∗ unl )
(�t�τnl

)
,ϕ
)

–
(
(g ∗ unl )(t),ϕ

)

=
(∫ �t�τ

t
gnl

(�t�τ – s
)
unl (s) ds,ϕ

)

+
(∫ t

0

[
gnl

(�t�τ – s
)

– g(t – s)
]
unl (s) ds,ϕ

)
. (33)

We show that
∣∣
∣∣

∫ T

0

(∫ �t�τ

t
gnl

(�t�τ – s
)
unl (s) ds,ϕ

)
dt
∣∣
∣∣→ 0 as l → ∞

and
∣∣
∣∣

∫ T

0

(∫ t

0

[
gnl

(�t�τ – s
)

– g(t – s)
]
unl (s) ds,ϕ

)
dt
∣∣
∣∣→ 0 as l → ∞

such that limit transition (ii) is satisfied. First, we have for t ∈ (ti–1, ti] that

∣
∣∣
∣

(∫ �t�τ

t
gnl

(�t�τ – s
)
unl (s) ds,ϕ

)∣∣∣
∣

≤ ‖ϕ‖
∥∥
∥∥

∫ �t�τ

t
gnl

(�t�τ – s
)
unl (s)(s) ds

∥∥
∥∥

≤ ‖ϕ‖
[∫

�

(∫ �t�τ

t
gnl

(
x, �t�τ – s

)
ds
)

×
(∫ �t�τ

t
gnl

(
x, �t�τ – s

)
u2

nl
(x, s) ds

)
dx
] 1

2
. (34)

For t ∈ (ti–1, ti] and a.a. x ∈ �, it holds that

∫ �t�τ

t
gnl

(
x, �t�τ – s

)
ds
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=
∫ ti–t

0
gnl

(x, ξ ) dξ =
∫ ti–t

0

τ
–β(x)
nl

�(1 – β(x))
dξ ≤ τ

1–β(x)
nl

�(1 – β(x))
≤ τ 1–β1

nl
.

Then, using Lemma 5.2, we obtain from Eq. (34) for t ∈ (ti–1, ti] that

∣
∣∣
∣

(∫ �t�τ

t
gnl

(�t�τ – s
)
unl (s) ds,ϕ

)∣∣∣
∣

2

≤ τ 1–β1
nl

‖ϕ‖2
∫

�

(∫ �t�τ

t
gnl

(
x, �t�τ – s

)
u2

nl
(x, s) ds

)
dx

≤ τ 1–β1
nl

‖ϕ‖2
∫

�

∫ ti

0
gnl

(x, ti – s)u2
nl

(x, s) ds dx

≤ τ 1–β1
nl

‖ϕ‖2
∫

�

i∑

j=1

gi–j+1(x)u2
j (x)τ dx

= τ 1–β1
nl

‖ϕ‖2
∫

�

(
g ∗ u2)

i(x) dx

≤ Cτ 1–β1
nl

,

which is valid for i = 1, . . . , n. Secondly, we deduce for the second term on the RHS of (33)
that

∣∣∣
∣

∫ T

0

(∫ t

0

[
gnl

(�t�τ – s
)

– g(t – s)
]
unl (s) ds,ϕ

)
dt
∣∣∣
∣

≤
∫

�

[∫ T

0

(∫ t

0

∣∣gnl

(
x, �t�τ – s

)
– g(x, t – s)

∣∣∣∣unl (x, s)
∣∣ds

)
dt
]∣∣ϕ(x)

∣∣dx

≤
∫

�

∣∣ϕ(x)
∣∣
[∫ T

0

(∫ t

0

∣∣gnl

(
x, �t�τ – s

)
– g(x, t – s)

∣∣ds
) 1

2

×
(∫ t

0

∣∣gnl

(
x, �t�τ – s

)
– g(x, t – s)

∣∣u2
nl

(x, s) ds
) 1

2
dt
]

dx

≤ Cτ
1
2 (1–β1)

nl

×
∫

�

∣∣ϕ(x)
∣∣
[∫ T

0

(∫ t

0

∣∣gnl

(
x, �t�τ – s

)
– g(x, t – s)

∣∣u2
nl

(x, s) ds
) 1

2
dt
]

dx

≤ Cτ
1
2 (1–β1)

nl

√
T

×
∫

�

∣∣ϕ(x)
∣∣
[∫ T

0

(∫ t

0

∣∣gnl

(
x, �t�τ – s

)
– g(x, t – s)

∣∣u2
nl

(x, s) ds
)

dt
] 1

2
dx

since (remember that the function g is decreasing in time and thus gnl
≤ g) we have for

t ∈ (ti–1, ti] that

∫ t

0

∣∣gnl

(
x, �t�τ – s

)
– g(x, t – s)

∣∣ds

=
∫ ti–1

0

(
g(x, t – s) – gnl

(x, ti – s)
)

ds +
∫ t

ti–1

(
g(x, t – s) – gnl

(x, ti – s)
)

ds
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≤
∫ ti–1

0

(
g(x, ti–1 – s) – g(x, ti+1 – s)

)
ds + 2

∫ t

ti–1

g(x, t – s) ds

≤ t1–β(x)
i–1

�(2 – β(x))
+

(2τnl )
1–β(x)

�(2 – β(x))
–

t1–β(x)
i+1

�(2 – β(x))
+ 2

t1–β(x) – t1–β(x)
i–1

�(2 – β(x))

≤ Cτ 1–β1
nl

,

where we used the α-Hölder continuity of f (x) = xα with α ∈ (0, 1]. Next, we see that

∫ T

0

(∫ t

0

∣∣gnl

(
x, �t�τ – s

)
– g(x, t – s)

∣∣u2
nl

(x, s) ds
)

dt

=
∫ T

0

((
g ∗ u2

nl

)
(x, t) –

∫ t

0
gnl

(
x, �t�τ – s

)
u2

nl
(x, s) ds

)
dt

(�)≤ ∥∥gnl
(x)
∥∥

L1(0,T)

∥∥u2
nl

(x)
∥∥

L1(0,T)

+
∫ T

0

(∫ t

0
gnl

(
x, �t�τ – s

)
u2

nl
(x, s) ds

)
dt

(6)≤ C
∥∥u2

nl
(x)
∥∥

L1(0,T) +
∫ T

0

(∫ t

0
gnl

(
x, �t�τ – s

)
u2

nl
(x, s) ds

)
dt,

where we used Young’s inequality for convolutions at position (�). Therefore, using
Lemma 5.2, we finally obtain that

∣∣∣
∣

∫ T

0

(∫ t

0

[
gnl

(�t�τ – s
)

– gnl
(t – s)

]
u2

nl
(s) ds,ϕ

)
dt
∣∣∣
∣

≤ Cτ
1
2 (1–β1)

nl ‖ϕ‖
[∫

�

∥
∥u2

nl
(x)
∥
∥

L1(0,T) dx

+
∫

�

(∫ T

0

(∫ t

0
gnl

(
x, �t�τ – s

)
u2

nl
(x, s) ds

)
dt
)

dx
] 1

2

≤ Cτ
1
2 (1–β1)

nl

[ nl∑

i=1

‖ui‖2τ +
nl∑

i=1

τ

∫

�

(
g ∗ u2)

i(x) dx

] 1
2

≤ Cτ
1
2 (1–β1)

nl .

We conclude that the second limit transmission is valid. Limit transmission (iii) follows
from Eq. (30) since

∣
∣∣
∣

∫ T

0

((
g ∗ (unl – u)

)
(t),ϕ

)
dt
∣
∣∣
∣

≤
∫

�

∣
∣ϕ(x)

∣
∣
(∫ T

0

(
g ∗ ∣∣(unl – u)

∣
∣)(x, t) dt

)
dx

≤ √
T
∫

�

∣∣ϕ(x)
∣∣
(∫ T

0

(
g ∗ ∣∣(unl – u)

∣∣)2(x, t) dt
) 1

2
dx

(�)≤ √
T
∫

�

∣
∣ϕ(x)

∣
∣
∥
∥g(x)

∥
∥

L1(0,T)

∥
∥(unl – u)(x)

∥
∥

L2(0,T) dx
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(6)≤ C
∫

�

∣∣ϕ(x)
∣∣∥∥(unl – u)(x)

∥∥
L2(0,T) dx

≤ C‖ϕ‖‖unl – u‖L2((0,T),L2(�)),

using Young’s inequality for convolutions at position (�). Now, we are able to pass to the
limit l → ∞ in (32), and we obtain that

∫ ξ

0

(
(g ∗ u)(η),ϕ

)
dη –

∫ ξ

0

(
ũ0

∫ η

0
g(t) dt,ϕ

)
dη +

∫ ξ

0

∫ η

0
L(t)

(
u(t),ϕ

)
dt dη

=
∫ ξ

0

∫ η

0

(
f (t),ϕ

)
dt dη.

Next, we differentiate the previous relation with respect to ξ , i.e.

(
(g ∗ u)(ξ ),ϕ

)
–
(

ũ0

∫ ξ

0
g(t) dt,ϕ

)
+
∫ ξ

0
L(t)

(
u(t),ϕ

)
dt =

∫ ξ

0

(
f (t),ϕ

)
dt. (35)

Since u ∈ L∞((0, T), H1
0(�)) and f ∈ C([0, T], L2(�)), we immediately see that

lim
ξ↘0

(
(g ∗ u)(ξ ),ϕ

)
= 0 ⇒ (g ∗ u)(0) = 0 in L2(�).

This calculation confirms (22). Moreover, from (35), we also get that (g ∗ (u – ũ0))(ξ ) is
absolutely continuous in time with values in H1

0(�)∗ and with (g ∗ (u – ũ0))(0) = 0 as

(
g ∗ (u – ũ0)

)
(ξ ) =

∫ ξ

0
f (t) dt –

∫ ξ

0
L(t)u(t) dt in H1

0(�)∗, (36)

where

〈
f (t) – L(t)u(t),ϕ

〉
=
(
f (t),ϕ

)
– L(t)

(
u(t),ϕ

)
.

We differentiate this relation with respect to ξ and replace ξ with t to obtain that

∂t
(
g ∗ (u – ũ0)

)
(t) = f (t) – L(t)u(t) in H1

0(�)∗ for a.a. t ∈ (0, T), (37)

i.e. u satisfies the weak formulation (21). Moreover, using that u ∈ L∞((0, T), H1
0(�)) and

f ∈ C([0, T], L2(�)), we get that

∂t
(
g ∗ (u – ũ0)

) ∈ L∞((0, T), H1
0(�)∗

)
. �

Theorem 6.2 (Uniqueness) Let assumptions AS-(1–6) be fulfilled. Then there exists a
unique weak solution u to problem (21) with u ∈ L∞((0, T), H1

0(�)) and ∂t(g ∗ (u – ũ0)) ∈
L∞((0, T), H1

0(�)∗).

Proof We show the uniqueness of a solution by contradiction. We suppose that two so-
lutions u1 and u2 to (21) exist and set u = u1 – u2. Then u satisfies (21) with f = 0 in QT
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and u(x, 0) = 0 in �. Then, we integrate the result over t ∈ (0,η) ⊂ (0, T) and put ϕ = u(η).
Afterwards, we integrate in time over η ∈ (0, ξ ) ⊂ (0, T) and obtain that

∫ ξ

0

(
(g ∗ u)(η), u(η)

)
dη +

∫ ξ

0

∫ η

0
L(t)

(
u(t), u(η)

)
dt dη =

∫ ξ

0

∫ η

0

(
f (t), u(η)

)
dt dη.

From Lemma 2.1, it follows that

∫ ξ

0

(
(g ∗ u)(η), u(η)

)
dη ≥

∫

�

γ (x)
∫ ξ

0
(e ∗ u)2(x, s) ds dx.

Using the symmetry of A and integration by parts, we see that

∫ ξ

0

(∫ η

0
A(t)∇u(t) dt,∇u(η)

)
dη =

1
2

(
A(ξ )

[∫ ξ

0
∇u(s) ds

]
,
∫ ξ

0
∇u(t) dt

)

+
1
2

∫ ξ

0

(∫ η

0
∇u(t) dt, ∂tA(η)

[∫ η

0
∇u(s) ds

])
dη

–
(∫ ξ

0
∂tA(t)

[∫ t

0
∇u(s) ds

]
dt,

∫ ξ

0
∇u(t) dt

)
.

Hence, using the ε-Young inequality, we see that

∫ ξ

0

(∫ η

0
A(t)∇u(t) dt,∇u(η)

)
dη

≥
(

α

2
– ε

)∥∥∥
∥

∫ ξ

0
∇u(t) dt

∥
∥∥
∥

2

– Cε

∫ ξ

0

∥
∥∥
∥

∫ η

0
∇u(t) dt

∥
∥∥
∥

2

dη.

Similarly, we have that

∣∣
∣∣

∫ ξ

0

(∫ η

0
c(t)u(t) dt, u(η)

)
dη

∣∣
∣∣≥ –ε

∥∥
∥∥

∫ ξ

0
∇u(t) dt

∥∥
∥∥

2

– Cε

∫ ξ

0

∥∥
∥∥

∫ η

0
∇u(t) dt

∥∥
∥∥

2

dη.

Therefore, fixing ε sufficiently small and applying the Grönwall lemma imply that

∫

�

γ (x)
∫ ξ

0
(e ∗ u)2(x, s) ds dx +

∥
∥∥
∥

∫ ξ

0
∇u(t) dt

∥
∥∥
∥

2

= 0.

Hence, we obtain that e∗u = 0 a.e. in QT . From the theory on Volterra equations, it follows
that u = 0 a.e. in QT , cf. [51, Theorem 3.5]. �

Remark 6.1 (Neumann boundary condition) We made use of Friedrichs’s inequality to
handle the term

∫ ξ

0

(∫ η

0
c(t)u(t) dt, u(η)

)
dη

in Theorem 6.2. This step is violated when a Neumann condition is considered on the
whole boundary of the domain (A(t)∇u(t) ·ν = 0 on ∂� for t > 0). However, we can assume
that c ≥ c0 > 0 in QT in order to be able to obtain the uniqueness of a solution. In fact, this
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assumption is also necessary when establishing the a priori estimate in Lemma 5.3 if a
Neumann boundary condition is considered.

Remark 6.2 Note that the convergence of Rothe’s functions towards the weak solution in
Theorem 6.1 is also valid for the entire Rothe’s sequence as the solution is unique.

We are not able to show that u(0) = ũ0 for the space-dependent variable-order fractional
derivative under consideration. In the next section, we explain how to obtain this conver-
gence result in the case of a constant-order fractional derivative.

7 Fractional derivative of constant order
In this section, we suppose that β(x) = β with β ∈ (0, 1). Therefore, the kernel g only
depends on the time-variable. We have the existence of the kernel l(t) = tβ–1

�(β) such that
(l ∗ g)(t) = 1 for all t ∈ [0, T]. Next, we apply the convolution operation with kernel l on
(37). We obtain that

(
l ∗ [∂t

(
g ∗ (u – ũ0)

)])
(t) =

(
l ∗ [f – Lu]

)
(t) in H1

0(�)∗.

From the absolute continuity of (g ∗ (u – ũ0))(t), (g ∗ (u – ũ0))(0) = 0 and (l ∗ g)(t) = 1, we
have that

(
l ∗ [∂t

(
g ∗ (u – ũ0)

)])
(t) = ∂t

(
l ∗ g ∗ (u – ũ0)

)
(t) = u(t) – ũ0.

Hence,

u(t) – ũ0 =
(
l ∗ [f – Lu]

)
(t) in H1

0(�)∗,

For all ϕ ∈ H1
0(�), since u ∈ L∞((0, T), H1

0(�)) and f ∈ C([0, T], L2(�)), we obtain that

lim
t↘0

∣
∣〈u(t) – ũ0,ϕ

〉
H1

0(�)∗×H1
0(�)

∣
∣ = lim

t↘0

∣∣
∣∣

∫ t

0
l(t – s)

[(
f (s),ϕ

)
– L(s)

(
u(s),ϕ

)]
ds
∣∣
∣∣

≤ C lim
t↘0

∫ t

0
l(t – s) ds = 0.

Thus u(0) = ũ0 in H1
0(�)∗ and

u ∈ C
(
[0, T], H1

0(�)∗
)
.

Finally, we summarise the results in the following theorem, which improves the result
obtained in [37, Theorem 3.1] (see also [38, Theorem 1]).

Theorem 7.1 Let assumptions AS-(1–6) be fulfilled and put β(x) = β with β ∈ (0, 1).
Then there exists a unique weak solution u to problem (21) with u ∈ C([0, T], H1

0(�)∗) ∩
L∞((0, T), H1

0(�)) and ∂t(g ∗ (u – ũ0)) ∈ L∞((0, T), H1
0(�)∗).

Remark 7.1 In [26, Proposition 7], the authors proved that u ∈ C([0, T], X) and u(0) = ũ0

for β ∈ ( 1
p , 1] if u ∈ L1((0, T), X), p ∈ (1,∞), (g ∗ (u – ũ0))(0) = 0 and ∂t(g ∗ (u – ũ0)) ∈
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Lp((0, T), X). The authors made use of [52, Theorem 3.6], which is also satisfied for p =
∞. Therefore, we deduce that [26, Proposition 7] is also satisfied for p = ∞, which is in
accordance with the result obtained above.

Remark 7.2 (Neumann boundary condition) Theorem 7.1 is also satisfied when consider-
ing a homogeneous Neumann boundary condition if c ≥ c0 > 0.

Remark 7.3 We use the absolute continuity in time with values in H1
0(�)∗ of (g ∗ (u– ũ0))(t)

to obtain the continuity in time of u(t) with values in H1
0(�)∗. We note that no information

about ∂tu itself is obtained.

7.1 More regular solution
In this section, we show that the solution u to problem (2) belongs to

u ∈ L2((0, T), H2(�) ∩ H1
0(�)

)

if the tensor A in the principal part of the differential operator L is a 1 × 1 matrix, i.e. we
suppose that

L(x, t)u(x, t) = –∇ · (a(x, t)∇u(x, t)
)

+ c(x, t)u(x, t).

This leads to the following additional assumptions:
• AS-7: β ∈ C(�) with 0 < β(x) ≤ β1 < 1 for all x ∈ �;
• AS-8: A ∈ (L∞(QT ))1×1, i.e. A = a, and ∇a ∈ (L∞(QT ))d .

We note that the ellipticity assumption AS-2 reduces to

a(x, t) ≥ α > 0 for a.a. (x, t) ∈ QT .

The goal is to derive some higher stability results for the discrete solution. We have already
from the Lax–Milgram lemma that there exists a unique ui ∈ H1

0(�) solving problem (24)
for any i = 1, . . . , n, see Lemma 5.1. Moreover, from (24), it follows that

–ai�ui = fi + ∇ai · ∇ui – (g ∗ δu)i – ciui in H1
0(�)∗.

However, as the RHS is an element of L2(�) (thanks to assumption AS-8), we also have that
–ai�ui is an element of L2(�) for any i = 1, . . . , n. Hence, from the ellipticity assumption,
we get that �ui ∈ L2(�) for any i = 1, . . . , n. Now, we are able to establish the following a
priori estimate.

Lemma 7.1 Let assumptions AS-(1–8) be fulfilled. Then a positive constant C exists such
that, for every j = 1, 2, . . . , n, the following relation holds:

(
g ∗ ‖∇u‖2)

j +
j∑

i=1

gi‖∇ui‖2τ +
j∑

i=1

‖�ui‖2τ ≤ C.
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Proof We multiply

(g ∗ δu)i – ai�ui – ∇ai · ∇ui + ciui = fi (38)

by –�uiτ , integrate the result over � and sum up the result for i = 1, . . . j keeping 1 ≤ j ≤ n.
We obtain that

–
j∑

i=1

(
(g ∗ δu)i,�ui

)
τ +

j∑

i=1

(ai�ui,�ui)τ +
j∑

i=1

(∇ai · ∇ui,�ui)τ –
j∑

i=1

(ciui,�ui)τ

=
j∑

i=1

(fi,�ui)τ .

We apply Green’s theorem on the first term on the LHS. Since g is space-independent here
and ui|� = 0 for i = 0, . . . , n, we get that

–
j∑

i=1

(
(g ∗ δu)i,�ui

)
τ =

j∑

i=1

(
(g ∗ ∇δu)i,∇ui

)
τ –

j∑

i=1

(
(g ∗ δu)i,∇ui · ν

)
�
τ

=
j∑

i=1

(
(g ∗ δ∇u)i,∇ui

)
τ .

Hence, using relation (19), we obtain that

j∑

i=1

(
δ(g ∗ ∇u)i,∇ui

)
τ +

j∑

i=1

(ai�ui,�ui)τ

=
j∑

i=1

(fi,�ui)τ +
j∑

i=1

(gi∇ũ0,∇ui)τ +
j∑

i=1

(ciui,�ui)τ –
j∑

i=1

(∇ai · ∇ui,�ui)τ .

From Lemma 3.3, again using that g is solely time-dependent, we obtain that

j∑

i=1

(
δ(g ∗ ∇u)i,∇ui

)
τ ≥ 1

2
(
g ∗ ‖∇u‖2)

j +
1
2

j∑

i=1

gi‖∇ui‖2τ .

Using the ε-Young inequality, we estimate the second term in the RHS as follows:
∣∣
∣∣∣

j∑

i=1

(gi∇ũ0,∇ui)τ

∣∣
∣∣∣
≤ Cε1 + ε1

j∑

i=1

gi‖∇ui‖2τ .

Using Lemma 5.2, we easily see that
∣∣
∣∣∣

j∑

i=1

(fi,�ui)τ +
j∑

i=1

(ciui,�ui)τ –
j∑

i=1

(∇ai · ∇ui,�ui)τ

∣∣
∣∣∣
≤ Cε2 + ε2

j∑

i=1

‖�ui‖2τ .

Therefore, we obtain the following estimate:

1
2
(
g ∗ ‖∇u‖2)

j +
(

1
2

– ε1

) j∑

i=1

gi‖∇ui‖2τ + (α – ε2)
j∑

i=1

‖�ui‖2τ ≤ Cε1 + Cε2 .

We conclude the proof by fixing ε1 and ε2 sufficiently small. �
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In the space H2(�) ∩ H1
0(�), the norms ‖�u‖ and ‖u‖H2(�) are equivalent [53, The-

orem 1]. Hence, Lemma 7.1 implies that the Rothe sequence (un)n∈N is bounded in
L2((0, T), H2(�) ∩ H1

0(�)). The reflexivity of this space implies that the weak solution u to
problem (21) belongs to this space. Moreover, from (21) it also follows that ∂t(g ∗ (u– ũ0)) ∈
L2((0, T), L2(�)).

This latter result implies that the conditions of Corollary 3.1 are satisfied. It is here that
we can use this result to obtain in a different way (before we used the positive definiteness
of the kernel) the uniqueness of solution to problem (21). We consider u = u1 – u2 with u1

and u2 different solutions to (21). Thus u satisfies (21) with f = 0 in QT and u(·, 0) = 0 in �.
Therefore, taking ϕ = u(t) in (21) and integrating with respect to time over (0, η) ⊂ (0, T)
gives

∫ η

0

(
∂t(g ∗ u)(t), u(t)

)
dt +

∫ η

0
L(t)

(
u(t), u(t)

)
dt = 0.

From Corollary 3.1, it follows for any η ∈ (0, T) that (note that β1 = β in (8))

g̃
2

∫ η

0

∥∥u(t)
∥∥2 dt + α

∫ η

0

∥∥∇u(t)
∥∥2 dt ≤ 0, (39)

i.e. u = 0 a.e. in QT .

Theorem 7.2 Let assumptions AS-(1–8) be fulfilled and put β(x) = β with β ∈ (0, 1).
Then there exists a unique weak solution u to problem (21) with u ∈ C([0, T], H1

0(�)∗) ∩
L2((0, T), H2(�) ∩ H1

0(�)) and ∂t(g ∗ (u – ũ0)) ∈ L2((0, T), L2(�)).

Remark 7.4 (Neumann boundary condition) We discussed before in Remark 6.1 that the
coefficient c needs to satisfy additionally c ≥ c0 > 0 (next to assumptions AS-(1–6)) in or-
der to obtain the uniqueness of a solution and Lemma 5.3 when a Neumann condition
is considered on the whole boundary of the domain. We note that Eq. (39) is also satis-
fied without additional assumption on c in the case of a Neumann boundary condition on
the complete boundary (as f ≡ 0 in the proof of uniqueness). Moreover, from [54, Theo-
rem 2.50], it follows that the norms ‖u‖ + ‖�u‖ and ‖u‖H2(�) are equivalent for u ∈ H2(�)
satisfying ∇u · ν = 0 on ∂�. This implies that Theorem 7.2 is also satisfied when consid-
ering a homogeneous Neumann boundary condition if c ≥ c0 > 0.

In the next estimate, we show that under the additional assumptions
• AS-9: ũ0 ∈ H2(�), i.e. ũ0 ∈ H2(�) ∩ H1

0(�);
• AS-10: ∇a(t) = 0 and ∇c(t) = 0 a.e. in � for all t ∈ (0, T],

we have that the solution u to problem (21) belongs to L∞((0, T), H2(�) ∩ H1
0(�)). Then

from

u(t) – ũ0 =
(
l ∗ [f + a�u – cu]

)
(t) in L2(�),

we get that limt↘0 ‖u(t) – ũ0‖ = 0.
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Lemma 7.2 Let assumptions AS-(1–10) be fulfilled. Then positive constants C and τ0 exist
such that, for any τ < τ0 and for every j = 1, 2, . . . , n, the following relation holds:

‖�uj‖2 +
j∑

i=1

‖�ui – �ui–1‖2 ≤ C.

Proof We start with multiplying (38) by –�δuiτ , integrating the result over � and sum-
ming it up for i = 1, . . . j keeping 1 ≤ j ≤ n. We get by AS-10 and Green’s theorem the
following equality:

j∑

i=1

(
(g ∗ ∇δu)i,∇δui

)
τ +

j∑

i=1

(ai�ui,�δui)τ +
j∑

i=1

(ci∇ui,∇δui)τ

=
j∑

i=1

(fi,�δui)τ . (40)

Further, we follow the lines of the proof of Lemma 5.3. The first term on the LHS of (40)
is positive, and for the second we use (27) in order to obtain that

j∑

i=1

(ai�ui,�δui)τ ≥ α

2
‖�uj‖2 – C +

α

2

j∑

i=1

‖�ui – �ui–1‖2.

Using again (27) and the result of Lemma 5.3 gives us

∣
∣∣
∣∣

j∑

i=1

(ci∇ui,∇δui)τ

∣
∣∣
∣∣
≤ C.

If f ∈ H1((0, T), L2(�)), then the term on the RHS of (40) can be estimated as follows:

∣∣
∣∣
∣

j∑

i=1

(fi, δ�ui)τ

∣∣
∣∣
∣

(28)≤ Cε + ε‖�uj‖2.

The result of the lemma follows by fixing ε sufficiently small.
If ‖ ∂�

∂t� f (t)‖ ≤ C(1 + tγ –�) for � = 0, 1 and γ ∈ (0, 1), then

∣∣
∣∣
∣

j∑

i=1

(fi, δ�ui)τ

∣∣
∣∣
∣

(28)≤ Cε + ε‖�uj‖2 + C
j–1∑

i=1

tγ –1
i ‖�ui‖2τ .

Now, the estimate follows from the discrete Grönwall lemma [49, Corollary 15.5]. �

We summarise the consequences of Lemma 7.2 in the following theorem.

Theorem 7.3 Let assumptions AS-(1–10) be fulfilled and put β(x) = β with β ∈ (0, 1).
Then there exists a unique weak solution u to problem (21) with u ∈ C([0, T], L2(�)) ∩
L∞((0, T), H2(�) ∩ H1

0(�)) and ∂t(g ∗ (u – ũ0)) ∈ L∞((0, T), L2(�)).
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7.2 Numerical experiments
In this subsection, we first test the performance of the time-discrete scheme (25) (temporal
error) for solving (2) for a smooth solution and a typical solution given by

u1,β
ex (x, t) = t3 sin(πx) and u2,β

ex (x, t) = tβ sin(πx),

respectively. We will perform several numerical experiments for different values of the
order of the fractional derivative β . We consider � = (0, 1) and T = 1. We solve problems
(25) at each time step by the finite element method (FEM) using the first-order (P1–FEM)
Lagrange polynomials for the space discretization, where we take the number of space
discretization intervals equal to 128. We use the finite element library DOLFIN [55, 56]
from the FEniCS project [57, 58] to solve these problems. The CPU time (in seconds,
Intel® CoreTM i7-1065G7 Processor) increases fast when increasing the number of time
discretization intervals, as at each time step one has to use the numerical solutions at all
preceding time levels. In the numerical examples, we consider the following errors:

En
max = max

1≤i≤n
max
x∈�

∣∣un(x, ti) – uex(x, ti)
∣∣,

En
conv = max

1≤i≤n

∥∥(g ∗ u)n(ti) – (g ∗ uex)(ti)
∥∥.

The error En
conv is motivated by considering that we have ∂t(g ∗ (u – ũ0) in the governing

PDE instead of ∂tu in a classical parabolic PDE. In the first experiment, we consider the
smooth solution u1,β

ex for different values of β , i.e. β = 0.2, 0.4, 0.6, 0.8. On Figs. 1 and 2, the
errors En

max and En
conv are depicted on a logarithmic scale for τ = {2–j : j = 5 . . . 10}. We may

Figure 1 Asymptotic convergence rate for u1,βex on
a logarithmic scale using (17): log2 E

n
max

Figure 2 Convergence rate for u1,βex on a
logarithmic scale using (17): log2 E

n
conv
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Figure 3 Asymptotic convergence rate for u2,βex on a
logarithmic scale using (17): log2 E

n
max

Figure 4 Convergence rate for u2,βex on a logarithmic
scale using (17): log2 E

n
conv

conclude that the asymptotic rate of convergence for En
max is of order τβ , but a very fine

timestep τ will be needed to obtain this convergence rate, which will lead to a huge com-
putational complexity. Moreover, it is clear that we have O(τ 1–β ) convergence for En

conv.
The same conclusions can be drawn from Figs. 3 and 4, where we investigate the algorithm
in case of u2,β

ex for the different values of β ∈ {0.2, 0.4, 0.6, 0.8}. For these typical solutions,
the timestep τ needs to be smaller in comparison with the smooth solutions (especially for
small β = 0.2). The numerical results obtained for these examples validate the convergence
of the proposed algorithms. Important to note is that En

max = maxx∈� |un(x, t1) – uex(x, t1)|
in all these experiments. An interesting direction for future research is to investigate the-
oretically the order of convergence of En

max and En
conv.

As we mentioned before, in order to obtain good numerical approximations, a very
small timestep τ is needed, which is very time consuming. We may conclude that the
time-discrete scheme (25) mainly has theoretical advantages. For this reason, we try to
improve the time-discrete scheme (25) (leading to the theoretical results obtained in this
paper) from computational viewpoint by considering a graded mesh and allocating more
time-points around t = 0 [59–61]. We consider a graded time-partitioning of the form
tj = T(j/n)r for j = 0, 1, . . . , n, where the constant mesh grading is assumed to satisfy r ≥ 1.
We put τj := tj – tj–1 for j = 1, . . . , n and consider the following time-discrete convolution
on the graded mesh:

(g ∗ v)(ti) ≈ (g ∗ v)graded
i :=

i∑

l=1

g(ti – tl–1)vlτl. (41)
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If r = 1, then the mesh is uniform and we easily see that we get the approximation (17)
on a uniform mesh. The use of a graded mesh increases the temporal mesh near t = T (it
is coarser), and so it is possible that the error around t = T starts to dominate the error
around the initial time t = 0 (possibly also the space discretization error starts to interfere
the results). This is the reason why we also calculate the maximum error on the initial time
layer I := [0, t1] and investigate its behaviour, i.e.

En
maxI

= max
x∈�

∣∣un(x, t1) – uex(x, t1)
∣∣.

In case of the graded mesh, the convergence rates are derived as follows:

rateEn
max := log2

(
En

max
E2n

max

)
, rateEn

maxI
:= log2

(En
maxI

E2n
maxI

)
,

rateEn
conv := log2

(
En

conv
E2n

conv

)
.

In the experiments, we take r = 2–β

β
in accordance with the optimal mesh grading for the

classical L1-approximation for the Caputo fractional derivative [41, 62]. In Tables 1 and 2,
we give the maximum errors and the orders of convergence for u1,β

ex and u2,β
ex , respectively.

For r = 2–β

β
, we see that the asymptotic convergence rate of En

maxI
is 2 – β , and we again

observe that the asymptotic convergence rate of En
conv is 1 – β . From these experiments,

we are not able to make conclusions for the convergence rate of En
max. However, it is clear

that the maximum error is smaller in comparison with the uniform scheme (17). The same
order of accuracy can only be obtained for the uniform scheme in the case of a very small
timestep τ .

Table 1 Errors and order convergence for u1,βex using (41) with r = 2–β
β

r = 2–β
β n = 32 n = 64 n = 128 n = 256 n = 512 n = 1028

β = 0.2 EnmaxI
2.479E–2 7.233E–3 2.087E–3 6.000E–4 1.724E–4 4.951E–5

rateEnmaxI
1.777 1.793 1.798 1.799 1.800

Enmax 5.647E–1 3.356E–1 1.823E–1 9.430E–2 4.748E–2 2.354E–2
rateEnmax 0.751 0.880 0.951 0.990 1.012
rateEnconv 0.700 0.746 0.767 0.777 0.783

β = 0.4 EnmaxI
6.318E–2 2.163E–2 7.225E–3 2.393E–3 7.906E–4 2.609E–4

rateEnmaxI
1.547 1.582 1.594 1.598 1.599

Enmax 2.863E–1 1.468E–1 7.060E–2 3.209E–2 1.358E–2 5.086E–3
rateEnmax 0.964 1.056 1.138 1.240 1.417
rateEnconv 0.565 0.581 0.589 0.593 0.596

β = 0.6 EnmaxI
1.758E–1 7.328E–2 2.886E–2 1.110E–2 4.231E–3 1.607E–3

rateEnmaxI
1.263 1.344 1.378 1.392 1.397

Enmax 1.758E–1 7.328E–2 2.886E–2 1.110E–2 1.225E–2 1.296E–2
rateEnmax 1.263 1.344 1.378 -0.142 -0.082
rateEnconv 0.398 0.405 0.407 0.407 0.406

β = 0.8 EnmaxI
5.185E–1 2.947E–1 1.479E–1 6.900E–2 3.100E–2 1.369E–2

rateEnmaxI
0.815 0.994 1.100 1.154 1.180

Enmax 5.185E–1 2.947E–1 1.479E–1 7.440E–2 7.131E–2 6.516E–2
rateEnmax 0.815 0.994 0.992 0.061 0.130
rateEnconv 0.214 0.217 0.218 0.216 0.215
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Table 2 Errors and order convergence for u2,βex using using (41) with r = 2–β
β

r = 2–β
β n = 32 n = 64 n = 128 n = 256 n = 512 n = 1028

β = 0.2 EnmaxI
2.204E–2 6.439E–3 1.858E–3 5.344E–4 1.535E–4 4.410E–5

rateEnmaxI
1.775 1.793 1.798 1.799 1.800

Enmax 4.902E–2 2.435E–2 1.203E–2 5.917E–3 2.899E–3 1.413E–3
rateEnmax 1.009 1.017 1.024 1.030 1.036
rateEnconv 0.638 0.659 0.681 0.700 0.716

β = 0.4 EnmaxI
5.527E–2 1.897E–2 6.342E–3 2.101E–3 6.943E–4 2.291E–4

rateEnmaxI
1.543 1.581 1.594 1.598 1.599

Enmax 5.527E–2 1.897E–2 8.380E–3 3.611E–3 1.421E–3 1.058E–3
rateEnmax 1.543 1.179 1.214 1.346 0.426
rateEnconv 0.523 0.539 0.553 0.564 0.573

β = 0.6 EnmaxI
1.515E–1 6.342E–2 2.502E–2 9.630E–3 3.671E–3 1.394E–3

rateEnmaxI
1.256 1.342 1.377 1.391 1.397

Enmax 1.515E–1 6.342E–2 2.502E–2 9.630E–3 6.739E–3 5.411E–3
rateEnmax 1.256 1.342 1.377 0.515 0.317
rateEnconv 0.375 0.383 0.389 0.393 0.395

β = 0.8 EnmaxI
4.380E–1 2.510E–1 1.265E–1 5.908E–2 2.656E–2 1.173E–2

rateEnmaxI
0.803 0.989 1.098 1.153 1.179

Enmax 4.380E–1 2.510E–1 1.265E–1 5.908E–2 2.697E–2 2.394E–2
rateEnmax 0.803 0.989 1.098 1.131 0.172
rateEnconv 0.199 0.202 0.203 0.204 0.204

Finally, we compare these results with the results obtained when discretising the Caputo
time fractional derivative using the well-known L1-algorithm on uniform [63] and graded
meshes [41]. The L1-approximation is defined as follows:

(g ∗ v)(ti) ≈ (g ∗ v)L1
i :=

i∑

l=1

ul

∫ tl

tl–1

g1–β (ti – s) ds

=
i∑

l=1

ul
[
g2–β (ti – tl–1) – g2–β (ti – tl)

]
, (42)

where gα(t) := tα–1

�(α) . Hence, the L1-approximation to the Caputo fractional derivative of
order β ∈ (0, 1) at the time point ti is given by

∂βu
∂tβ

∣
∣∣∣
t=ti

=
i∑

l=1

ãi,l(ul – ul–1) with ãi,l =
g2–β (ti – tl–1) – g2–β (ti – tl)

τl
.

Therefore, using this approximation, the time-discrete scheme (25) becomes

ãi,i(ui,ϕ) + Li(ui,ϕ) = (fi,ϕ) + ãi,i(ui–1,ϕ) –
i–1∑

l=1

ãi,l(ul – ul–1,ϕ).

Now, we perform the same experiments as before using the L1-approximation. The results
for a uniform mesh (i.e. (42) with r = 1) are plotted in Figs. 5–8. The maximum error is
smaller in comparison with the uniform time-discrete convolution (17). The results sug-
gest an asymptotic convergence rate of O(τβ ) for En

max and of O(τ ) for En
conv when using
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Figure 5 Asymptotic convergence rate for u1,βex on a
logarithmic scale using (41) with r = 1: log2 E

n
max

Figure 6 Convergence rate for u1,βex on a logarithmic
scale using (41) with r = 1: log2 E

n
conv

Figure 7 Asymptotic convergence rate for u2,βex on a
logarithmic scale using (41) with r = 1: log2 E

n
max

(42). The results for the graded mesh with r = 2–β

β
are given in Tables 3 and 4. We again

see that the asymptotic convergence rate of En
maxI

is 2 – β and that the asymptotic conver-
gence rate of En

conv is 1. We observe that the error away from t = 0 can dominate the error
around the initial time, which gives a possible explanation for not obtaining the conver-
gence rate of 2 – β for En

max as was obtained before in [41]. We note that the maximum
error En

maxI
is smaller in comparison with using the time-discrete convolution quadrature

(41) with r = 2–β

β
for every experiment. However, we observe that the maximum error

En
max is (slightly) smaller in comparison with using the time-discrete convolution (41) with

r = 2–β

β
for β = 0.6 and β = 0.8, but it is (slightly) larger for β = 0.2 and β = 0.4. Further

research should be undertaken to investigate these observations in more detail.
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Figure 8 Convergence rate for u2,βex on a logarithmic
scale using (41) with r = 1: log2 E

n
conv

Table 3 Errors and order convergence for u1,βex using (42) with r = 2–β
β

r = 2–β
β n = 32 n = 64 n = 128 n = 256 n = 512 n = 1028

β = 0.2 EnmaxI
1.992E–2 5.794E–3 1.670E–3 4.801E–4 1.379E–4 3.961E–5

rateEnmaxI
1.782 1.795 1.798 1.800 1.800

Enmax 5.719E–1 3.434E–1 1.894E–1 9.953E–2 5.104E–2 2.584E–2
rateEnmax 0.736 0.859 0.928 0.964 0.982
rateEnconv 0.921 0.981 0.994 1.004 1.005

β = 0.4 EnmaxI
3.875E–2 1.307E–2 4.346E–3 1.437E–3 4.745E–4 1.566E–4

rateEnmaxI
1.567 1.589 1.596 1.599 1.600

Enmax 3.110E–1 1.691E–1 8.825E–2 4.511E–2 2.281E–2 1.147E–2
rateEnmax 0.879 0.938 0.968 0.984 0.992
rateEnconv 0.999 1.020 1.023 1.020 1.016

β = 0.6 EnmaxI
7.709E–2 3.042E–2 1.171E–2 4.465E–3 1.696E–3 6.432E–4

rateEnmaxI
1.341 1.377 1.391 1.397 1.399

Enmax 1.927E–1 1.011E–1 5.184E–2 2.627E–2 1.323E–2 6.639E–3
rateEnmax 0.930 0.963 0.981 0.990 0.995
rateEnconv 1.024 1.037 1.038 1.034 1.030

β = 0.8 EnmaxI
1.551E–1 7.262E–2 3.268E–2 1.444E–2 6.326E–3 2.761E–3

rateEnmaxI
1.095 1.152 1.179 1.191 1.196

Enmax 1.551E–1 7.262E–2 3.303E–2 1.668E–2 8.391E–3 4.210E–3
rateEnmax 1.095 1.137 0.985 0.991 0.995
rateEnconv 1.016 1.031 1.036 1.037 1.037

8 Multiple regions
In this section, we consider a composite medium consisting out of N separated subdo-
mains (e.g. layers). For ease of exposition, we take N = 2 and make the following assump-
tions:

• AS-11: � = �1 ∪ �2 ∪ S , where �1 and �2 are non-overlapping Lipschitz
subdomains with interface S := �1 ∩ �2;

• AS-12: The normal flux of u is continuous along S , i.e.

[[
A∇u(t) · n

]]
S =

(
A2∇u2(t) – A1∇u1(t)

) · n = 0, t ∈ (0, T], (43)

where n denotes the outer normal on �1, and u1, u2 are the limiting values of the
function u as S is approached from �1, �2, respectively.
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Table 4 Errors and order convergence for u2,βex using (42) with r = 2–β
β

r = 2–β
β n = 32 n = 64 n = 128 n = 256 n = 512 n = 1028

β = 0.2 EnmaxI
1.733E–2 5.046E–3 1.455E–3 4.183E–4 1.202E–4 3.451E–5

rateEnmaxI
1.780 1.794 1.798 1.800 1.800

Enmax 5.105E–2 2.580E–2 1.279E–2 6.399E–3 3.188E–3 1.598E–3
rateEnmax 0.984 1.012 1.000 1.005 0.996
rateEnconv 1.083 1.058 1.004 1.039 1.052

β = 0.4 EnmaxI
3.239E–2 1.096E–2 3.645E–3 1.206E–3 3.982E–4 1.314E–4

rateEnmaxI
1.564 1.588 1.596 1.599 1.600

Enmax 4.603E–2 2.310E–2 1.157E–2 5.786E–3 2.892E–3 1.444E–3
rateEnmax 0.995 0.998 0.999 1.001 1.002
rateEnconv 1.060 1.043 1.030 1.022 1.018

β = 0.6 EnmaxI
6.202E–2 2.460E–2 9.487E–3 3.619E–3 1.375E–3 5.216E–4

rateEnmaxI
1.334 1.374 1.390 1.396 1.399

Enmax 6.202E–2 2.460E–2 1.028E–2 5.141E–3 2.568E–3 1.282E–3
rateEnmax 1.334 1.258 1.000 1.001 1.003
rateEnconv 1.059 1.051 1.043 1.036 1.031

β = 0.8 EnmaxI
1.201E–1 5.673E–2 2.563E–2 1.134E–2 4.974E–3 2.172E–3

rateEnmaxI
1.082 1.146 1.176 1.189 1.195

Enmax 1.201E–1 5.673E–2 2.563E–2 1.134E–2 4.974E–3 2.172E–3
rateEnmax 1.082 1.146 1.176 1.189 1.195
rateEnconv 1.384 1.444 1.256 1.037 1.038

The weak formulation (4.1) is also satisfied in this situation as AS-12 implies that for all
ϕ ∈ H1

0(�) it holds that

–
(∇ · [A(t)∇u(t)

]
,ϕ
)

= –
(∇ · [A(t)∇u(t)

]
,ϕ
)
�1

–
(∇ · [A(t)∇u(t)

]
,ϕ
)
�2

=
(

A(t)∇u(t),∇ϕ
)
�

+
([[

A∇u(t) · n
]]
S ,ϕ

)
S

=
(

A(t)∇u(t),∇ϕ
)
.

The analysis in Sect. 6 stays valid. Therefore, we can conclude the following theorem.

Theorem 8.1 (Existence and uniqueness: multiple regions) Let assumptions AS-(1–6) and
AS-(11–12) be fulfilled. Then there exists a unique weak solution u to problem (21) with
u ∈ L∞((0, T), H1

0(�)) and ∂t(g ∗ (u – ũ0)) ∈ L∞((0, T), H1
0(�)∗).

Next, we show the L2((0, T), H2(�) ∩ H1
0(�)) regularity of the solution when β(x) is a

step function. We consider the following assumptions:
• AS-13: β(x) is a step function, i.e.

β(x) =

⎧
⎨

⎩
β1 x ∈ �1;

β2 x ∈ �2,
(44)

with 0 < β1,β2 < 1;
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• AS-14:

A(x, t) = a(x) =

⎧
⎨

⎩
a1 x ∈ �1;

a2 x ∈ �2.

Next, we are able to obtain a similar estimate as in Lemma 7.1 as ∇g = 0 in �1 and �2.

Lemma 8.1 Let assumptions AS-(1–6) and AS-(11–14) be fulfilled. Then a positive con-
stant C exists such that, for every j = 1, 2, . . . , n, the following relation holds:

∫

�

(
g ∗ |∇u|2)j(x) dx +

j∑

i=1

‖√gi∇ui‖2τ +
j∑

i=1

‖�ui‖2τ ≤ C

Proof We multiply (38) by –a�uiτ and integrate the result over �1 and �2, respectively.
In particular for the first term on the LHS, using ∇g = 0 in �1 and �2, we obtain that

–
(
(g ∗ δu)i, a�ui

)
�1

=
(
(g ∗ ∇δu)i, a∇ui

)
�1

–
((

g ∗ δu1)
i, a1∇u1

i · ν)S ,

–
(
(g ∗ δu)i, a�ui

)
�2

=
(
(g ∗ ∇δu)i, a∇ui

)
�2

–
((

g ∗ δu2)
i, a2∇u2

i · ν)S .

Hence, by ui ∈ H1
0(�) and AS-12, we get that

–
(
(g ∗ δu)i, a�ui

)
=
(
(g ∗ ∇δu)i, a∇ui

)
+
(
(g ∗ δu)i, [[a∇ui · n]]S

)

(43)=
(
(g ∗ ∇δu)i, a∇ui

)
.

We add up the resulting equations on �1 and �2 and sum the result over i = 1, . . . j with
1 ≤ j ≤ n. Using relation (19), we get that

j∑

i=1

(
δ
(
g ∗ (

√
a∇u)

)
i,
√

a∇ui
)
τ +

j∑

i=1

‖a�ui‖2τ

=
j∑

i=1

(fi, a�ui)τ +
j∑

i=1

(gi∇ũ0, a∇ui)τ +
j∑

i=1

(ciui, a�ui)τ . (45)

We obtain from Lemma 3.3 that

j∑

i=1

(
δ
(
g ∗ (

√
a∇u)

)
i,
√

a∇ui
)
τ ≥ 1

2

∫

�

(
g ∗ |√a∇u|2)j(x) dx +

1
2

j∑

i=1

‖√gi
√

a∇ui‖2τ .

All the other terms in (45) can be handled as in Lemma 7.1, and so we can conclude the
proof. �

From this lemma it follows that u ∈ L2((0, T), H2(�) ∩ H1
0(�)) and ∂t(g ∗ (u – ũ0)) ∈

L2((0, T), L2(�)) with

∂t
(
g ∗ (u – ũ0)

)
= f + a�u – cu a.e. in QT . (46)
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When discussing the uniqueness of a solution, we get again from Corollary 3.1 inequality
(39) where β1 = max{β1,β2} in (8). We conclude the following theorem.

Theorem 8.2 Let assumptions AS-(1–6) and AS-(11–14) be fulfilled. Then there exists a
unique weak solution u to problem (21) with

u ∈ L∞((0, T), H1
0(�)

)∩ L2((0, T), H2(�) ∩ H1
0(�)

)
and

∂t
(
g ∗ (u – ũ0)

) ∈ L2((0, T), L2(�)
)
.

We are not able to show the continuity of the solution in time by the argument used
before for the fractional derivative of constant order. Let us consider

∂t
(
g ∗ (u – ũ0)

)
(t) = f (t) – L(t)u(t) in H1

0(�i)
∗ for a.a. t ∈ (0, T), i = 1, 2;

and define li(t) := tβi–1

�(βi)
for i = 1, 2. Then, for ϕ ∈ H1

0(�) and i = 1, 2, it holds that

〈
u(t) – ũ0,ϕ

〉
H1

0(�i)
∗×H1

0(�i)
=
(
li ∗

[
(f ,ϕ)�i – (a∇u,∇ϕ)�i + (a∇u · ν,ϕ)S

])
(t).

We do not know how to get control over the boundary term as l1 �= l2. However, if ũ0 in
H2(�), then we can show the continuity in time by multiplying (38) by –a�δuiτ . Then, as
in the proof of Lemma 8.1, we have that

–
(
(g ∗ δu)i, a�δui

)
=
(
(g ∗ ∇δu)i, a∇δui

)
+
(
(g ∗ δu)i, [[a∇δui · n]]S

)
.

The boundary term cancels out if AS-12 is satisfied at t = 0. Together with ũ0 ∈ H2(�) we
see that necessarily [[a]]S = 0. Hence, we immediately assume that

• AS-15: A(x, t) = a ∈ (0,∞) in QT .

Lemma 8.2 Let assumptions AS-(1–6), AS-9, AS-(11–13) and AS-15 be fulfilled. Then pos-
itive constants C and τ0 exist such that, for any τ < τ0 and for every j = 1, 2, . . . , n, the fol-
lowing relation holds:

‖�uj‖2 +
j∑

i=1

‖�ui – �ui–1‖2 ≤ C.

Proof We multiply (38) by –�δuiτ and integrate the result over �1 and �2, respectively.
Now, as in the proof of Lemma 8.1, we have that

–
(
(g ∗ δu)i,�δui

)
=
(
(g ∗ ∇δu)i,∇δui

)
+
(
(g ∗ δu)i, [[∇δui · n]]S

)

=
(
(g ∗ ∇δu)i,∇δui

)

and

–(ciui,�δui) = (ci∇ui,∇δui) +
(
ciui, [[∇δui · n]]S

) (43)= (ci∇ui,∇δui).

Hence, we obtain (40) and we can proceed as in Lemma 7.2. �
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From this lemma, we obtain that u ∈ L∞((0, T), H2(�) ∩ H1
0(�)). Hence, from

u(t) – ũ0 =
(
li ∗ [f + a�u – cu]

)
(t) a.e. in �i for a.a. t ∈ (0, T), i = 1, 2,

we get that

lim
t↘0

∥
∥u(t) – ũ0

∥
∥ =

2∑

i=1

lim
t↘0

∥
∥u(t) – ũ0

∥
∥

L2(�i)
= 0.

Theorem 8.3 Let assumptions AS-(1–6), AS-9, AS-(11–13) and AS-15 be fulfilled. Then
there exists a unique weak solution u to problem (21) with u ∈ C([0, T], L2(�)) ∩ L∞((0, T),
H2(�) ∩ H1

0(�)) and ∂t(g ∗ (u – ũ0)) ∈ L∞((0, T), L2(�)).

9 Conclusion
We have investigated an initial-boundary value problem for a fractional diffusion equa-
tion with space-dependent variable order where the coefficients are dependent on spatial
and time variables. First, we have studied the properties of the governing kernel in Sect. 2.
Afterwards, in Sect. 3, we have generalised a fundamental identity for integro-differential
operators of the form d

dt (k ∗ v)(t) to a convolution kernel that is also space-dependent.
By the aid of a convolution quadrature on a uniform mesh, we have proven the existence
and uniqueness of a unique weak solution to the problem by aid of Rothe’s method in the
next sections. Moreover, we discussed in detail the constant-order case and under which
assumptions a more regular solution can be obtained. We considered a time-discrete con-
volution on a graded mesh in order to improve the computational results. We also inves-
tigated a composite medium consisting of a finite number of separated subdomains. An
interesting direction for future research is to investigate the well-posedness of the frac-
tional wave equation of variable order.
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